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bstract. This paper presents a learning-based principal compo-
ent analysis technique for accurate representation of spectral color

n low and high resolution spectral images. Three learning tech-
iques, LLE, ISOMAP, and regressive principal component analysis
PCA), are studied for this purpose. The basic concepts for the re-
ressive PCA technique, which is computationally efficient and rep-
esents a combination of standard PCA and regression, are exam-
ned. To utilize dimensionality reduction techniques such as LLE and
SOMAP as parametric mapping procedures, the methods must be
odified by combining them with a regression approach which pro-

ides data mapping from a low-dimensional space to the input
pace. The LLE, ISOMAP, and regressive PCA learning techniques
re compared with standard PCA using low-resolution spectral im-
ges. We show that the LLE and ISOMAP approaches are
omputationally demanding and are not well suited to high reso-

ution image analysis. Regressive and standard PCA are then used
n a test with high resolution spectral images. The comparative study
ased on the S-CIELAB �E and RMSE employs regressive PCA
easures to illustrate accurate color representation. © 2008 Soci-
ty for Imaging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.�2008�52:3�030504��

NTRODUCTION
elemedicine, network museums, network shopping, elec-
ronic money, digital archives, mobile phones with a digital
amera, digital TV, digital copies, digital cameras, and elec-
ronic paper require the development of a high-quality color
maging system.1 The images acquired by color imaging sys-
ems based on three channels are, however, not very accu-
ate. To provide high quality in these systems, spectral (mul-
icomponent) imaging systems are introduced. However, the
arge number of components requires additional memory to
tore the data and increases computational time. A recent
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. Imaging Sci. Technol. 030504-
tudy shows that eight channels or more are usually required
o get an accurate color reproduction of images; alterna-
ively, using the principal components of the image also per-

it a more accurate representation of the spectra.2 It is also
ery useful in spectral image processing (low- and high-pass
ltering, wavelet transforms, etc.) to apply a preprocessing
tep by reducing the dimensionality of an image containing
ozens or hundreds of components to several components.
he PCA technique is usually utilized for this purpose and

aves computational time and memory. To make this algo-
ithm more efficient, a technique incorporating not only in-
ormation from retained principal components but from
igher-order (weak) principal components (PCs) as well
ithout changing the number of principal components is

equired. A possible solution to the problem is to use a
earning technique incorporating the nonlinearity of data.

The basic techniques for nonlinear PCA and nonlinear
imensionality reduction include generative topographic
apping (GTM), Bayesian nonlinear factor analysis (Baye-

ian NFA), locally-linear embedding (LLE), and ISOMAP.3–6

n addition, regressive PCA, which is simple and
omputationally efficient, is considered.7 Regressive PCA has
een successfully used to estimate the spectral reflectance of
aintings8 and to colorize gray-level images.9 A limitation of

he technique is that it is only used for data with a one-to-
ne mapping whereas other methods work with data char-
cterized by one-to-many mapping. On the other hand, the
dvanced learning methods are quite complicated and also
ave limitations. For example, GTM is used when the di-
ension of the subspace is quite small (one or two). Baye-

ian NFA has a high computational load that makes it inef-
cient for working with high resolution images. The LLE
nd ISOMAP techniques are relatively simple and perform
ell with examples of face and object images.5,6,10 However,
May-Jun. 20081
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hey are restricted in relation to an image size due to both
ery strong computational and memory requirements.

There are a few publications in which the nonlinear
imensionality reduction technique is considered in spectral

mages. LLE and ISOMAP analysis of spectra and color im-
ges is presented by Kulpinski.11 Anomaly detection in spec-
ral images by preserving spectral uniqueness in the pixels
nd based on a combination of k-means clustering and LLE
s presented by Kim and Finkel.12 However, these studies do
ot consider applications in which a learning-based tech-
ique is utilized for high resolution spectral images. A
ethod where the low dimensional space of a high reso-

ution spectral image is determined has recently been intro-
uced. The method finds the low-dimensional space by di-
iding the image into a set of non-overlapping tiles where
SOMAP can compute an optimal subspace in a relatively
hort time with feasible memory requirements. The global
mage subspace is then defined by merging the tile
ubspaces.13 However, this technique is complicated and re-
uires an additional alignment of the tile subspaces.

