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bstract. Spectral encoding/decoding methods using unique base
unctions and physically meaningful values were explored. Three
ew methods such as, TrW6 consisting of six unique trigonometric
unctions, Lab2 consisting of two CIELAB functions, and LabRGB
onsisting of CIELAB and RGB, were derived and compared
gainst the traditional eigenvectors method. It was found that TrW6
nd LabRGB showed almost the same accuracy as the traditional
igenvector method. By using LabRGB, color characteristics can be
stimated by only looking at its encoding values and we do not have

o exchange base functions beforehand for exchanging a different
opulation of object colors. LabRGB can be applied not only to
pectral imaging but also to traditional trichromatic imaging world,
o its use can extend beyond spectral uses. © 2008 Society for
maging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.�2008�52:4�040902��

NTRODUCTION
pectral encoding/decoding using eigenvectors is a well-
nown method since a long time ago. For example, spectral
istribution can be written as a linear combination of six
igenvectors, such as

���� = �
i=1

6

wi · ei��� , �1�

here � is wavelength, ���� is spectral reflectance of an
bject color, ei��� is ith eigenvector and wi is a weighting

actor of the ith eigenvector.
In the present study, six eigenvectors from e1���

hrough e6��� were obtained first by principal component
nalysis applied to a population of object colors as described
elow.

(a) Generating 1000 object colors using the pseudo-
object color generating method.1

(b) Calculating eigenvectors by principal component
analysis.

(c) Verifying estimation error.

An example of eigenvectors is shown in Figure 1.
The pseudo-object color generating method is a conve-

ient method to generate spectral reflectance of pseudo-

IS&T Member.
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. Imaging Sci. Technol. 040902-
bject colors with an assumption of less than 3% variations
rom the average reflectance of neighboring samples on an
bject’s reflectance spectrum for 10 nm step data.

First, spectral reflectance estimation was made on an
bject color by multiple regression analysis using Eq. (1)
ith known eigenvectors and unknown weighting factors

called W6). Figure 2 shows spectral reflectance estimation
or one color from the Macbeth color chart and Figure 3
hows the standard deviation of reflectance estimation as a
unction of wavelength for 1000 pseudo-object colors.

An encoding/decoding method above using eigenvec-
ors has the lowest estimation error. On the other hand,
igenvectors cannot be defined uniquely, because they de-

Figure 1. Example of eigenvectors.
Figure 2. Spectral reflectance estimation using W6.

Jul.-Aug. 20081



p
v
v
e
a
t
s
s

e
p
w
c
l
m
T
a
c
b
p
t

t
a
u
e
i

B
F
T
s
v
(
r
b

e
t

s
u
(
m
F
e
o
o
d
e

f
o
t
q
t
e
o
a

L
T
s

F
W

Nakaya and Ohta: Spectral encoding/decoding using LabRGB

J

end on a sample selection from a larger population. Also,
alues used in the encoding/decoding method using eigen-
ectors have no physical meaning. So it is difficult to directly
stimate either a shape of spectral reflectance, or color char-
cteristics of an original object color. It is therefore not easy
o verify an encoding/decoding process. Furthermore, this
trategy cannot be applied to current trichromatic imaging
ystems directly.

Accordingly several challenges have been made to the
ncoding/decoding method described above. A recently re-
orted one is LabPQR.2 LabPQR is a concept of encoding
hich has three dimensions (CIELAB3) to represent the

olorimetric characteristics of a color under a specific il-
uminant and additional dimensions PQR to describe the

etameric black spectrum of a spectral power distribution.4

he intention of LabPQR is to convey physical values so that
n encoding value can be used to estimate an original object
olor. Several variations of the PQR aspects of LabPQR have
een described in the literature2,5 including those based on a
opulation of samples or those based on fundamental spec-
ral stimuli.4

The present paper investigates and delivers an addi-
ional algorithm of the LabPQR concept to the real world
nd describes encoding/decoding methods which have
nique, well-defined base functions, physically meaningful
ncoding values, and are capable of handling both spectral
maging and current trichromatic imaging equipment.

