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Segmentation of Brain Immunohistochemistry Images
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Abstract. A generalized clustering algorithm utilizing the geometri-
cal shapes of clusters for segmentation of colored brain immunohis-
tological images is presented. To simplify the computation, the di-
mension of vectors composed from the pixel RGB components is
reduced from three to two by applying a de-correlation mapping with
the orthogonal bases of the eigenvectors of the auto-covariance ma-
trix. Since the brain immunohistochemical images have stretched
clusters that appear long and narrow in geometrical shape, we use
centroids of straight lines instead of single points to approximate the
clusters. An iterative algorithm is developed to optimize the linear
centroids by minimizing the approximation mean-squared error. The
partitioning of the two-dimensional vector domain into three portions
classifies each image pixel into one of the three classes: The micro-
glial cell cytoplasm, the combined hematoxylin stained cell nuclei
and the neuropil, and the pale background. Regions of the com-
bined hematoxylin stained cell nuclei and the neuropil are to be
separated based on the differences in their regional shapes. The
segmentation results of real immunohistochemical images of brain
microglia are provided and discussed. © 2008 Society for Imaging
Science and Technology.
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INTRODUCTION

Image segmentation is essential in the quantitative analysis
of cytological images.'” Nucleus segmentation that sepa-
rates the nucleus regions from other part of the images can
provide diagnostically important information such as the
nucleus sizes and shapes.”” Nucleus segmentation also en-
ables the subsequent image analysis to be performed solely
in the nucleus regions without the interference of the insig-
nificant image background.®® The quantitative image analy-
sis of brain immunohistochemistry staining may detect early
axonal damage in brain injuries."’ Unlike the natural images
that vary a great deal in color and contents, the cytological
images acquired via microscopes on the specimens with im-
munohistochemistry staining'' ™" have relatively homoge-
neous appearances. There are few distinctive colors in an
immunohistochemistry staining image. Because of the un-
evenness in staining process, there may be slight variations
in colors and intensities among the pixels of the same organs
or tissues. It is desired that the segmentation algorithm
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should be able to learn from the contents in images before
classifying the groups of pixels or regions. In segmentation
of lung cell images, Wu and Gil'* presented an adaptive al-
gorithm using a circular centroid combined with a linear
centroid to approximate the vector clusters. In the immuno-
histochemical brain images, the vector clusters resemble
more closely two linear clusters. If two linear centroids are
introduced and trained on the source vectors, the two long
clusters may be separated based on the trained centroids.
The microglial cell pixels or vectors that form an individual
cluster may be classified after clustering. Although the hema-
toxylin stained cell nuclei and the neuropil regions are not
separable by vector clustering because they share the same
vector space, they appear differently in their regional shapes.
To make use of the difference between the regional shapes,
we develop a region grow—shrink procedure to segment the
hematoxylin stained cell nuclei.

LINEAR CENTROIDS

Let a color digital image, X, be defined in a rectangular
image domain, S={(ny,n,)|n;=0,1,2,...,N,—1;
1,=0,1,2,...,N,—1}. The dimension of the image is
N, X N,. A pixel of the image at the location (r,,n,) that is
composed of three RGB color components can be repre-
sented by a three-dimensional (3D) vector x(n,,n,)=
(%1(ny,1y),%,(ny,1,),%5(ny,1,))", where [+]* denotes the vec-
tor transpose. While it is helpful to regard the image array as
an  N; XN, matrix of 3D vectors such as
X=[x(n,,1,)] N,xN,» it is convenient, for the purpose of
analysis, to convert the matrix into a 1 X N row matrix of 3D

vectors, V:[{'n]lxN:[{7¢(nl,n2)]1XN> for n=0,1,2,...,N—1
and N=N|N,, by a scanning operation ¢(,*) that strings
the elements row after row as n=¢(n,,n,)=N,n,+n,, for
0<n,;<N,, 0=n,<N,. Since each element in the 1 XN
row matrix V is a 3D vector, V can also be considered as a
3 X N matrix with each column representing a vector corre-
sponding to one pixel in the original image according to the
mapping of ¢.