In this paper we initially use the LLE and ISOMAP
echniques solely for comparison purposes and only with
ow-resolution images due to their poor computational scal-
ng. There is another problem with these methods in regard
o image reconstruction: there is no direct and inverse para-

etric mapping of data between input space and low-
imensional subspace. To provide the inverse mapping
eeded for the reconstruction, we use a regression tech-
ique. We call LLE and ISOMAP combined with regression
odified LLE and modified ISOMAP. We then compare
odified LLE and ISOMAP with regressive PCA and stan-

ard PCA using low-resolution spectral images. Finally, we
nalyze a set of high resolution spectral images with typical
cenes to test whether the first three principal components of
he regressive PCA of a spectral image reproduce color more
ccurately than three principal components of standard
CA. The primary goal is to reduce the dimensionality of

mages obtained by the spectral (multichannel) acquisition
ystems to three components and then accurately reproduce
he images. We are mainly concerned with high resolution
mage analysis, which is in accord with contemporary com-

ercially available imaging systems that work with image
izes usually measured in megapixels. To compare the differ-
nt techniques we mainly use two measures for estimating
ccuracy: spectral color difference (RMSE) and colorimetric
olor difference (S-CIELAB �E). The former is better for
econstructing the spectra in archiving applications and the
atter is superior for visual observation.

This paper is arranged as follows: the next section in-
roduces the basic concepts of regressive PCA. We then de-
cribe modified LLE and ISOMAP and consider the possible
ay of measuring the intrinsic dimensionality of data. Fi-
ally, the experimental results obtained by applying these
ethods are given and discussed.
. Imaging Sci. Technol. 030504-
EGRESSIVE PRINCIPAL COMPONENT ANALYSIS
egressive PCA represents a combination of standard PCA
nd regression that approximates the components with
maller eigenvalues by the first components.7 PCA reduces
he data dimensionality while an approximation by regres-
ion incorporates the nonlinearity of multidimensional data.

We assume that x is an n-dimensional observed vector

x = �x1,x2, . . . ,xn�T , �1�

here T denotes the transposition and x1 ,x2 , . . . ,xn are
pectral components.

For PCA the vector x in Eq. (1) is first centered by
ubtracting its mean,

x ← x − � , �2�

here the symbol ← represents substitution when the value
f the right-hand side is computed and substituted in x. The
ovariance matrix is then defined as

C = E�xxT� , �3�

here E denotes an expectation operator. PCA involves an
igen decomposition as follows:

C = U�UT , �4�

here U = �e1 , . . . , en�, ei = �ei1 , . . . ,ein�T are the eigenvectors
nd �=diag��1 , . . . ,�n�, �1 ��2 � ¯ ��n the eigenvalues
f C. Thus the first k principal components are given by

yk = Uk
Tx . �5�

n regression, the principal components yj are approximated
sing yq as follows:

fj�yq,w� = E�yj�yq� , �6�

here fj� � is a nonlinear function, E��yq� denotes a condi-
ional expectation at a given yq, q is a dimension of the
nderlying subspace, k is a dimension of the intermediate
ubspace and j=q+1, . . . ,k, and w is a parametric vector or
weight vector.

The regression of yj in Eq. (6) is defined through net-
ork mapping. The network discovers the underlying non-

inear function fj�yq , w�. The approximated components are
hen given by

ŷj = fj�yq,w� . �7�

he approximated components replace the principal compo-
ents and are an estimate of ŷk. Finally, since U is an or-

hogonal matrix satisfying U = UTU = I, reconstruction is de-
ned as

x̂ = Ukŷk + � . �8�

he method is implemented as follows:

• We compute the principal components using Eqs.