ASE FUNCTIONS USING TRIGONOMETRIC
UNCTION
here are several physically meaningful colorimetric values

uch as RGB and L*a*b. Among them, we use here the RGB
alues. Any base function set can be chosen as shown in Eq.
2). The first three base functions are designed roughly to
epresent RGB spectral distribution curve and the last three
ase functions cover higher frequency.

e1��� = sin�1

2
�

� − �min

�max − �min
�

e2��� = cos�1

2
�

� − �min

�max − �min
�

e3��� = sin��
� − �min

�max − �min
�

e4��� = cos�3

2
�

� − �min

�max − �min
�

e5��� = sin�2�
� − �min

�max − �min
�

e6��� = cos�5

2
�

�

�max − �min
�

�2�

With this base function set, color characteristics can be
stimated by weighting factors of the first three base func-

ions. The shape of the trigonometric base functions is C

. Imaging Sci. Technol. 040902-
hown in Figure 4. Spectral reflectance estimation was made
sing an equation obtained by substituting Eq. (2) into Eq.
1) (called TrW6). Figure 5 shows spectral reflectance esti-

ation for one color from the Macbeth color chart and
igure 6 shows the standard deviation of spectral reflectance
stimation as a function of wavelength for 1000 pseudo-
bject colors. Overall standard deviation of 1000 pseudo-
bject colors was 0.0335 in W6 and 0.0365 in TrW6; the
ifference between those was only 0.3%, so that an almost
quivalent accuracy could be obtained.

In Eq. (2), the frequency multiplier of the trigonometric
unction of e4����e6��� was selected from all combinations
f up to four by increments of one-half. As described later in
his article, there were some other combinations of the fre-
uency multiplier, which gave a standard deviation of spec-
ral reflectance estimation better than TrW6 and surprisingly
ven better than W6 as well. The present selection was made
n the basis of its simplicity, balance along the wavelength,
nd reasonable accuracy.

ab2
he next two encoding/decoding methods are to use two

ets of CIELAB3 values (called Lab2) and a combination of

igure 3. Standard deviation of spectral reflectance estimation using
6.

Figure 4. Eigenvectors using trigonometric function.
IELAB and RGB (called LabRGB).
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Lab2 uses two different sets of CIELAB values, corre-
ponding to two illuminants such as D65 and A, for encod-
ng values. So, encoding is done by calculating two different
ets of CIELAB values from spectral reflectance of an object
olor. Decoding is then carried out using CIEXYZ3 values

D65, YD65, ZD65, XA, YA, ZA calculated from the encoding
alues.

Equation (3) is obtained by substituting ���� into the
IEXYZ formula using the right hand side of Eq. (1); ei���

an be either W6 eigenvectors or TrW6 base functions.
quation (3) contains 6 simultaneous equations with six un-
nown weighting factors w1 �w6, thus it forms six-
imensional first-order equations. In Eq. (3), E65���, EA���
re the spectral energy distributions of illuminant D65 and
, and x̄���, ȳ���, z̄��� are the color matching functions.

XD65 = �
i=1

6

wi� ei��� · E65��� · x̄���d�

YD65 = �
i=1

6

wi� ei��� · E65��� · ȳ���d�

ZD65 = �
i=1

6

wi� ei��� · E65��� · z̄���d�

XA = �
i=1

6

wi� ei��� · EA��� · x̄���d�

YA = �
i=1

6

wi� ei��� · EA��� · ȳ���d�

ZA = �
i=1

6

wi� ei��� · EA��� · z̄���d�

�3�

By solving Eq. (3) for w1 �w6, and substitute to Eq. (1),
he original object color can be readily obtained. With this

ethod, the decoding was done, and Figure 7 shows a spec-
ral reflectance estimation for one color from the Macbeth
olor chart and Figure 8 shows the standard deviation of
pectral reflectance estimation as a function of wavelength

Figure 5. Spectral reflectance estimation using TrW6.
or 1000 pseudo-object colors. G

. Imaging Sci. Technol. 040902-
XD65, YD65, ZD65, XA, YA, ZA in Lab2 have a physical
eaning, so that feature of an object color can be estimated
ithout decoding into spectral reflectance curve. On the
ther hand, the standard deviation of spectral reflectance
stimation is worse near the both ends of the wavelength
cale. This is due to the low power in the x, y, z-bar equa-
ions at the low and high wavelength ends. So the colorimet-
ic accuracy is quite independent of spectral accuracy there.

abRGB
abRGB uses a combination of CIELAB and RGB. Encoding

s done by the following steps:

(a) Calculate CIEXYZ and CIELAB values of a spectral
reflectance ����;

(b) Substitute Eq. (2) into Eq. (1) and calculate six
weighting factors w1 �w6 for six base functions in
Eq. (2),

here CIELAB values, obtained by the above step (a), are
sed as the first three encoding values of LabRGB, while w1,

2, w3, obtained by the above step (b), are the last three
ncoding values of LabRGB, which roughly represent the R,

igure 6. Standard deviation of spectral reflectance estimation using
rW6.