Let the auto-covariance function be estimated by
C:[c(i,j)]3x3:(1/N)(\~7—ﬁ{,u)(\~7—ﬁ{,u)t, where the mean
vector dy=(1/N)="" 1%, and u=[1 1 1...1],xy. The auto-
covariance matrix C is symmetric and nonnegative. We have
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CA=diag(\;,\,,\5)A, where A=[a,,a,,a;] and the eigen-
values in decreasing order N\; =\, =\;. Since the third ei-
genvalue is generally much smaller than the other two eigen-
values, we discard it to simplify the computations. Let

A=[a,,a,] and the matrix V is a transform by V=A'V. The
matrix V, size of 2 X N, can be considered as a row vector of
two-dimensional (2D) vectors such as V=[vg,vy,...,Vy_1].
Thus, we have N two-dimensional source vectors,
v,=[v,(1),v,(2)], for n=0,1,...,N—1. With a linear map-
ping to move the ranges of the vector components into the
image range grid, we have the transformed images corre-
sponding to the first two eigenvalues as x;(117,1,) =v 1,
X (k), for k=1,2, and n=0,1,2,...,N—1. Figure 2 shows
the two images after the linear transform by the two eigen-
vectors, a; and a,, corresponding the two largest eigenvalues
N1 and \,, respectively. Image (a) has much higher contrast
since its corresponding eigenvalue is much larger.

In the images from immunohistochemical stains of
brain microglia utilizing diaminobenzidene (DAB) chro-
mogen and hematoxylin counterstain, the image contents
display roughly three visually different colors. These slides
display cell nuclei and processes that have significantly dif-
ferent colors. However, since all slides stained with this stan-
dard procedure are similar in color, their vectors are located
in vicinities. For a large digital image with N pixels, the
vectors in V may form large clouds if they are displayed in
an image with intensities corresponding to the number of
vectors in v(1) —v(2) space as shown in Fig. 2(a) where v(1)
is the vertical axis and v(2) is the horizontal axis. Unlike
many cases where the clusters appear round, Fig. 2(a) shows
clearly two separate clusters that appear stretched out to
form long and narrow shapes. Since the clusters appear
straight, we use two straight lines instead of two points as
the centroids to approximate the clusters. Setting the goal
function as the mean-squared error (MSE) of the approxi-
mation of the clusters with the lines, we minimize this goal
by iteratively reclassifying and updating the vectors. Starting
with the initial lines as in Figure 3(b), the final lines of the
centroids are obtained as shown in Fig. 3(g) when the pro-
cedure converges. The vast majority of vectors are in the
larger cluster called major cluster. We call the other smaller
cluster the minor cluster. The minor cluster contains the
vectors of DAB chromogen that appear brown in color in
the original image.

To separate the two clusters, we need to define a bound-
ary or a line so that vectors located on one side are classified
into one cluster and vectors on the other side are classified
into the other cluster. We rotate the image by the angle of
the centroid line of the major cluster so that the line is
parallel to one axis of the domain. The image after rotation
is depicted in (i) that shows the major cluster is stretched
along the vertical axis. The partitioning of the domain is
shown in Fig. 3(i) where the vertical line separates the minor
cluster first, and the second horizontal line partitions the
remaining area of the major cluster into two subclusters. The
algorithm will be described in details in the next
section.
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CLUSTERING WITH LINEAR CENTROIDS AND THE
IMPLEMENTATION

The classification of pixels is carried out by classifying the
two-dimensional vectors v, for n=0,1,...,N—1, related by
the mapping n=¢(n,,n,), where (n,,n,) is the coordinate of
pixel in the image domain and # is the index of the 2D
vector v,,. The range of the components in vectors v,, may be
out of the image intensity range of [0,L—1], where the in-
tensity level L=256, because of the linear transform by the
eigenvectors. For convenience in display as an image, storage
as a matrix and simplicity in computation of the histogram,
we use a dynamic mapping that shift and scale the ranges of
both the components in the vectors to inside the image in-
tensity range. Let &*(k)=max{v,(k)} and & (k)=min{v,(k)},
for k=1,2, where max{+} and min{+} select, respectively,
the maximum and minimum numbers from the sets. The
ranges of the two components are [£(1),&7(1)] and
[£7(2),€"(2)] Let &=max{(£"(1)-&(1)),(£"(2)-& ()}
To move the range of each component to the image grid, we
apply to the components the linear mappings of
round((L—1)/ &) (v(k)—& (k))), k=1,2. For the conve-
nience of analysis and efficient usage of storage, we still use
the v,,=[v,(1),v,(2)]" to represent the vectors after the map-
ping, such as v,(k)=round((L—1)/&)(v,(k)—& (k))), for
k=1,2,and n=0,1,2,...,N—1. The corresponding images
from de-stacking v,, by x;(n1,1,) =v4-1(,,(k), for k=1,2, and
n=0,1,2,...,N—1, are shown in Fig. 2, where the image
(a) shows higher contrast in intensities since its correspond-
ing eigenvalue is larger.

Initializing zeros to h, an image of size L X L. Each ele-
ment in h is a 2D vector or a paired variable. The 2D his-
togram of the vectors is computed by one loop as the
following:

forn=0to N—1 do h(v,(1),v,(2)) =h(v,(1),v,(2)) + 1.