(2)–(5).

May-Jun. 20082
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• We estimate the approximated components through the
first principal components using Eqs. (6) and (7).

• We reconstruct data using Eq. (8).

he drawback of the method is that it cannot be used if
here is a one-to-many mapping between real and approxi-

ated components. However, the data of spectral images
ontaining the typical scenes, i.e., several color regions, is
lose to linear due to the central limit theorem. Regardless of
linearization of data, we assume that there is a low-degree

esidual nonlinearity. This makes regressive PCA attractive
or data representation because this technique providing
ne-to-one mapping is capable of incorporating the low-
egree nonlinearity of the data. The advantage of the tech-
ique is also its computational effectiveness: a short compu-

ational time and no strong memory limitations. As a result,
he application field of regressive PCA overlaps the applica-
ion field of standard PCA.

To solve the regression problem in Eq. (6), the regres-
ion method based on the radial basis function (RBF)
Gaussian function) is exploited.14 The reason is that the
BF method is relatively fast and performs well. The param-
ters q and k are free parameters in the experiment. The
umber of iterations and the number of neurons needed for

he regression part of RPCA and defined experimentally are
0 and 7, respectively.

ODIFIED LLE AND ISOMAP
LE and ISOMAP are nonlinear dimensionality reduction

echniques.5,6 ISOMAP computes geodesic distance along a
ubspace and then uses a multidimensional scale to reduce
imensionality. The distribution structure of the data is de-

ermined by preserving the geodesic distance between the
ata. LLE maps the high-dimensional data to a single global

ow-dimensional space by preserving the neighboring rela-
ionships. The methods have been successfully utilized for
educing the dimensionality of artificial and real data.5,6,10

The LLE and ISOMAP techniques have no basis func-
ions and it is, therefore, impossible to make a parametric

apping from the high-dimensional to the low-dimensional
pace. Furthermore, an inverse parametric mapping is also
mpossible. The inverse mapping is necessary for recon-
tructing the image. The inverse mapping proposed in Refs.
0 and 11 is unsuitable since this approach is based on the
nowledge of an original image which is not available in
econstruction. Therefore, another technique for reconstruc-
ion is developed. The proposed approach is based on an
pproximation through the regression of input data by the
ata embedded in the low-dimensional space. The approxi-
ated input components are then given by

x̂i = fi�yk,w� , �9�

here fi is a mapping function, yk is a vector in which the
lements are embedded components, and w is a parametric
ector.

The RBF with a Gaussian function is exploited for re-

ression where the number of iterations and the number of t

. Imaging Sci. Technol. 030504-
eurons are 10 and 7, respectively. For the parameters used
or LLE the number of neighbors is 100 and the neighbor-
ood size for ISOMAP is 1000. The results for LLE can

urther be improved by increasing the number of neighbors.
n this case, however, the computational time increases con-
iderably. Therefore, the number is restricted to 100.

NTRINSIC DIMENSIONALITY
he capability of the method to determine the intrinsic di-
ensionality of data is an important factor. In this study this

arameter is utilized as a free parameter and the dimension-
lity measurement is partially implemented. However, due to
ts importance, we present a possible way for measuring the
ntrinsic dimensionality.

The LLE algorithm cannot detect intrinsic dimension-
lity. When LLE is applied, other methods are usually used
or this purpose.

The ISOMAP algorithm defines the intrinsic dimen-
ionality, for example, for the Swiss roll data, face data sets,
and images, and handwritten digits.6 For the data sets with
n essentially nonlinear data structure, ISOMAP detects the
ntrinsic dimensionality better than PCA. The residual vari-
nce proposed in Ref. 6 is used to estimate the intrinsic
imensionality as follows: 1−R2�Dm ,Dy�, where R is a cor-
elation coefficient, Dm is the Euclidean input space distance

atrix (for ISOMAP this is the graph distance matrix), and

y is the Euclidean low-dimensional space distance matrix.
e are looking for the “elbow” in the curve in order to

stimate the underlying dimensionality.6

The residual variance will also be used for PCA and
PCA.

