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bstract. A generalized clustering algorithm utilizing the geometri-
al shapes of clusters for segmentation of colored brain immunohis-
ological images is presented. To simplify the computation, the di-
ension of vectors composed from the pixel RGB components is

educed from three to two by applying a de-correlation mapping with
he orthogonal bases of the eigenvectors of the auto-covariance ma-
rix. Since the brain immunohistochemical images have stretched
lusters that appear long and narrow in geometrical shape, we use
entroids of straight lines instead of single points to approximate the
lusters. An iterative algorithm is developed to optimize the linear
entroids by minimizing the approximation mean-squared error. The
artitioning of the two-dimensional vector domain into three portions
lassifies each image pixel into one of the three classes: The micro-
lial cell cytoplasm, the combined hematoxylin stained cell nuclei
nd the neuropil, and the pale background. Regions of the com-
ined hematoxylin stained cell nuclei and the neuropil are to be
eparated based on the differences in their regional shapes. The
egmentation results of real immunohistochemical images of brain
icroglia are provided and discussed. © 2008 Society for Imaging
cience and Technology.

DOI: 10.2352/J.ImagingSci.Technol.�2008�52:4�040502��

NTRODUCTION
mage segmentation is essential in the quantitative analysis
f cytological images.1–5 Nucleus segmentation that sepa-
ates the nucleus regions from other part of the images can
rovide diagnostically important information such as the
ucleus sizes and shapes.6,7 Nucleus segmentation also en-
bles the subsequent image analysis to be performed solely
n the nucleus regions without the interference of the insig-
ificant image background.8,9 The quantitative image analy-
is of brain immunohistochemistry staining may detect early
xonal damage in brain injuries.10 Unlike the natural images
hat vary a great deal in color and contents, the cytological
mages acquired via microscopes on the specimens with im-

unohistochemistry staining11–13 have relatively homoge-
eous appearances. There are few distinctive colors in an

mmunohistochemistry staining image. Because of the un-
venness in staining process, there may be slight variations
n colors and intensities among the pixels of the same organs
r tissues. It is desired that the segmentation algorithm

eceived Oct. 9, 2007; accepted for publication Apr. 7, 2008; published
nline Jul. 22, 2008.
062-3701/2008/52�4�/040502/11/$20.00.
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hould be able to learn from the contents in images before
lassifying the groups of pixels or regions. In segmentation
f lung cell images, Wu and Gil14 presented an adaptive al-
orithm using a circular centroid combined with a linear
entroid to approximate the vector clusters. In the immuno-
istochemical brain images, the vector clusters resemble
ore closely two linear clusters. If two linear centroids are

ntroduced and trained on the source vectors, the two long
lusters may be separated based on the trained centroids.
he microglial cell pixels or vectors that form an individual
luster may be classified after clustering. Although the hema-
oxylin stained cell nuclei and the neuropil regions are not
eparable by vector clustering because they share the same
ector space, they appear differently in their regional shapes.
o make use of the difference between the regional shapes,
e develop a region grow–shrink procedure to segment the
ematoxylin stained cell nuclei.

INEAR CENTROIDS

et a color digital image, X̃, be defined in a rectangular
mage domain, S= ��n1 ,n2� �n1 =0 ,1 ,2 , . . . ,N1 −1 ;

2 =0 ,1 ,2 , . . . ,N2 −1�. The dimension of the image is

1 �N2. A pixel of the image at the location �n1 ,n2� that is
omposed of three RGB color components can be repre-
ented by a three-dimensional (3D) vector x̃�n1 ,n2�=
x̃1�n1 ,n2� , x̃2�n1 ,n2� , x̃3�n1 ,n2��t, where �•�t denotes the vec-
or transpose. While it is helpful to regard the image array as
n N1 �N2 matrix of 3D vectors such as

˜ = �x̃�n1 ,n2��N1�N2
, it is convenient, for the purpose of

nalysis, to convert the matrix into a 1�N row matrix of 3D

ectors, Ṽ = �ṽn�1�N = �ṽ��n1,n2��1�N, for n=0,1 ,2 , . . . ,N−1
nd N=N1N2, by a scanning operation ��• , • � that strings
he elements row after row as n=��n1 ,n2�=N2n1 +n2, for
�n1 �N1, 0�n2 �N2. Since each element in the 1�N

ow matrix Ṽ is a 3D vector, Ṽ can also be considered as a
�N matrix with each column representing a vector corre-

ponding to one pixel in the original image according to the
apping of �.