Figure 7. Spectral reflectance estimation using Lab2.
, and B components, respectively.
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Decoding is done by the following steps.

(a) Calculate original XYZ values using CIELAB, the
first three encoding values of LabRGB. Also calcu-

late an estimation of CIEXYZ values X̂ŶẐ using w1,
w2, w3, the last three encoding values of LabRGB, as

X̂ = �
i=1

3

wi� ei��� · E��� · x̄���d�

Ŷ = �
i=1

3

wi� ei��� · E��� · ȳ���d�

Ẑ = �
i=1

3

wi� ei��� · E��� · z̄���d�

�4�

(b) Calculate w4, w5, w6 from the original XYZ values

and estimated X̂ŶẐ values using Eq. (5)

X − X̂ = �
i=4

6

wi� ei��� · E��� · x̄���d�

Y − Ŷ = �
i=4

6

wi� ei��� · E��� · ȳ���d�

Z − Ẑ = �
i=4

6

wi� ei��� · E��� · z̄���d�

�5�

(c) Substituting the resulting w4, w5, w6 and known w1,
w2, w3 into Eq. (1).

With this method, decoding was carried out, and Figure
shows spectral reflectance estimation for one color from

he Macbeth color chart. Figure 10 shows the standard de-
iation of spectral reflectance estimation as a function of
avelength for 1000 pseudo-object colors.

LabRGB consists of two classes of physical attributes,
nd its base functions TrW6 are unique trigonometric func-
ions. Overall standard deviation of 1000 pseudo-object col-

igure 8. Standard deviation of spectral reflectance estimation using
ab2.
rs was 0.0389 in LabRGB, and the difference between W6 u

. Imaging Sci. Technol. 040902-
nd LabRGB was small (only 0.54%), similar to TrW6.
herefore almost equivalent accuracy could be obtained.

OMPARISON OF THE ENCODING/DECODING
ETHODS

able I shows spectral estimation error of the four encoding/
ecoding methods described above with the three different
opulations of object colors. W6 base functions were calcu-

ated from 1000 pseudo-object colors, so W6 showed the
est result for that population of object colors. Both TrW6
nd LabRGB were better than W6 for 24 Macbeth colors and
9,776 SOCS colors.6 It can be said that TrW6 and LabRGB
erformance is almost equivalent to W6 performance.

Figures 11 and 12 show the colorimetric estimation er-
or of W6 and LabRGB using 1000 pseudo-object colors
ith the observation illuminant D65. Figures 13 and 14

how the same comparison with the observation illuminant
50. Figures 15 and 16 show the same comparison with the
bservation illuminant A. Summary of those comparisons is
hown in Table II. Table III shows the same colorimetric
stimation error comparisons as Table II except, in this case,

Figure 9. Spectral reflectance estimation using LabRGB.

igure 10. Standard deviation of spectral reflectance estimation using
abRGB.
sing 49,776 SOCS colors. For Figures 12, 14, and 16, as well

Jul.-Aug. 20084
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s Tables II and III, illuminant D65 was used in LabRGB
ncoding/decoding calculation, so the combination of
abRGB and observation illuminant D65 shows minimum
olorimetric estimation error (almost zero). Furthermore,
abRGB also worked better than W6 with observation il-

uminant D50 and A, because W6 minimizes spectral esti-
ation error, and LabRGB minimizes colorimetric estima-

ion error.

INIMIZING COLORIMETRIC ESTIMATION ERROR
ccording to Table III, the colorimetric estimation error in

able I. Comparison of the spectral reflectance estimation overall standard deviation
ratio�.

bject colors

Encoding/decoding methods

W6 TrW6 Lab2 LabRGB

4 Macbeth colors 0.0255 0.0206 0.0464 0.0222

000 pseudo-object colors 0.0335 0.0365 0.0746 0.0389

9776 SOCS colors 0.0247 0.0216 0.0622 0.0226

Figure 11. W6 colorimetric estimation error under illuminant D65.