Since the range of components in v(n) is limited in
[0,L—1], the squared domain of h is side of L—1. Fig. 3(a)
show the 2D histogram of the images in Fig. 2, where the
vertical axis corresponds to the image in Fig. 2(a) and the
horizontal axis corresponds to the image in Fig. 2(b). Higher
intensity means higher number of identical vectors in the set
v

Our first objective is to separate the two clusters that
appear long and narrow in shapes. Using two straight lines
as their respective centroids, we can significantly simplify the
clusters with only a few coefficients. Let I=2 be the number
of clusters. Each line can be defined by a pair of coefficients
a and p. Let the ith line be defined by v(1)cos(«;)+
v(2)sin(a;)—p;=0, for 1=<i<I. The distance between
the point v, and the ith line centroid will be
d; ,=v,(1)cos(a;) +v,(2)sin(e;) —p;|. Let S; be a set
composed of all the closest source vectors, i.e.,
Si:{vn|min_1{dj,n}=i}, where the inverse minimum opera-
tion milll 115]_’” yields the index j, instead of the distance,

1sj=1

corresponding to the smallest distance among the I distances

Jul.-Aug. 2008



Wu, Murray, and Morgello: Segmentation of brain immunohistochemistry images...

d-

i for 1< If min‘ld]-m: i, we assign the vector v,, into

the cluster representedr by the ith line. The set S; consists of
the source vectors that are closer to the ith line centroid than
to any of the other I—1 lines. The cost of classifying vectors
in S§; is measured by the mean-squared error as
&= (1/M)(S 1y 5 (r,(Dcos(a) +v,(2)sin(a) ~p)?).  The
average cost of classification of all source vectors is measured
by 82:(1/N)Ef:1(M,»sf). To update the line centroids for
the source vectors in S;, we recomputed the line parameters
so that the cost of &} is minimized. The parameters of the
straight line, p; and ¢;, for 1 <i<, can be obtained based
on the source vectors according to the Eqgs. (A1) and (A2) in
the Appendix. The difference between the two possible so-
lutions for «; is a constant angle of /2. The selection of ¢;
between the two values should be determined by the cluster
of the source vectors since only one is the right choice. The
correct a; renders the line fitting more properly to the clus-
ter and results in a significantly lower classification cost, ;.

We have shown that for a given set S; we can find the
best fitting line, determined by the pair («;,p;), that mini-
mizes the approximation error &;. The average error for all
vectors e2=(1/N)=L_,(M;e?) w1ll be smaller if we reclassify
the source vectors so that S; contains the vectors that are
located closer to the line of (e;,p;) than any of the other
lines. With such a modified partitioning {S;|1<i<1I} that
reduces the error &2, we can still find an even better fitting
line in each set of S; according to the Egs. (Al) and (A2).
Thus, we can develop an iterative procedure to repetitively
update the lines and reassign the vectors. Since the error
decreases with an additional iteration, the feedback proce-
dure converges. The iterative algorithm is summarized as the
following:

Step 0. Initialization:

Given the vectors v,, for n=0,1,...,N—1; I, the num-

ber of centroid lines; initial line parameters a(o) and pgo) for
1<<i<<[; the initial iteration index m=0, a large number
(£)Y=1.0¢30 and a small number =0.001.

Step (1): Nearest neighbor reassignment:

Test the distance of each vector to each of the centroid
lines. If the distance to the line of (agm),pgm)), assign or

reassign the vector to S;. The sets are recalculated by

sim —{ v,| min Y|, (l)cos(a("’))
1sj=1

+ vn(Z)sin(a](m)) - pjm)|} = i}.

Step (2): Termination criterion: Calculate the average
error (e)m=131 12, E5<m>(v (l)cos(a N +v,(2)
><sm(a(m)) p(m))2 If ((e2)tm 1)—(82)("’)/(82)(’”)<5 then
terminate the iterations and output the classification Si

(") and pl(.m), otherwise m=m+1 and

and the parameters «;

go to the next step.

Step (3): Update of the centroid lines:

Updating the centroids by adjusting the line parameters
(m)

(m) (m)—-tan Y2(a;by—c)/

a; and p; . Try

1
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((a}-ay)- <b2 b)), where a=(1/M{" )Z,, g0
v, b=(1/M{" )z, s (2, @ (M"Y
EwequU)bz(UM s §muwn and c=
(I/M(m I)Env e, (v, (2). If|afm) (m V> /4, re-
compute o™ —-tan '(2(a,b, - c)/((a1 az) (b2 b,)))

+ar/2. Let p(m)—a cos(a(. ))+b srn(ai . If pl. ) <0, then
(m) _ p(m)

nwv,_e

adjust p; and aim):al(.m)—ﬂ'. Return to step 1 for
reassignment of the source vectors based on the new line
centroids.