XPERIMENTS
wo image sets are used as test images. Apart from toys and
ars, the low-resolution images are taken from the Colorlab
oolbox of the University of Joensuu (Finland).15 The high
esolution images are taken from the Toolbox of Chiba Uni-
ersity (Japan) (CD-ROM).16 For all images, the S-CIELAB
alues are calculated from spectral images using XYZ (1931)
alues. The source spectral images appear as reflectance val-
es. The illuminant D65 is used. The Intel Pentium (R) D
rocessor, 2.80 GHz, 0.99 GB RAM, and MATLAB are used

o measure the computational time for the algorithms.

XPERIMENTS WITH LOW RESOLUTION IMAGES
he purpose of this experiment is to compare the different

earning-based techniques to better understand the proper-
ies of regressive PCA, which will be utilized in the test with
igh resolution images.

The spectral components of low-resolution images are
venly taken in the range 380–780 nm. The images are
own sampled to the size: 64�48�81 (width, height, and
pectral dimension) (fruitsandflowers), 57�40�81
colorchecker), 45�57�81 (toys), and 58�36�81 (cars) in
rder to test them using LLE and ISOMAP. Figure 1 shows
he low-resolution test images.

LLE and ISOMAP can work with the image sizes larger

han the image sizes used in this study. However, in this case,

May-Jun. 20083
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omputational time is increased. In addition, a larger neigh-
orhood size means lower computation speed. Therefore, to
rovide both the best neighborhood size, which can be
ather large, and fast computation, the test images are down-
ampled.

This first experiment is conducted with the low-
esolution images using modified LLE (MLLE), modified
SOMAP (MISOMAP), regressive PCA (RPCA), and stan-
ard PCA (PCA). In this study, the number of PCs is used as
free parameter. This number changes from one to four and

he algorithm performance related to the number of PCs is
easured. To evaluate the algorithm performance, the

-CIELAB �E measure, the RMSE (over all pixels), and the
esidual variance measure are used.17,6 The cost of the dif-
erent methods is evaluated using a computational time and
compression ratio. MLLE, MISOMAP, and RPCA produce

lightly different results each time we run the corresponding
earning algorithm. For each measurement we run each al-
orithm just once.

The reconstruction results for fruitsandflowers are
hown in Fig. 2. The results for MLLE, MISOMAP, PCA,
PCA1, and RPCA2 are shown in the first, second, third,

ourth, and fifth rows, respectively. In Fig. 2, columns one to
our represent image reconstruction for the first, first two,
rst three, and first four principal (embedded) components,
espectively. RPCA1 uses q=1 and k=2, q=2 and k=3,
=3 and k=4, and q=4 and k=5 to obtain the results in the
rst, second, third, and fourth column in Fig. 2, respectively.
PCA2 uses q=1 and k=3, q=2 and k=4, q=3 and k=5,
nd q=4 and k=6 to obtain the results in the first, second,
hird, and fourth column in Fig. 2, respectively. The
-CIELAB �E and RMSE, a computational time and a com-
ression ratio, are given in Tables I–IV, respectively. In Table
II, the embedding time is the time for computing the prin-
ipal (embedded) components and total time means the
ime for embedding and reconstruction. The residual vari-

igure 1. RGB-representation of the low-resolution images. �a�
ruitsandflowers, �b� colorchecker, �c� toys, and �d�cars.
nce of fruitsandflowers is shown in Fig. 3. The “elbow” in t