Let the auto-covariance function be estimated by

= �c�i , j��3�3 = �1/N��Ṽ − ũṼu��Ṽ − ũṼu�t, where the mean
ector ũṼ = �1/N��n=0

N−1ṽn and u = �1 1 1 . . .1�1�N. The auto-
ovariance matrix C is symmetric and nonnegative. We have
Jul.-Aug. 20081
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Ã =diag��1 ,�2 ,�3�Ã, where Ã = �a1 , a2 , a3� and the eigen-
alues in decreasing order �1 ��2 ��3. Since the third ei-
envalue is generally much smaller than the other two eigen-
alues, we discard it to simplify the computations. Let

= �a1 , a2� and the matrix V is a transform by V = AtṼ. The
atrix V, size of 2�N, can be considered as a row vector of

wo-dimensional (2D) vectors such as V = �v0 , v1 , . . . , vN−1�.
hus, we have N two-dimensional source vectors,

n = �vn�1� ,vn�2��t, for n=0,1 , . . . ,N−1. With a linear map-
ing to move the ranges of the vector components into the

mage range grid, we have the transformed images corre-
ponding to the first two eigenvalues as xk�n1 ,n2�=v�−1�n�

�k�, for k=1,2, and n=0,1 ,2 , . . . ,N−1. Figure 2 shows
he two images after the linear transform by the two eigen-
ectors, a1 and a2, corresponding the two largest eigenvalues

1 and �2, respectively. Image (a) has much higher contrast
ince its corresponding eigenvalue is much larger.

In the images from immunohistochemical stains of
rain microglia utilizing diaminobenzidene (DAB) chro-
ogen and hematoxylin counterstain, the image contents

isplay roughly three visually different colors. These slides
isplay cell nuclei and processes that have significantly dif-

erent colors. However, since all slides stained with this stan-
ard procedure are similar in color, their vectors are located

n vicinities. For a large digital image with N pixels, the
ectors in V may form large clouds if they are displayed in
n image with intensities corresponding to the number of
ectors in v�1�−v�2� space as shown in Fig. 2(a) where v�1�
s the vertical axis and v�2� is the horizontal axis. Unlike

any cases where the clusters appear round, Fig. 2(a) shows
learly two separate clusters that appear stretched out to
orm long and narrow shapes. Since the clusters appear
traight, we use two straight lines instead of two points as
he centroids to approximate the clusters. Setting the goal
unction as the mean-squared error (MSE) of the approxi-

ation of the clusters with the lines, we minimize this goal
y iteratively reclassifying and updating the vectors. Starting
ith the initial lines as in Figure 3(b), the final lines of the

entroids are obtained as shown in Fig. 3(g) when the pro-
edure converges. The vast majority of vectors are in the
arger cluster called major cluster. We call the other smaller
luster the minor cluster. The minor cluster contains the
ectors of DAB chromogen that appear brown in color in
he original image.

To separate the two clusters, we need to define a bound-
ry or a line so that vectors located on one side are classified
nto one cluster and vectors on the other side are classified
nto the other cluster. We rotate the image by the angle of
he centroid line of the major cluster so that the line is
arallel to one axis of the domain. The image after rotation

s depicted in (i) that shows the major cluster is stretched
long the vertical axis. The partitioning of the domain is
hown in Fig. 3(i) where the vertical line separates the minor
luster first, and the second horizontal line partitions the
emaining area of the major cluster into two subclusters. The
lgorithm will be described in details in the next

ection. c

. Imaging Sci. Technol. 040502-
LUSTERING WITH LINEAR CENTROIDS AND THE
MPLEMENTATION
he classification of pixels is carried out by classifying the

wo-dimensional vectors vn, for n=0,1 , . . . ,N−1, related by
he mapping n=��n1 ,n2�, where �n1 ,n2� is the coordinate of
ixel in the image domain and n is the index of the 2D
ector vn. The range of the components in vectors vn may be
ut of the image intensity range of �0 ,L−1�, where the in-
ensity level L=256, because of the linear transform by the
igenvectors. For convenience in display as an image, storage
s a matrix and simplicity in computation of the histogram,
e use a dynamic mapping that shift and scale the ranges of
oth the components in the vectors to inside the image in-
ensity range. Let �+�k�=max�vn�k�� and �−�k�=min�vn�k��,
or k=1,2, where max{•} and min{•} select, respectively,
he maximum and minimum numbers from the sets. The
anges of the two components are ��−�1� ,�+�1�� and
�−�2� ,�+�2��. Let �=max���+�1�−�−�1�� , ��+�2�−�−�2���.
o move the range of each component to the image grid, we
pply to the components the linear mappings of
ound���L−1� /���v�k�−�−�k���, k=1,2. For the conve-
ience of analysis and efficient usage of storage, we still use

he vn = �vn�1� ,vn�2��t to represent the vectors after the map-
ing, such as vn�k�= round���L−1� /���vn�k�−�−�k���, for
=1,2, and n=0,1 ,2 , . . . ,N−1. The corresponding images

rom de-stacking vn by xk�n1 ,n2�=v�−1�n��k�, for k=1,2, and
=0,1 ,2 , . . . ,N−1, are shown in Fig. 2, where the image

a) shows higher contrast in intensities since its correspond-
ng eigenvalue is larger.