Separation of the Two Clusters

In a brain immunohistochemical image, the microglial cell
cytoplasm that appears in brown color with DAB staining
has a very small area. The microglial cell cytoplasm occupies
less than 1% of the total image area. The major cluster
dominates and minor cluster can be considered as formed by
some stray vectors. Thus, the boundary separating the two
clusters should be determined based on the major cluster.
The boundary is a line parallel to the major centroid line.
We rotate the clusters so that the major centroid line is par-
allel to one of the two axes. Since the two eigenvalues are
usually significantly different and the minor cluster is very
small, the centroid line of the major cluster should not be far
from parallel to one of the axes.

With a rotation of axes by the angle of «;, the centroid
line of the major cluster will appear parallel to the vertical
axis in the new coordinate system. Let the center of image be
denoted by (T,,T,), where T, =round(N,/2) and
T,=round(N,/2). The new vectors, v, =(v,(1),v,(2)), for
n=0,1,2,...,N—1, after the rotation about the image cen-
ter point of (T,,T,) is derived by v/ (1)=(v,(1)-
Ty)cos(ay) — (v, (2) = Ty)sin(ay)+ T, and  v,(2)=(v,(1)—
T))sin(a;) —(v,(2)—T,)cos(a;)+ T,. Fig. 3(a) shows the
clusters of v,, for n=0,1,2,...,N—1, while Fig. 3(h) shows
the clusters of v,, for n=0,1,2,...,N—1, after rotating the
clusters in (a) around the image center so that the major
cluster becomes vertical to the horizontal axis.

The histogram of the new vectors can be calculated by
such a loop as: for n=0 to N—1 do

h'(v,(1),v,(2)) =h'(v,,(1),v,,(2)) + 1.

The horizontal distribution of the vectors v,, for n
=0,1,2,...,N—1, is computed by h,(l)= (I/N)Z h(; D),
for I=0,1,2,...,L—1. Figure 5(a) displays the reduced his-
togram h;(I) from the 2D histogram in Figure 3(h). It is
observed that the waveform is smooth and nearly symmetric
except a long and thin tail on the left side for the minor
cluster. If we can assume the symmetric property for the
major cluster distribution, then we can find the cutoff point
at the left side of the waveform based on the right cutoff
point which is easier to find because there is no interference
from unwanted vectors in this area. Let hy,={h,()|!
=0,1,2,...,L—1}. Find the two points, l; and I,, for which
the function h,(l) crosses over the half line of its peak. Find
Iy such that hy(1}) <h ,,,/2 and b (I, + 1) > hy 0/ 2, and ],
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Figure 1. (a) An original discrete color image of brain microglia stained
with an anfibody to CD68 anfigen, with diaminobenzidene as a chro-
mogen and hematoxylin counterstain; (b) the segmented image, black for
stained activated microglia, gray for cell nuclei, and white for cell
neuropil.

such that hy(,—1)>h ,,./2 and hy())<h; ../2. The
center point is then (I;+1,)/2. The accumulative distribu-
tion is fll(l)zﬁjl»zohl(j), for 0<I<L. ﬁl(l) is an ascending
function and limited between 0 and 1. The upper limit for

the major cluster is where ﬂl(l) approaches one. If fll(ﬁ)

<0.999 and h, (" +1)>0.999, the intensity 7| is considered
to be the upper limit for the major cluster as seen in Fig.
5(a). The boundary is at 7, which is the mirror point of 7,
about the center at (I;+1,)/2, such as 7, =(,+1,)/2—
(r,—(L+1)/2) or 7 =lL+l,—7,. The corresponding
boundary line in 2D clusters is shown in Figure 3(i) as the
vertical white line that separates the two clusters.

The vectors classified in the minor cluster correspond to
brown-colored microglial cell cytoplasm pixels. The major
cluster contains the remaining vectors including the cells
that are stained in blue color. To separate the blue staining
cells whose vectors occupy the lower area in the major clus-
ter, we use a straight line to partition the major cluster as the
horizontal line shown in Figure 3(i). The procedure is simi-
lar to the procedure above finding the vertical boundary line.
The vertical distribution of the vectors in the major cluster is
computed by hy(I)=(1/N)2'h(l,j), for 1=0,1,2,....,L
— 1. Note that in the sum j starts at 7, instead of zero. Figure
5(b) displays the reduced histogram h,(I). Let h, .=
{h,()|1=0,1,2,...,L—1}. Find the two points, /; and I,, for
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which the function h,(]) crosses over the half line of its peak.
Find I, such that hy(I}) <hj /2 and hy (L, +1) >y 0./ 2,
and I, such that h (l,—1) > hy ., /2 and hy(l) < hj 0 /2. If
there are multiple values, choose the smallest for /; and the
largest for 1,. The center point is again (I;+1,)/2. The accu-