. Imaging Sci. Technol. 030504-
he residual variance curve indicates the point for estimating
he underlying dimensionality.6 The dimensionality of the
ubspace ISOMAP defined is 4. This result is in agreement
ith visual estimation. The cuts of the image representing

able I. S-CIELAB �E �average/maximum�. Numbers in cells from top to bottom are
iven for the first PC, the first two PCs, the first three PCs, and the first four PCs,
espectively.

ethod MLLE MISOMAP PCA RPCA1 RPCA2

ruits 13.39/46.44 12.93/43.88 16.89/49.15 13.80/43.46 13.51/42.72

nd 6.76/32.44 6.82/36.56 12.13/43.19 7.03/33.83 6.76/35.54

lowers 4.30/17.20 3.47/17.44 4.28/17.41 3.66/14.95 3.50/14.51

3.56/13.97 2.24/12.13 2.01/9.18 1.95/8.65 1.95/9.01

olor 14.33/55.79 13.12/38.30 14.51/35.60 13.48/34.77 13.54/39.35

hecker 10.21/42.83 8.89/34.78 10.41/40.47 10.20/42.92 9.80/36.04

10.21/35.48 3.32/26.04 4.48/24.17 4.06/21.90 3.53/25.04

9.61/36.15 2.67/25.11 2.80/13.14 2.11/11.42 2.48/11.51

oys 11.39/42.65 11.20/41.51 11.93/40.95 11.81/41.77 11.21/41.29

5.69/40.43 6.36/31.23 7.39/48.59 6.56/34.48 6.64/34.35

2.47/21.33 1.51/10.85 1.58/9.01 1.48/9.82 1.46/9.71

2.08/21.70 1.59/10.95 0.82/6.12 0.79/5.88 0.79/5.91

ars 9.81/44.51 13.50/54.63 13.06/41.38 12.89/57.90 13.11/56.39

4.24/16.64 5.15/14.83 8.68/21.83 5.40/14.63 5.64/15.43

5.33/21.47 1.94/7.35 1.58/6.04 1.44/5.29 1.45/5.27

4.54/19.37 1.95/8.68 1.31/5.29 1.47/5.74 1.41/6.12

igure 2. fruitsandflowers. RGB-representation of the results of reconstruc-
ion for LLE �first row�, ISOMAP �second row�, PCA �third row�, RPCA1
fourth row�, and RPCA2 �fifth row�. The first, second, third, and fourth
olumns correspond to the first PC, the first two PCs, the first three PCs,
nd the first four PCs, respectively.
he grape and the color differences (error maps) are given in

May-Jun. 20084
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ig. 3. The error maps are computed using the S-CIELAB
E truncated for values greater than 10. The values are then

caled from 0 to 255. Adding the fourth principal compo-
ent improves the color of the grape, making it close to the
riginal and, thus, reducing the color difference. The dimen-
ionality found by PCA and RPCA1 is not so obvious. The
imensionality seems to be 5.

Dimensionality reduction techniques like LLE and
SOMAP have three limitations.18 First, the manifold must
e well sampled or data must be densely populated in the
anifold. Second, noise can prevent correct learning. Third,

able II. RMSE. Numbers in each cell from top to bottom are given for the first PC, the
irst two PCs, the first three PCs, and the first four PCs, respectively.

ethod MLLE MISOMAP PCA RPCA1 RPCA2

ruitsandflowers 0.0762 0.0691 0.0784 0.0709 0.0694

0.0438 0.0315 0.0447 0.0332 0.0315

0.0277 0.0255 0.0260 0.0243 0.0246

0.0245 0.0198 0.0169 0.0169 0.0169

olorchecker 0.1319 0.0870 0.1025 0.0888 0.0878

0.10 0.0536 0.0594 0.0551 0.0551

0.0915 0.0281 0.0310 0.0301 0.0257

0.0718 0.0260 0.0247 0.0227 0.0208

oys 0.0508 0.0494 0.0523 0.0501 0.0496

0.0365 0.0232 0.0258 0.0234 0.0232

0.0153 0.0125 0.0126 0.0117 0.0117

0.0135 0.0122 0.0098 0.0097 0.0097

ars 0.0561 0.0495 0.0573 0.0512 0.0497

0.0258 0.0198 0.0285 0.212 0.0208

0.0351 0.0174 0.0181 0.0178 0.0170

0.0434 0.0164 0.0135 0.0126 0.0124

able III. Total computation time �upper number� and time for embedding �lower
umber� given for MLLE and MISOMAP �fruitsandflowers�.