Initializing zeros to h, an image of size L�L. Each ele-
ent in h is a 2D vector or a paired variable. The 2D his-

ogram of the vectors is computed by one loop as the
ollowing:

for n = 0 to N − 1 do h�vn�1�,vn�2�� = h�vn�1�,vn�2�� + 1.

ince the range of components in v�n� is limited in
0 ,L−1�, the squared domain of h is side of L−1. Fig. 3(a)
how the 2D histogram of the images in Fig. 2, where the
ertical axis corresponds to the image in Fig. 2(a) and the
orizontal axis corresponds to the image in Fig. 2(b). Higher

ntensity means higher number of identical vectors in the set
vn�.

Our first objective is to separate the two clusters that
ppear long and narrow in shapes. Using two straight lines
s their respective centroids, we can significantly simplify the
lusters with only a few coefficients. Let I=2 be the number
f clusters. Each line can be defined by a pair of coefficients

and 	. Let the ith line be defined by v�1�cos��i�+
�2�sin��i�−	i =0, for 1� i� I. The distance between
he point vn and the ith line centroid will be

i,n = �vn�1�cos��i�+vn�2�sin��i�−	i�. Let Si be a set
omposed of all the closest source vectors, i.e.,

i = �vn �min−1

1�j�I

�dj,n�= i�, where the inverse minimum opera-

ion min
1�j�1

−1dj,n yields the index j, instead of the distance,
orresponding to the smallest distance among the I distances

Jul.-Aug. 20082
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j,n, for 1� j� I. If min−1

1�j�I

dj,n = i, we assign the vector vn into

he cluster represented by the ith line. The set Si consists of
he source vectors that are closer to the ith line centroid than
o any of the other I−1 lines. The cost of classifying vectors
n Si is measured by the mean-squared error as

i
2 = �1/Mi���n:vn�Si

�vn�1�cos��i�+vn�2�sin��i�−	i�2�. The
verage cost of classification of all source vectors is measured
y 
2 = �1/N��i=1

I �Mi
i
2�. To update the line centroids for

he source vectors in Si, we recomputed the line parameters
o that the cost of 
i

2 is minimized. The parameters of the
traight line, 	i and �i, for 1� i� I, can be obtained based
n the source vectors according to the Eqs. (A1) and (A2) in
he Appendix. The difference between the two possible so-
utions for �i is a constant angle of � /2. The selection of �i

etween the two values should be determined by the cluster
f the source vectors since only one is the right choice. The
orrect �i renders the line fitting more properly to the clus-
er and results in a significantly lower classification cost, 
i

2.
We have shown that for a given set Si we can find the

est fitting line, determined by the pair ��i ,	i�, that mini-
izes the approximation error 
i

2. The average error for all
ectors 
2 = �1/N��i=1

I �Mi
i
2� will be smaller if we reclassify

he source vectors so that Si contains the vectors that are
ocated closer to the line of ��i ,	i� than any of the other
ines. With such a modified partitioning �Si �1� i� I� that
educes the error 
2, we can still find an even better fitting
ine in each set of Si according to the Eqs. (A1) and (A2).
hus, we can develop an iterative procedure to repetitively
pdate the lines and reassign the vectors. Since the error
ecreases with an additional iteration, the feedback proce-
ure converges. The iterative algorithm is summarized as the

ollowing:
Step 0. Initialization:
Given the vectors vn, for n=0,1 , . . . ,N−1; I, the num-

er of centroid lines; initial line parameters �i
�0� and 	i

�0� for
� i� I; the initial iteration index m=0, a large number

2��−1� =1.0e30 and a small number �=0.001.

Step (1): Nearest neighbor reassignment:
Test the distance of each vector to each of the centroid

ines. If the distance to the line of ��i
�m� ,	i

�m��, assign or
eassign the vector to Si. The sets are recalculated by

Si
�m� = 	vn� min

1�j�1

−1��vn�1�cos��j
�m��

+ vn�2�sin��j
�m�� − 	j

�m��� = i
 .

Step (2): Termination criterion: Calculate the average

rror �
2��m� = 1
N �i=1

I �n:vn�S
i
�m��vn�1�cos��i

�m��+vn�2�
sin��i

�m��−	i
�m��2. If ��
2��m−1� − �
2��m�� / �
2��m��� then

erminate the iterations and output the classification Si
�m�

nd the parameters �i
�m� and 	i

�m�, otherwise m=m+1 and
o to the next step.