mulative distribution is ﬁz(l)zE;:ohz(j), for 0<I<L. The
upper limit for the major cluster is where the ascending

function ﬁz(l) approaches one. If BZ(T;“) <0.999 and 1A12(7';r
+1)>0.999, the intensity 7, is considered to be the upper
limit for the major cluster as seen in Figure 5(a). The
boundary is at 7, which is the mirror point of 7; about the
center at (I;+1,)/2, such as 7, =(l;+1,)/2— (7, — (I, +1,)/2)
or 7,=l,+1,—7,. The corresponding boundary line in 2D
clusters is shown in Fig. 3(i) as the horizontal white line that
separates the two clusters.

The two straight lines, one vertical and the other hori-
zontal, partition the whole space into three rectangular re-
gions. Vectors are classified into one of the three groups
according to the regions where they are located. We have the
segmentation

0, for vy, .)(2) <7
E(ny,ny) =11, for vfp(nl,nz)(Z) = 7, and v;(nl,nz)(l) <1;
2, otherwise.

The image segmentation, = (n;,n,) for (ny,n,) € S, corre-
sponding to the partition in Figure 3(i) is displayed by the
three-level image in Figure 6 where black intensity stands for
the vectors in the rectangular region on the left in Fig. 3(i),
gray intensity for the lower right rectangular region, and
white intensity for the upper right rectangular region.

The dark intensity in Fig. 6 represents the segmented
DAB stained microglal cytoplasm pixels. Since the minor
cluster is clearly separable from the major cluster, the micro-
glial cell pixels are classified accurately as observed when
comparing the dark regions with the brown regions in the
original image in Figure 1(a). However, the gray intensity
regions for E(n;,n,)=1 in Fig. 6 consist of hematoxylin
stained cell nuclei and processes appear in relatively bluish
color. They are not separable simply based on their colors.
To discriminate the blue appearing nuclei from blue appear-
ing processes, we develop an approach based on their differ-
ences in shapes in the next section.

SEPARATION OF HEMATOXYLIN STAINED CELLS
FROM NEUROPIL REGIONS

The cells appear blue in the original image, so are the neu-
ropil (cell processes) regions. The similarity in color between
the cells and the neuropil (cell processes) make the discrimi-
nation between them difficult. As observed in segmentation
in Fig. 6, the gray areas consist of not only the cells but also
a portion of the neuropil regions. It is also observed that
there are differences in geometric shapes between the cell
regions and neuropil regions. The cells appear almost round
in shape although they there are occasionally holes inside in
the segmented gray leveled regions, while the segmented
neuropil regions appear straw-like, slim, and long in variant
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(b)

Figure 2. Transformed image. (a) Imoge corresponding fo the largest
eigenvalue; (b) image corresponding fo the second largest eigenvalue.

shapes and sizes. If we repetitively shrink the gray regions
with morphologic erosions, we can expect that the slim neu-
ropil regions vanish first.

The erosion process is a cascade of the same erosion
operators. Let the input to an erosion operator be g,-(nl,nz)
and the output g,(1,,#1,). The input to the first erosion op-

erator is the image corresponding to the gray intensity de-
1, if E(ny,ny)=1;
fined as g'(ny,m)=1 heaie. and the output from the

last erosion operator is denoted by ¢"(n,,1,). Let the erosion
kernel be a circular region of small radius r. With the input
gi(ny,n,), the erosion of the image' is obtained by the fol-
lowing procedure:

(1) Initialize g,(n,,n,)=gi(n,,n,), for (n,,n,) €S;
(2) If g{n;,ny)=0, for (n,,n,) €S, let g,(n,+m;,n,
+m,) =0, for m*+m2<r.

The above erosion shrinks the foreground areas at their
edges. Since an irregular region that has higher perimeter to
area ratio shrinks more than a circular region on the area
percentage basis, the irregular and thin neuropil regions may
disappear earlier than the circular cell regions if a repetitive
erosion is applied. Thus, if we stop the shrinking process
before the cell regions disappear based on the average cell
size which is usually known roughly, we can reduce the neu-
ropil regions significantly.