ethod MLLE MISOMAP PCA RPCA1 RPCA2

ime, s 1944 167 0.12 0.50 0.91

1914 144

Table IV. A compression ratio �fruitsandflowers�.

ethod 1 PC 2 PCs 3 PCs 4 PCs

LLE and MISOMAP 3.65 3.38 3.15 2.95

CA 76.94 38.95 26.08 19.60

PCA1 60.42 34.09 23.74 18.21
or high-dimensional data, the first two problems become i

. Imaging Sci. Technol. 030504-
ore severe. In our study, the sensors we used have a high
ignal-to-noise ratio. Spectral color data is restricted to the
egion having lower dimensionality. Thus, the last two prob-
ems are not considered. However, the first problem is valid.
n their study, Kim and Finkel12 concluded that the existence
f several disjointed objects in the low resolution image
hallenges the manifold learning. In our case the test low
esolution images have many color objects. In general, the
-CIELAB �E and RMSE results are, thus, not so good for
LLE and MISOMAP. However, the learning-based meth-

ds have relatively good results in comparison with PCA,
specially for the first one, first two, and first three PCs at
isual observation (Fig. 2). MISOMAP shows the average
olorimetric color differences and the spectral color differ-
nces better for one, two, and three principal components
han PCA. Colorimetric color differences and spectral color
ifferences by MISOMAP for one, two, and three principal
omponents are comparable with colorimetric color differ-
nces and spectral color differences by RPCA1 and RPCA2.
he MISOMAP results are sometimes close to the results
roduced by RPCA2. Figure 2 illustrates the visual similarity
etween these two approaches. Although MLLE is not as
ood as other approaches, its results can be further improved
t the expense of computational time. We can expect the
est algorithmic performance by MLLE and MISOMAP in

igure 3. The residual variance computed using fruitsandflowers. �a�
SOMAP. �b� PCA and RPCA. The image cuts together with error maps
easured from the corresponding cuts are shown in the top plot. ISOMAP

eliably determines the data dimensionality while the results produced by
CA and RPCA are not so clear. For the first PC the residual variance is
.059, 0.058, and 0.041 for ISOMAP, PCA, and RPCA, respectively.
mages containing an object described by the dichromatic

May-Jun. 20085
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eflection model. In this case, the data structure considered
epresents one nonlinear global cluster with densely distrib-
ted samples and the intrinsic dimensionality of data is
ne.9 LLE and ISOMAP are also effective for images (for
xample, cars), where the number of color regions is small
nd the intrinsic dimensionality of data is low.

Recently, Funt et al.19 studied nonlinear embeddings of
eflectance spectra in their datasets. They concluded that the
eflectance spectra lie in a nonlinear subspace with a dimen-
ionality of 3 and ISOMAP is useful in determining the di-

ensionality of the data. Our experiments using the residual
ariance found by ISOMAP show that the nonlinear sub-
pace dimensionality is 4 for fruitsandflowers (Fig. 3), 3 for
olorchecker, 3 for toys, and 2 for cars. This also explains
he fact that the learning methods are most effective for
ow-dimension subspaces. It is interesting to note that
olorchecker has more colors and less dimensionality than
ruitsandflowers. This is due to the fact that all colors in
olorchecker are presented in equal proportions. In this sense
he result for colorchecker is close to that for reflectance spec-
ra. In experiments with high resolution images, this prob-
em will be addressed one more time.