Step (3): Update of the centroid lines:
Updating the centroids by adjusting the line parameters

�m� �m� �m� 1 −1

i and 	i . Try �i = 2 tan �2�a1b1 − c� / l

. Imaging Sci. Technol. 040502-
�a1
2 −a2�− �b1

2 −b2���, where a1 = �1/ Mi
�m−1���n:vn�S

i
�m−1�

n�1�, b1 = �1/ Mi
�m−1��n:vn�S

i
�m−1�vn�2�, a2 = �1/ Mi

�m−1��

n:vn�S
i
�m−1�vn

2�1�, b2 = �1/ Mi
�m−1���n:vn�S

i
�m−1�vn

2�2�, and c=

1/ Mi
�m−1��n:vn�S

i
�m−1�vn�1�vn�2�. If ��i

�m� −�i
�m−1��� /4, re-

ompute �i
�m� = 1

2 tan−1�2�a1b1 − c�/��a1
2 −a2�−�b1

2 −b2���
+� /2. Let 	i

�m� =a1 cos��i
�m��+b1 sin��i

�m��. If 	i
�m��0, then

djust 	i
�m� =−	i

�m� and �i
�m� =�i

�m� −�. Return to step 1 for
eassignment of the source vectors based on the new line
entroids.

eparation of the Two Clusters
n a brain immunohistochemical image, the microglial cell
ytoplasm that appears in brown color with DAB staining
as a very small area. The microglial cell cytoplasm occupies

ess than 1% of the total image area. The major cluster
ominates and minor cluster can be considered as formed by
ome stray vectors. Thus, the boundary separating the two
lusters should be determined based on the major cluster.
he boundary is a line parallel to the major centroid line.
e rotate the clusters so that the major centroid line is par-

llel to one of the two axes. Since the two eigenvalues are
sually significantly different and the minor cluster is very
mall, the centroid line of the major cluster should not be far
rom parallel to one of the axes.

With a rotation of axes by the angle of �1, the centroid
ine of the major cluster will appear parallel to the vertical
xis in the new coordinate system. Let the center of image be
enoted by �T1 ,T2�, where T1 = round�N1 /2� and

2 = round�N2 /2�. The new vectors, vn�= �vn��1� ,vn��2��t, for
=0,1 ,2 , . . . ,N−1, after the rotation about the image cen-

er point of �T1 ,T2� is derived by vn��1�= �vn�1�−

1�cos��1�− �vn�2�−T2�sin��1�+T1 and vn��2�= �vn�1�−

1�sin��1�− �vn�2�−T2�cos��1�+T2. Fig. 3(a) shows the
lusters of vn, for n=0,1 ,2 , . . . ,N−1, while Fig. 3(h) shows
he clusters of vn�, for n=0,1 ,2 , . . . ,N−1, after rotating the
lusters in (a) around the image center so that the major
luster becomes vertical to the horizontal axis.

The histogram of the new vectors can be calculated by
uch a loop as: for n=0 to N−1 do

h��vn�1�,vn�2�� = h��vn�1�,vn�2�� + 1.

The horizontal distribution of the vectors vn�, for n
0 ,1 ,2 , . . . ,N−1, is computed by h1�l�= �1/N��j=0

L−1h�j , l�,
or l=0,1 ,2 , . . . ,L−1. Figure 5(a) displays the reduced his-
ogram h1�l� from the 2D histogram in Figure 3(h). It is
bserved that the waveform is smooth and nearly symmetric
xcept a long and thin tail on the left side for the minor
luster. If we can assume the symmetric property for the
ajor cluster distribution, then we can find the cutoff point

t the left side of the waveform based on the right cutoff
oint which is easier to find because there is no interference

rom unwanted vectors in this area. Let h1,max= �h1�l� � l
=0,1 ,2 , . . . ,L−1�. Find the two points, l1 and l2, for which
he function h1�l� crosses over the half line of its peak. Find
1 such that h1�l1��h1,max/2 and h1�l1 +1�h1,max/2, and l2

Jul.-Aug. 20083
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uch that h1�l2 −1�h1,max/2 and h1�l2��h1,max/2. The
enter point is then �l1 + l2� /2. The accumulative distribu-

ion is h�1�l�=�j=0
l h1�j�, for 0� l�L. h�1�l� is an ascending

unction and limited between 0 and 1. The upper limit for

he major cluster is where h�1�l� approaches one. If h�1��1
+�

0.999 and h�1��1
+ +1�0.999, the intensity �1

+ is considered
o be the upper limit for the major cluster as seen in Fig.
(a). The boundary is at �1

− which is the mirror point of �1
+

bout the center at �l1 + l2� /2, such as �1
− = �l1 + l2� /2−

�1
− − �l1 + l2� /2� or �1

− = l1 + l2 −�1
+. The corresponding

oundary line in 2D clusters is shown in Figure 3(i) as the
ertical white line that separates the two clusters.