A reverse process to the repetitive erosions is to restore
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the cell regions. Corresponding to each erosion in the
shrinking procedure is a constrained dilation. Since many
neuropil regions may disappear completely after the cascade
of erosions, they are not to be recovered in the reverse pro-
cess. Let the input to a constrained dilation operator be
gi(n;,n,) and the output g,(n,,n,). The input to the first
dilation operator is ¢"(n,,7,), the output of the final erosion
operator. The constrained dilation is as follows.

(1) Initialize g,(n,,n,)=gi(n,,n,), for (n,,n,) €S;

(2) If gi(n;,ny)=1, for (n,,n,) €S, let g,(n+my,n,
+my) =1, for mi+m;<r%

(3) Let g,(n,,ny)=g,(n,,n,)*g" (n,,n,), for (n;,n,) €S.

RESULTS

Figure 1(a) is an original image of 24 bit RGB color ac-
quired from a section of brain stained immunohistochemi-
cally for microglial cell cytoplasm using an antibody to
CD68 antigen, with diaminobenzidene as a chromogen and
color with hematoxylin staining. The size of the digital im-
age is N;XN,=1600X1200. The brain immunohis-
tochemical image contains microglial cell cytoplasm that ap-
pears in brown color, hematoxylin stained cell nuclei in blue
color, and neuropil regions that appear in either light blue or
gray.

The first step is to compute the eigenvalues and eigen-
vectors of the 3 X 3 auto-covariance matrix from the stacked
row of vectors. Multiplying the eigenvector matrix, we have
the new vectors, which have total energy concentrated in
fewer components according to the eigenvalues. In this par-
ticular case, the three eigenvalues are 1537.5, 111.2, and 21.5,
respectively. The first two images corresponding to the two
largest eigenvalues are displayed in Figures 2(a) and 2(b),
respectively. The third eigenvalue is very small comparing to
the first two and thus its corresponding component is dis-
carded to simplify the computational complexity without
large loss. The two-dimensional vector distribution is dis-
played in Fig. 3(a) where the vertical axis is for the compo-
nent corresponding to the larger eigenvalue and the horizon-
tal axis is for the other component. Since the vertical
component is much larger, we expect the clusters to spread
approximately along the vertical axis. The perpendicular
lines to the cluster lines should be approximately zero. Thus,
we let the initial angles of the two centroid lines be zero, i.e.,
a(lo)zo and ago) =0. The initial lines are parallel to the ver-
tical axis as shown in Figure 3(b). To set the two initial lines
on separate side of the vector clusters on the horizontal axis
so that the vectors located on both ends are classified cor-
rectly in different groups, the two distances of the lines from
the origin are initialized as p(lo):170 corresponding to the
line on the right of the clusters and p§0)=20 corresponding
to the other line on the right side of the clusters as shown in
Figure 3(b). Starting with initial centroids, the iterative pro-
cedure repetitively reassigns the source vectors and updates
centroid lines until the termination test is satisfied. Figs.
3(c)-3(f) show the updated centroid lines after 1, 2, 3, and 4
iterations, respectively. As we can see from the image se-
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(c)

(i)

Figure 3. (a) Two-dimensional vector disfribution; (b) initial centroid lines superimposed in the vector distribu-
tion in (a); (c) after one iferation; (d) dfter two iterations; (e) after three iterations; () after four iterations; (g)
after 23 iterations when no changes happen with additional iterations; (h) rotate the image (a) by the angle
of a;; and (i) the derived boundaries partitioning the space.

quence, the centroid lines are adjusted gradually toward the
centers of the clusters. Fig. 3(g) shows the final centroids
after 23 iterations when no changes happen with any addi-
tional iteration. Figure 4 shows the traces of the line cen-
troids with the increasing number of iterations. The changes
or updates in both @ and p are large in the first few itera-
tions and then decrease gradually. The converged centroid
lines are «,;=0.1927, p;=1159, «a,=-0.1414, and
p,=45.83. We rotate the coordinate plane of Fig. 3(g) by the
angle of a; about the center of the image to have the major
cluster parallel to the vertical axis as shown in Fig. 3(h) so
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that the partitioning boundary between the two clusters be-
comes a simple vertical line whose location is determined by
the distributions of the source vectors. Accumulating the
vectors vertically in Fig. 3(h), we have the one-dimensional
vector distribution, h;, as shown Fig. 5(a). We can see that
substantial number of vectors are located in a narrow area
resulting in a large spike between [; and I, which are the
horizontal locations of middle points between 0 and the top
of the waveform. The area of the microglial cell cytoplasm
that appears in brown color in the original image is usually
less than 2% of the total area. The small number of brown
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Figure 4. Convergence of the centroid lines vs m, the number of iterations. (a) aﬁm) vs m, (b) o

vs m, and (d) p(zm) Vs m.