Next, we discuss measurements only for fruitsandflow-
rs. Tables III and IV present computational time and com-
ression ratio. As can be seen from these tables, the MLLE
ethod has the longest computational time and a small

ompression ratio. The computational time consumed by
he LLE algorithm even without mapping is long �1914 s�.
s displayed in Tables III and IV, the MISOMAP method
lso has a long computational time and a small compression
atio. The computational time of the ISOMAP algorithm
xcluding the inverse mapping procedure is also long
144 s�. The poor value of the compression ratio for modi-
ed LLE and ISMAP is explained by the small size of the

mage and the need for a large number of network data
tructure sets equal to the number of data components. PCA
as the best compression ratio, as shown in Table IV, and

he best computational time.
Both RPCA1 and RPCA2 are referred to as RPCA be-

ause their results are close to each other. In most cases,
PCA demonstrates better results than LLE, ISOMAP, and
CA. RPCA is superior to PCA for the first PC and the first

wo PCs and gives slightly better results for the first three
nd the first four PCs, which can be seen in Fig. 2 and Table
. Table II shows that the spectral differences are minimal for
PCA and Table III demonstrates that the RPCA algorithm

s rather fast. The compression ratio for RPCA is lower in
omparison to PCA. RPCA cannot be used for computing
he dimensionality of the data structure. Finally, we can con-
lude that RPCA performs well and is computationally effi-
ient. Only PCA and RPCA will be used in the following
tudy with high resolution spectral images.

XPERIMENTS WITH HIGH RESOLUTION IMAGES
he second experiment is conducted with high resolution

mages using standard PCA and regressive PCA. The set of

mages is shown in Fig. 4 and includes p1 (Chart), p2 (Oil v

. Imaging Sci. Technol. 030504-
aint), p3 (Japanese Paint), p4 (Standard Image), p5 (Por-
rait), p6 (Fruit), p7 (Gloss Image), and p8 (Wool). The size
f the high resolution images acquired with a five-band
amera is 764�508 (width and height) for p1–p4, p6, p7
nd 508�764 for p5 and p8.

The number of PCs from one to four is varied in the
ext experiment. We are particularly interested in whether

hree PCs of RPCA give (visually and quantitatively) better
esults than three PCs of standard PCA.

Table V shows the S-CIELAB �E values for PCA and
PCA. RPCA has better results for most cases. On the basis
f this table and results obtained in the experiment with the

ow-resolution images we can conclude that the difference in
olor reproduction between RPCA and standard PCA is re-
uced by increasing the number of PCs. It is also evident

hat RPCA with n PCs cannot produce results better than
tandard PCA with n+1 PCs. Table VI indicates that the
MSE values obtained by using RPCA are less than the PCA

igure 4. The set of high resolution images. �a� p1 �Chart�, �b� p2 �Oil
aint�, �c� p3 �Japanese Paint�, �d� p4 �Standard Image�, �e� p5 �Por-
rait�, �f� p6 �Fruit�, �g� p7 �Gloss Image�, and �h� p8 �Wool�.
alues.
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We then compute the error maps of the test images
sing PCA with the first three PCs and RPCA with param-
ters q=3 and k=4. Figures 5 and 6 show the error maps for
CA and RPCA, respectively. As in the first experiments, the
rror maps of the test images are computed using the
-CIELAB �E. The error values greater than10 are trun-
ated. The error values are then scaled from 0 to 255. The
rror maps computed from images p1, p3, p5, p6, and p8 are
etter for RPCA than for PCA. It is difficult to compare the
rror maps of p2, p4, and p8.