The vectors classified in the minor cluster correspond to
rown-colored microglial cell cytoplasm pixels. The major
luster contains the remaining vectors including the cells
hat are stained in blue color. To separate the blue staining
ells whose vectors occupy the lower area in the major clus-
er, we use a straight line to partition the major cluster as the
orizontal line shown in Figure 3(i). The procedure is simi-

ar to the procedure above finding the vertical boundary line.
he vertical distribution of the vectors in the major cluster is

omputed by h2�l�= �1/N��j=�−
L−1 h�l , j�, for l=0,1 ,2 , . . . ,L

1. Note that in the sum j starts at �1
− instead of zero. Figure

(b) displays the reduced histogram h2�l�. Let h2,max=

igure 1. �a� An original discrete color image of brain microglia stained
ith an antibody to CD68 antigen, with diaminobenzidene as a chro-
ogen and hematoxylin counterstain; �b� the segmented image, black for

tained activated microglia, gray for cell nuclei, and white for cell
europil.
h2�l� � l=0,1 ,2 , . . . ,L−1�. Find the two points, l1 and l2, for n

. Imaging Sci. Technol. 040502-
hich the function h2�l� crosses over the half line of its peak.
ind l1 such that h1�l1��h1,max/2 and h1�l1 +1�h1,max/2,
nd l2 such that h1�l2 −1�h1,max/2 and h1�l2��h1,max/2. If
here are multiple values, choose the smallest for l1 and the
argest for l2. The center point is again �l1 + l2� /2. The accu-

ulative distribution is h�2�l�=�j=0
l h2�j�, for 0� l�L. The

pper limit for the major cluster is where the ascending

unction h�2�l� approaches one. If h�2��2
+��0.999 and h�2��2

+

1�0.999, the intensity �2
+ is considered to be the upper

imit for the major cluster as seen in Figure 5(a). The
oundary is at �2

− which is the mirror point of �2
+ about the

enter at �l1 + l2� /2, such as �2
− = �l1 + l2� /2− ��2

− − �l1 + l2� /2�
r �2

− = l1 + l2 −�2
+. The corresponding boundary line in 2D

lusters is shown in Fig. 3(i) as the horizontal white line that
eparates the two clusters.

The two straight lines, one vertical and the other hori-
ontal, partition the whole space into three rectangular re-
ions. Vectors are classified into one of the three groups
ccording to the regions where they are located. We have the
egmentation

��n1,n2� = �0, for v��n1,n2�� �2� � �1
−;

1, for v��n1,n2�� �2� � �1
− and v��n1,n2�� �1� � �2

−;

2, otherwise.
�

he image segmentation, ��n1 ,n2� for �n1 ,n2��S, corre-
ponding to the partition in Figure 3(i) is displayed by the
hree-level image in Figure 6 where black intensity stands for
he vectors in the rectangular region on the left in Fig. 3(i),
ray intensity for the lower right rectangular region, and
hite intensity for the upper right rectangular region.

The dark intensity in Fig. 6 represents the segmented
AB stained microglal cytoplasm pixels. Since the minor

luster is clearly separable from the major cluster, the micro-
lial cell pixels are classified accurately as observed when
omparing the dark regions with the brown regions in the
riginal image in Figure 1(a). However, the gray intensity
egions for ��n1 ,n2�=1 in Fig. 6 consist of hematoxylin
tained cell nuclei and processes appear in relatively bluish
olor. They are not separable simply based on their colors.
o discriminate the blue appearing nuclei from blue appear-

ng processes, we develop an approach based on their differ-
nces in shapes in the next section.

EPARATION OF HEMATOXYLIN STAINED CELLS
ROM NEUROPIL REGIONS
he cells appear blue in the original image, so are the neu-

opil (cell processes) regions. The similarity in color between
he cells and the neuropil (cell processes) make the discrimi-
ation between them difficult. As observed in segmentation

n Fig. 6, the gray areas consist of not only the cells but also
portion of the neuropil regions. It is also observed that

here are differences in geometric shapes between the cell
egions and neuropil regions. The cells appear almost round
n shape although they there are occasionally holes inside in
he segmented gray leveled regions, while the segmented

europil regions appear straw-like, slim, and long in variant
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hapes and sizes. If we repetitively shrink the gray regions
ith morphologic erosions, we can expect that the slim neu-

opil regions vanish first.
The erosion process is a cascade of the same erosion

perators. Let the input to an erosion operator be gi�n1 ,n2�
nd the output go�n1 ,n2�. The input to the first erosion op-
rator is the image corresponding to the gray intensity de-

ned as g��n1 ,n2�=� 1, if ��n1,n2�=1;

0, otherwise.
� and the output from the

ast erosion operator is denoted by g��n1 ,n2�. Let the erosion
ernel be a circular region of small radius r. With the input

i�n1 ,n2�, the erosion of the image15 is obtained by the fol-
owing procedure:

(1) Initialize go�n1 ,n2�=gi�n1 ,n2�, for �n1 ,n2��S;
(2) If gi�n1 ,n2�=0, for �n1 ,n2��S, let go�n1 +m1 ,n2

+m2�=0, for m1
2 +m2

2 � r2.