colored pixels corresponds to the long tail of low values of
the distribution function of h,; at the left side of the large
spike. If the tail is excluded, the remaining distribution func-
tion is approximately symmetric and smooth. This feature is
general because the pixels in cells and the neuropil regions
that usually occupy more than 99% of area in the image
share the similar color. Assuming the symmetry property, we
obtain the value 7,=72. Thus, we have the partitioning
boundary between the two clusters shown as the vertical line
in Fig. 3(i). Similarly, the partitioning line regions that are
perpendicular to the long axis of the approximately elliptical
shaped cluster of the cell and neuropil regions are based on
the vector distributions of h, in Fig. 5(b) and shown as the
horizontal line in Fig. 3(i). Thus, the two straight lines in
Fig. 3(i) partition the domain into three separate regions.

Fig. 6 shows the segmentation according to the parti-
tioning lines in Fig. 3(i). The three intensities in the segmen-
tation image represent the classifications of vectors in the
respective three regions in Fig. 3(i). In Fig. 6, black, gray and
white pixels correspond to the rectangular regions on the
left, in Fig. 3(i), gray to the lower right rectangular region,
and white to the upper right rectangular region. From the
image E(n,,n,) in Fig. 6, we can obtain the segmentation
¢'(ny,n,). The radius of the circular structure elements
should be a small value. In our experiments, the radius is
selected to be 2.5. If a larger value is selected, the number of
erosions and dilations should be smaller but each operation
consumes much longer computational time. With each ero-
sion, the nuclear regions are shrunk by 5 in diameters. Con-
sidering the size of the nuclei that are generally larger than
30 in pixels in diameters in the original images used in this
article, a series of fewer than six successive erosion opera-
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tions may be applied in order to retain portion of nuclei
followed by a series of the same number of constrained di-
lations. Figure 1(b) shows the segmented image where black
intensity stands for stained activated microglia, gray for the
cell nuclei, and white for the cell neuropil. Figure 7 shows
another experimental result where (a) is the original image
and (b) is the resulting segmentation where black stands for
stained activated microglia, gray for the cell nuclei, and
white for the cell neuropil. In visual comparisons, the seg-
mentations match their original images.

Recently, Ruifrok and ]ohnston16 have presented a color
deconvolution algorithm that transforms the image RGB
components into a set of nonorthogonal components corre-
sponding to the major colors in the images. In Figure 8, we
show the best segmentation by the manual thresholding
based on the color components from the deconvolution al-
gorithm using their built-in vectors for hematoxylin and
DAB separations. Each of the DAB and hematoxylin com-
ponents after color deconvolution is a gray level image. To
determine the microglia areas, a threshold is applied on the
DAB color component. The threshold is adjusted manually
so that the best segmentation, shown in Fig. 8(a), based on
visual judgment, is achieved. It is observed that the seg-
mented microglia regions in Fig. 8(a) and Fig. 1(b), both in
black, match well. While the results for microglia regions
from both algorithms are comparable, the proposed algo-
rithm has several advantages. The proposed algorithm is au-
tomatic because it processes the images based on their sta-
tistical properties and correlations without the inputs of
users. Unlike the color deconvolution method that needs a
set of fixed and preset conversion vectors, the proposed al-
gorithm is adaptive to the images and therefore tolerant to
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the staining variations. Fig. 8(b) is the best segmentation
result achieved by manually adjusting the threshold for the
hematoxylin color component from the color deconvolution
method. Since the hematoxylin stained cell nuclei and the
neuropil have a similar color, they are not separable with a
simple threshold on the hematoxylin color component from
the color deconvolution method. Our proposed algorithm
separates the nuclei based on their geometrical shapes as
shown in gray in Fig. 1(b).

Wu and Gil'* have proposed a clustering algorithm us-
ing mixed point and line centroids for segmentation of im-
ages of lung cells. The point centroid is appropriate for the
blood cells in lung cell images since the vectors from blood
cells are located in a small area. However, the vectors of the
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brown microglia pixels in a brain immunohistochemistry
image usually occupy a large oblong area that is more ap-
propriately approximated by a line instead of a point. For
comparison, we apply the algorithm to the original image in
Fig. 1(a) and show the results in Fig. 9. Fig. 9(a) shows the
cluster image in Fig. 3(a) superimposed by the initial point
centroid at the left-bottom corner as well as the initial ver-
tical centroid line. Fig. 9(b) shows the centroids after eight
iterations when the procedure converges. Figs. 9(c) and 9(d)
show the respective classifications of the vectors. As we can
see, there is a significant portion of vectors in the lower
cluster of microglia in Fig. 9(c), which are misclassified to
the other cluster in Fig. 9(d). The corresponding segmenta-
tion of microglia regions is shown in Fig. 9(e). Comparing it
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Figure 6. Segmentation by the partitioning lines in Figure 3(i). Three
infensities represent the vectors in the respective three regions in Figure
3(i). Black corresponds to the rectangular region on the left in Figure 3(i),
gray fo the lower right rectangular region, and white to the upper right
rectangular region.
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Figure 7. (a) Original image, (b) segmentation of the image in (a).

to the microglia regions in black in Fig. 1(b), we observe that
some microglia pixels are lost.