Figure 12. LabRGB colorimetric estimation error under iiluminant D65.
abRGB is about �Eab=1.8 from observation illuminant A i

. Imaging Sci. Technol. 040902-
o D65, which is about 3600 K in color temperature range.
o, colorimetric estimation error of less than one in �Eab
nit can be achieved over the same observation color tem-
erature range by selecting illuminant color temperature of
abRGB encoding/decoding calculation to disperse colori-
etric estimation error.

Table IV shows the standard deviation of colorimetric
stimation error using 49,776 SOCS colors. Five different

Figure 13. W6 colorimetric estimation error under illuminant D50.

Figure 14. LabRGB colorimetric estimation error under illuminant D50.

Figure 15. W6 colorimetric estimation error under llluminant A.
lluminants were used in LabRGB encoding/decoding calcu-

Jul.-Aug. 20085
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ation. Values of �Eab are less than one for all observation
lluminants in the LabRGB encoding/decoding calculation
sing 4000K black body radiation [underlined text indicates
BR (black body radiation, unless otherwise noted) 4000K

n Table IV], while the sum of �Eab is minimized in the

able II. Comparison of colorimetric estimation error �standard deviation of 1000
seudo-object colors �Eab�.

ncoding/decoding methods

Observation illuminants

D65 D50 A

6 1.5540 1.8730 2.4700

abRGB 0.0006 0.2906 1.1416

able III. Comparison of the colorimetric estimation error �standard deviation of
9776 SOCS colors �Eab�.

ncoding/decoding methods

Observation illuminants

D65 D50 A

6 3.0773 3.3676 4.1670

abRGB 0.0009 0.4757 1.7336

Table IV. Comparison of the colorimetric estimatio

lluminants used in LabRGB
ncoding/decoding
alculation D65

1.8429

BR 4000K 0.8720

BR 4500K 0.6693

50 0.4755

65 0.0009

Figure 16. LabRGB colorimetric estimation error under llluminant A.
. Imaging Sci. Technol. 040902-
abRGB encoding/decoding calculation using illuminant
50 (underlined text, indicated as D50 in Table IV). D50 is
etter than BBR 4000K, because D50 is a well defined com-
on illuminant, spectrally about equal energy distribution

nd it gives minimum of sum of �Eab.

ISCUSSION
ll three new spectral encoding/decoding methods, TrW6,
ab2 and LabRGB have the following common features:

(a) Device independent.
(b) Color characteristics can be estimated by only

looking at its encoding values.
(c) Enabling use of same base function for different

population of object colors.
(d) Can be applied to both spectral imaging and tradi-

tional trichromatic imaging.

The features (b), (c), and (d) are advantageous for the
raditional orthogonal eigenvector method, and feature (a) is
dvantageous for LabPQR.

Each new spectral encoding/decoding method has the
ollowing different features:

(e) TrW6 and LabRGB worked surprisingly well for
three different population of object colors in terms
of spectral and colorimetric estimation accuracy.

(f) Encoding process in Lab2 is very easy, since it uses
two sets of CIELAB as encoding values.

(g) LabRGB is better than TrW6 in terms of the above
common feature (b).

LabRGB has an encoding/decoding illuminant depen-
ency. If the encoding/decoding illuminant and the observa-
ion illuminant are the same, colorimetric error is always
ero. Colorimetric estimation error is strongly related to
olor temperature difference between the encoding/decoding
lluminant and the observation illuminant. A greater color
emperature difference gives a greater colorimetric estima-
ion error. So the choice of encoding/decoding illuminant is
p to the application, but if one can only choose one to
over all ordinary and daily basis viewing conditions, D50 is
he best as stated above. It should be noted that this choice
oes not affect the spectral estimation error.

standard deviation of 49,776 SOCS colors �Eab�.

ation illuminants

Sum of
�EabD50 A

1.4902 0.0010 3.3340

0.6652 0.9558 2.4930

0.6061 1.2160 2.4914

0.0008 1.3588 1.8351

0.4757 1.7336 2.2103
n error �

Observ
Jul.-Aug. 20086
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There are a lot of different choices in defining the shape
f trigonometric functions in Eq. (2).