The above erosion shrinks the foreground areas at their
dges. Since an irregular region that has higher perimeter to
rea ratio shrinks more than a circular region on the area
ercentage basis, the irregular and thin neuropil regions may
isappear earlier than the circular cell regions if a repetitive
rosion is applied. Thus, if we stop the shrinking process
efore the cell regions disappear based on the average cell
ize which is usually known roughly, we can reduce the neu-
opil regions significantly.

igure 2. Transformed image. �a� Image corresponding to the largest
igenvalue; �b� image corresponding to the second largest eigenvalue.
A reverse process to the repetitive erosions is to restore i

. Imaging Sci. Technol. 040502-
he cell regions. Corresponding to each erosion in the
hrinking procedure is a constrained dilation. Since many
europil regions may disappear completely after the cascade
f erosions, they are not to be recovered in the reverse pro-
ess. Let the input to a constrained dilation operator be

i�n1 ,n2� and the output go�n1 ,n2�. The input to the first
ilation operator is g��n1 ,n2�, the output of the final erosion
perator. The constrained dilation is as follows.

(1) Initialize go�n1 ,n2�=gi�n1 ,n2�, for �n1 ,n2��S;
(2) If gi�n1 ,n2�=1, for �n1 ,n2��S, let go�n1 +m1 ,n2

+m2�=1, for m1
2 +m2

2 � r2;
(3) Let go�n1 ,n2�=go�n1 ,n2�*g��n1 ,n2�, for �n1 ,n2��S.

ESULTS
igure 1(a) is an original image of 24 bit RGB color ac-
uired from a section of brain stained immunohistochemi-
ally for microglial cell cytoplasm using an antibody to
D68 antigen, with diaminobenzidene as a chromogen and

olor with hematoxylin staining. The size of the digital im-
ge is N1 �N2 =1600�1200. The brain immunohis-
ochemical image contains microglial cell cytoplasm that ap-
ears in brown color, hematoxylin stained cell nuclei in blue
olor, and neuropil regions that appear in either light blue or
ray.

The first step is to compute the eigenvalues and eigen-
ectors of the 3�3 auto-covariance matrix from the stacked
ow of vectors. Multiplying the eigenvector matrix, we have
he new vectors, which have total energy concentrated in
ewer components according to the eigenvalues. In this par-
icular case, the three eigenvalues are 1537.5, 111.2, and 21.5,
espectively. The first two images corresponding to the two
argest eigenvalues are displayed in Figures 2(a) and 2(b),
espectively. The third eigenvalue is very small comparing to
he first two and thus its corresponding component is dis-
arded to simplify the computational complexity without
arge loss. The two-dimensional vector distribution is dis-
layed in Fig. 3(a) where the vertical axis is for the compo-
ent corresponding to the larger eigenvalue and the horizon-

al axis is for the other component. Since the vertical
omponent is much larger, we expect the clusters to spread
pproximately along the vertical axis. The perpendicular
ines to the cluster lines should be approximately zero. Thus,
e let the initial angles of the two centroid lines be zero, i.e.,

1
�0� =0 and �2

�0� =0. The initial lines are parallel to the ver-
ical axis as shown in Figure 3(b). To set the two initial lines
n separate side of the vector clusters on the horizontal axis
o that the vectors located on both ends are classified cor-
ectly in different groups, the two distances of the lines from

he origin are initialized as 	1
�0� =170 corresponding to the

ine on the right of the clusters and 	2
�0� =20 corresponding

o the other line on the right side of the clusters as shown in
igure 3(b). Starting with initial centroids, the iterative pro-
edure repetitively reassigns the source vectors and updates
entroid lines until the termination test is satisfied. Figs.
(c)–3(f) show the updated centroid lines after 1, 2, 3, and 4

terations, respectively. As we can see from the image se-
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uence, the centroid lines are adjusted gradually toward the
enters of the clusters. Fig. 3(g) shows the final centroids
fter 23 iterations when no changes happen with any addi-
ional iteration. Figure 4 shows the traces of the line cen-
roids with the increasing number of iterations. The changes
r updates in both � and 	 are large in the first few itera-
ions and then decrease gradually. The converged centroid
ines are �1 =0.1927, 	1 =115.9, �2 =−0.1414, and

2 =45.83. We rotate the coordinate plane of Fig. 3(g) by the
ngle of �1 about the center of the image to have the major

Figure 3. �a� Two-dimensional vector distribution; �
tion in �a�; �c� after one iteration; �d� after two itera
after 23 iterations when no changes happen with a
of �1; and �i� the derived boundaries partitioning t
luster parallel to the vertical axis as shown in Fig. 3(h) so l

. Imaging Sci. Technol. 040502-
hat the partitioning boundary between the two clusters be-
omes a simple vertical line whose location is determined by
he distributions of the source vectors. Accumulating the
ectors vertically in Fig. 3(h), we have the one-dimensional
ector distribution, h1, as shown Fig. 5(a). We can see that
ubstantial number of vectors are located in a narrow area
esulting in a large spike between l1 and l2 which are the
orizontal locations of middle points between 0 and the top
f the waveform. The area of the microglial cell cytoplasm
hat appears in brown color in the original image is usually

l centroid lines superimposed in the vector distribu-
e� after three iterations; �f� after four iterations; �g�
al iterations; �h� rotate the image �a� by the angle
e.
b� initia
tions; �
ddition

he spac
ess than 2% of the total area. The small number of brown
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olored pixels corresponds to the long tail of low values of
he distribution function of h1 at the left side of the large
pike. If the tail is excluded, the remaining distribution func-
ion is approximately symmetric and smooth. This feature is
eneral because the pixels in cells and the neuropil regions
hat usually occupy more than 99% of area in the image
hare the similar color. Assuming the symmetry property, we
btain the value �1