CONCLUSIONS

We have described a segmentation algorithm for brain im-
munohistological images that have few different colors. Since
the cell nuclei and neuropil that occupy an overwhelmingly
large portion of image have similar bluish color in the
counter-stained brain immunohistological images while ac-
tivated microglia that occupies a tiny portion of the image
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Figure 8. Segmentation based on the color deconvolution, (see Ref. 16)
vectors chosen for Haematoxylin and DAB separafion. (a) Manual
thresholding of DAB component, (b) manual thresholding of haematoxylin
component.

has a different color, the cluster of the cell nuclei and neu-
ropil pixels is much denser and larger than the cluster of
activated microglia pixels. The orthogonal transform based
on the eigenvectors of the image pixel vectors is mostly de-
termined by the larger cluster of the cell nuclei and neuropil.
The prolonged cluster can always be placed along a particu-
lar direction based on the eigenvalues. An iterative learning
procedure is developed to obtain the centroid lines, which
are then used to partition the vector domain into regions of
the activated microglia and the rest. The hematoxylin stained
cell nuclei and the neuropil are segmented in the subsequent
procedure based on the difference between their geometrical
shapes. Figures show both the learning and segmentation
processes for the real brain immunohistochemical images.
The segmentation results are illustrated to show the effec-
tiveness of the algorithm for visual comparisons. The algo-
rithm may be applicable to images of other organs if they
satisfy the assumptions that one cluster takes the over-
whelmingly large portion (>95% for instance), but this re-
mains for future studies.
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APPENDIX

The MSE for the vectors in S; approximated by the line
centroid is
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Figure 9. Results of the linear clustering with both point and linear centroids.(see Ref. 14) (a) The initial point
centroid at the lefrbotiom corner and the vertical linear centroid in the middle, (b) centroids after eight iterations
when procedure converges, (c) vectors near the point centroid classified 1o activated microglia, (d) the
remaining vectors, and (e) segmentation of activated microglia corresponding fo the vectors in (c).

J. Imaging Sci. Technol. 040502-10 Jul.-Aug. 2008



Wu, Murray, and Morgello: Segmentation of brain immunohistochemistry images...

1
& = —< > (v(1cos(a;) +v,(2)sin(a) — Pi)2> .

Mi nv,eSs;
We have
et -2

. H(E ((Dcostar) + 7, 2)sina) = p) ).

If
e} 1
Pl pi=A—4i(MHEESi (v,(1)cos(ax)
1
#visin(a) | or pi=| 7 B ) Jeos(ar)
1 .
+ EH:ESivn(Z) sin(a;).
Also,
&sf 2 .
P M(ZS (v,(Dcos(a) +v,(2)sin(a) — p;)

X (= v,(1)sin(e;) + vn(Z)cos(al—)))

If &sf/ dp;=0, we have the equation

1
M<n:‘§65i (Vn(l)COS(ai) + Vn(Z)Sin(ai))(— Vn(l)sin(ai)

1

1
+vn<z>cos(ai>>)=—< > pil=vu(Dsin(a)

Mi nv,eSs;
+ vn(2)cos(a,-))>.
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cos(2a)(1/ M2,y csva(1)v,(2), while” the right side
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or @;=(1/2) tan"'(2(a,b,—c)/ (a3 —ay) — (b?—b,))) + ym/ 2,
where vy is either 0 or 1. Also, p;=a; cos(a;)+b; sin(«;).
Because we use p; to represent the distance between the
point of the origin and the centroid line, the value of p;
should always be non-negative. Thus,

pi = |a; cos(a;) + by sin(a;)|. (A1)

If a, cos(a;) + b, sin(a;) <0, we then need to add a constant
angle -7 to «a; The solution for parameter «;
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is either a;=(1/2) tan"'(2(a,b;—c)/((a1—a,)— (b1 —b,)))
—a(1—u(a, cos(e;) + b, sin(a;))) or

1 2(a,b; —¢) T
a; = E tan~ + -

(af —a,) - (b% - by) 2
— (1 —u(a, cos(e;) + by sin(w;))), (A2)

where the unit step function u(7) is equal to 0 for negative
value of 7, 1 otherwise.
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