The shape of first three trigonometric functions was
efined to represent the shape of R, G and B. The
rigonometric functions have intrinsic flexibility, so one can
efine many combinations of trigonometric functions to get

he same curve shape. For example, Figure 17 shows the two
ifferent trigonometric functions in Eq. (6) and Eq. (7),

Table V. Comparison of the spectral reflec

sin cos sin c

1 2 3

0.5 0.5 1.0 3

0.5 0.5 1.0 2

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 2

0.5 0.5 1.0 2

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 2

0.5 0.5 1.0 1

0.5 0.5 1.0 2

0.5 0.5 1.0 1

0.5 0.5 1.0 3

0.5 0.5 1.0 2

0.5 0.5 1.0 1

0.5 0.5 1.0 2

0.5 0.5 1.0 3

0.5 0.5 1.0 1

0.5 0.5 1.0 2

0.5 0.5 1.0 2

0.5 0.5 1.0 1

0.5 0.5 1.0 2

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 1

0.5 0.5 1.0 1
hich look almost the same. c

. Imaging Sci. Technol. 040902-
y = sin�2x� , �6�

y =
�sin�x� + �cos�x� − 1�

�2 − 1
. �7�

The shapes of last three trigonometric functions were
efined by implementing multiple case studies of all the

imation overall standard deviation �ratio�.

sin cos

5 6
Standard
deviation

3.5 3.5 0.03327

3.0 3.5 0.03375

3.5 3.5 0.03378

3.0 3.5 0.03400

3.0 3.0 0.03412

3.0 3.0 0.03443

2.5 3.0 0.03445

2.5 3.0 0.03464

2.5 3.0 0.03485

3.0 5.0 0.03492

2.0 3.5 0.03497

3.5 3.5 0.03501

2.5 2.5 0.03513

2.5 3.5 0.03516

2.5 2.5 0.03520

3.0 3.5 0.03524

2.0 3.0 0.03537

2.0 2.5 0.03551

2.5 3.0 0.03552

4.0 4.0 0.03552

3.0 4.5 0.03578

2.0 3.5 0.03585

2.5 3.5 0.03587

2.0 3.0 0.03605

2.0 2.5 0.03609

1.5 3.0 0.03610

4.0 4.0 0.03610

2.0 2.0 0.03613

2.0 2.0 0.03624

2.0 2.5 0.03648

2.5 4.5 0.03653

3.5 4.0 0.03661

1.5 3.5 0.03662

1.5 5.0 0.03685

1.5 2.5 0.03690

1.5 1.5 0.03706
tance est

os

4

.0

.5

.5

.5

.5

.5

.5

.5

.0

.5

.5

.5

.5

.5

.0

.0

.0

.0

.0

.0

.5

.0

.0

.5

.0

.5

.5

.5

.0

.5

.5

.5

.5

.5

.5

.0
ombinations. Part of the results were shown in Table V as
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n incremental order of the standard deviation. There were
any combinations which give lower standard deviation,

alculated from 1000 pseudo-object colors, compared to the
ne in Eq. (2) (italic with underlined text in Table V). But
he difference in the standard deviation is less than 0.5%,
hich is reasonably small. So, as stated above, the present

election was made by on the basis of its simplicity, balance
long the wavelength range, and reasonable accuracy.

LabRGB involves multiple regression analysis for encod-
ng and three-dimensional first-order equations for decod-
ng. It is desirable to create a straightforward encoding/
ecoding calculation algorithm, which is not covered in this
aper, to apply LabRGB to a real multispectral image.

ONCLUSION
pectral encoding/decoding methods using unique base

Figure 17. Comparison of trigonometric functions.
unctions and physically meaningful values were explored.

. Imaging Sci. Technol. 040902-
It was found that the unique trigonometric functions
rW6 can be used as base functions without any or with
egligible loss of accuracy. Lab2, consisting of two CIELAB
alues, had standard deviation of spectral reflectance estima-
ions worse near the both ends of the wavelength, this was
ue to the lack of power in the x, y, z-bar equations at the
nds. LabRGB consisting of CIELAB and RGB and showed
lmost the same performance as the traditional eigenvectors

6. By using LabRGB, we do not have to worry about a
opulation of object colors each time, and we can
end/receive encoding values without exchanging base func-
ions beforehand. LabRGB consists of physically meaningful
ttributes, so that color characteristics can be estimated by
nly looking at its encoding values. LabRGB can be applied
ot only to spectral imaging but also to the traditional

richromatic imaging world, so its usage is unlimited. The
uture plan is to apply LabRGB to a multispectral imaging
ystem and implement a performance evaluation.
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