− =72. Thus, we have the partitioning
oundary between the two clusters shown as the vertical line

n Fig. 3(i). Similarly, the partitioning line regions that are
erpendicular to the long axis of the approximately elliptical
haped cluster of the cell and neuropil regions are based on
he vector distributions of h2 in Fig. 5(b) and shown as the
orizontal line in Fig. 3(i). Thus, the two straight lines in
ig. 3(i) partition the domain into three separate regions.

Fig. 6 shows the segmentation according to the parti-
ioning lines in Fig. 3(i). The three intensities in the segmen-
ation image represent the classifications of vectors in the
espective three regions in Fig. 3(i). In Fig. 6, black, gray and
hite pixels correspond to the rectangular regions on the

eft, in Fig. 3(i), gray to the lower right rectangular region,
nd white to the upper right rectangular region. From the
mage ��n1 ,n2� in Fig. 6, we can obtain the segmentation
��n1 ,n2�. The radius of the circular structure elements
hould be a small value. In our experiments, the radius is
elected to be 2.5. If a larger value is selected, the number of
rosions and dilations should be smaller but each operation
onsumes much longer computational time. With each ero-
ion, the nuclear regions are shrunk by 5 in diameters. Con-
idering the size of the nuclei that are generally larger than
0 in pixels in diameters in the original images used in this

Figure 4. Convergence of the centroid lines vs m, th
vs m, and �d� 	2

�m� vs m.
rticle, a series of fewer than six successive erosion opera- g

. Imaging Sci. Technol. 040502-
ions may be applied in order to retain portion of nuclei
ollowed by a series of the same number of constrained di-
ations. Figure 1(b) shows the segmented image where black
ntensity stands for stained activated microglia, gray for the
ell nuclei, and white for the cell neuropil. Figure 7 shows
nother experimental result where (a) is the original image
nd (b) is the resulting segmentation where black stands for
tained activated microglia, gray for the cell nuclei, and
hite for the cell neuropil. In visual comparisons, the seg-
entations match their original images.

Recently, Ruifrok and Johnston16 have presented a color
econvolution algorithm that transforms the image RGB
omponents into a set of nonorthogonal components corre-
ponding to the major colors in the images. In Figure 8, we
how the best segmentation by the manual thresholding
ased on the color components from the deconvolution al-
orithm using their built-in vectors for hematoxylin and
AB separations. Each of the DAB and hematoxylin com-
onents after color deconvolution is a gray level image. To
etermine the microglia areas, a threshold is applied on the
AB color component. The threshold is adjusted manually

o that the best segmentation, shown in Fig. 8(a), based on
isual judgment, is achieved. It is observed that the seg-
ented microglia regions in Fig. 8(a) and Fig. 1(b), both in

lack, match well. While the results for microglia regions
rom both algorithms are comparable, the proposed algo-
ithm has several advantages. The proposed algorithm is au-
omatic because it processes the images based on their sta-
istical properties and correlations without the inputs of
sers. Unlike the color deconvolution method that needs a
et of fixed and preset conversion vectors, the proposed al-

er of iterations. �a� �1
�m� vs m, �b� �2

�m� vs m, �c� 	1
�m�
e numb
orithm is adaptive to the images and therefore tolerant to
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he staining variations. Fig. 8(b) is the best segmentation
esult achieved by manually adjusting the threshold for the
ematoxylin color component from the color deconvolution
ethod. Since the hematoxylin stained cell nuclei and the

europil have a similar color, they are not separable with a
imple threshold on the hematoxylin color component from
he color deconvolution method. Our proposed algorithm
eparates the nuclei based on their geometrical shapes as
hown in gray in Fig. 1(b).

Wu and Gil14 have proposed a clustering algorithm us-
ng mixed point and line centroids for segmentation of im-
ges of lung cells. The point centroid is appropriate for the
lood cells in lung cell images since the vectors from blood

Figure 5. �
ells are located in a small area. However, the vectors of the t

. Imaging Sci. Technol. 040502-
rown microglia pixels in a brain immunohistochemistry
mage usually occupy a large oblong area that is more ap-
ropriately approximated by a line instead of a point. For
omparison, we apply the algorithm to the original image in
ig. 1(a) and show the results in Fig. 9. Fig. 9(a) shows the
luster image in Fig. 3(a) superimposed by the initial point
entroid at the left-bottom corner as well as the initial ver-
ical centroid line. Fig. 9(b) shows the centroids after eight
terations when the procedure converges. Figs. 9(c) and 9(d)
how the respective classifications of the vectors. As we can
ee, there is a significant portion of vectors in the lower
luster of microglia in Fig. 9(c), which are misclassified to
he other cluster in Fig. 9(d). The corresponding segmenta-

, �b� h2�l�.
a� h �l�
ion of microglia regions is shown in Fig. 9(e). Comparing it
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o the microglia regions in black in Fig. 1(b), we observe that
ome microglia pixels are lost.

ONCLUSIONS
e have described a segmentation algorithm for brain im-
unohistological images that have few different colors. Since

he cell nuclei and neuropil that occupy an overwhelmingly
arge portion of image have similar bluish color in the
ounter-stained brain immunohistological images while ac-

igure 6. Segmentation by the partitioning lines in Figure 3�i�. Three
ntensities represent the vectors in the respective three regions in Figure
�i�. Black corresponds to the rectangular region on the left in Figure 3�i�,
ray to the lower right rectangular region, and white to the upper right
ectangular region.

Figure 7. �a� Original image, �b� segmentation of the image in �a�.
ivated microglia that occupies a tiny portion of the image c

. Imaging Sci. Technol. 040502-
as a different color, the cluster of the cell nuclei and neu-
opil pixels is much denser and larger than the cluster of
ctivated microglia pixels. The orthogonal transform based
n the eigenvectors of the image pixel vectors is mostly de-
ermined by the larger cluster of the cell nuclei and neuropil.
he prolonged cluster can always be placed along a particu-

ar direction based on the eigenvalues. An iterative learning
rocedure is developed to obtain the centroid lines, which
re then used to partition the vector domain into regions of
he activated microglia and the rest. The hematoxylin stained
ell nuclei and the neuropil are segmented in the subsequent
rocedure based on the difference between their geometrical
hapes. Figures show both the learning and segmentation
rocesses for the real brain immunohistochemical images.
he segmentation results are illustrated to show the effec-

iveness of the algorithm for visual comparisons. The algo-
ithm may be applicable to images of other organs if they
atisfy the assumptions that one cluster takes the over-
helmingly large portion (95% for instance), but this re-
ains for future studies.
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PPENDIX

he MSE for the vectors in Si approximated by the line

igure 8. Segmentation based on the color deconvolution,�see Ref. 16�
ectors chosen for Haematoxylin and DAB separation. �a� Manual
hresholding of DAB component, �b� manual thresholding of haematoxylin
omponent.
entroid is
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Figure 9. Results of the linear clustering with both point and linear centroids.�see Ref. 14� �a� The initial point
centroid at the left-bottom corner and the vertical linear centroid in the middle, �b� centroids after eight iterations
when procedure converges, �c� vectors near the point centroid classified to activated microglia, �d� the

remaining vectors, and �e� segmentation of activated microglia corresponding to the vectors in �c�.

. Imaging Sci. Technol. Jul.-Aug. 2008040502-10
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he left side of the above equation can be
ritten as �1/2� sin�2�i��1/Mi��n:vn�Si

�vn
2�2�−vn

2�1��+
os�2�i��1/Mi��n:vn�Si

vn�1�vn�2�, while the right side
an be written as ���1/Mi��n:vn�Si

vn�1��cos��i�
��1/Mi��n:vn�Si

vn�2��sin��i�����1/Mi��n:vn�Si
vn�2��cos��i�
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vn�1�,
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vn�2�, a2 = �1/Mi��n:vn�Si

vn
2�1�, b2 =

1/Mi��n:vn�Si
vn

2�2�, and c= �1/Mi��n:vn�Si
vn�1�vn�2�,

e have tan�2�i�=2�c−a1b1� / ��b1
2 −a1

2�− �b2 −a2��
r �i = �1/2� tan−1�2�a1b1 − c� / ��a1

2 −a2�− �b1
2 −b2���+�� /2,

here � is either 0 or 1. Also, 	i =a1 cos��i�+b1 sin��i�.
ecause we use 	i to represent the distance between the
oint of the origin and the centroid line, the value of 	i

hould always be non-negative. Thus,

	i = �a1 cos��i� + b1 sin��i�� . �A1�

f a1 cos��i�+b1 sin��i��0, we then need to add a constant
ngle −� to � . The solution for parameter �
i i

. Imaging Sci. Technol. 040502-1
s either �i = �1/2� tan−1�2�a1b1 − c� / ��a1
2 −a2�− �b1

2 −b2���
��1−u�a1 cos��i�+b1 sin��i��� or

�i =
1

2
tan−1 2�a1b1 − c�

�a1
2 − a2� − �b1

2 − b2�
� +

�

2

− ��1 − u�a1 cos��i� + b1 sin��i��� , �A2�

here the unit step function u��� is equal to 0 for negative
alue of �, 1 otherwise.
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