In summarizing the results from both experiments one
bservation must be made. The images fruitsandflowers, p6
nd p8, are difficult to represent using three principal com-
onents by the tested methods. These images contain several
olor regions, which are very different. In these images only
ray, yellow, brown, red, cyan, and blue are reproduced close
o the original image. Green and magenta are poorly recon-
tructed. The analysis made for fruitsandflowers shows that
he first eigenvector is relatively smooth and relates to a gray
olor. The second and third eigenvectors have only one
ominant transition between low spectral values and high
pectral values. This is the case of yellow, brown, red, blue,
nd cyan. The fourth eigenvector has two dominant transi-
ions and is responsible for reconstructing green and ma-
enta. Although RPCA incorporates information from the

able V. S-CIELAB �E �average/maximum� for PCA �upper number� and RPCA
lower number�.

mage PCA: 1 PC PCA: 2 PCs PCA: 3 PCs PCA: 4 PCs

RPCA: RPCA: RPCA: RPCA:

q = 1 q = 2 q = 3 q = 4

k = 2 k = 3 k = 4 k = 5

1 5.69/99.56 4.30/54.50 2.73/33.46 0.44/8.33

6.24/98.74 4.34/51.24 1.52/21.06 0.38/7.93

2 8.34/44.79 3.18/22.34 0.84/9.19 0.70/9.30

5.93/47.64 2.52/26.88 0.71/8.97 0.62/9.16

3 2.63/29.94 1.48/29.98 0.66/13.18 0.16/2.42

2.48/37.22 1.33/15.76 0.59/14.26 0.16/2.79

4 10.99/103.85 6.38/74.34 4.30/48.21 0.53/9.86

10.02/101.03 6.23/71.33 3.70/43.72 0.53/9.68

5 5.07/27.00 2.99/25.60 2.72/22.05 0.73/7.90

5.00/26.94 3.07/25.72 2.38/19.87 0.69/8.39

6 9.88/89.94 9.04/77.87 5.50/42.77 1.35/18.08

9.73/92.50 8.23/55.49 4.29/33.71 1.25/14.47

7 4.41/43.97 2.55/36.36 1.11/29.42 0.74/15.78

4.40/43.64 2.38/37.73 1.13/29.09 0.69/13.15

8 12.46/56.86 4.46/24.56 2.39/17.39 0.22/1.49

12.11/55.63 4.27/23.03 2.09/16.40 0.21/1.64
eak components, RPCA is not efficient enough for learning i

. Imaging Sci. Technol. 030504-
reen and magenta colors. In our future study we will ad-
ress this problem.

The average computation time measured for the image
et for PCA (3 PCs) is approximately 0.78 s, and for RPCA
q=3 and k=4) 52.25 s. The compression ratio for high
esolution images is 1.66 for PCA (3 PCs) and for RPCA
q=3 and k=4). The compression ratio values for both

ethods are approximately equal because the network data
tructure size required by RPCA is small in comparison to
he size of the principal components of a high resolution
mage. PCA is faster than RPCA.

The experiments confirm the improvements in the re-
onstructed images obtained through the use of RPCA.
hus, it is very useful in spectral image processing where the
umber of components is reduced and image processing al-
orithms are applied to them. The utilization of this method
aves computational time and memory. The merit of the
echnique is that the reconstructed image includes informa-
ion not only from the retained principal components but
lso partial information from weak (approximated) compo-
ents. Hence, RPCA reproduces colors (up to four principal
omponents) more accurately than PCA, requires approxi-
ately the same memory in applications with high reso-

ution images, and is relatively fast.

ONCLUSIONS
n this paper, the comparative study of several dimensional-

Table VI. RMSE. PCA �upper number� and RPCA �lower number�.

mage PCA: 1 PC PCA: 2 PCs PCA: 3 PCs PCA: 4 PCs

RPCA: RPCA: RPCA: RPCA:

q = 1 q = 2 q = 3 q = 4

k = 2 k = 3 k = 4 k = 5

1 0.0285 0.0192 0.0062 0.0027

0.0278 0.0186 0.0044 0.0023

2 0.0273 0.0120 0.0033 0.0022

0.0242 0.0109 0.0028 0.0020

3 0.0201 0.0073 0.0026 0.0008

0.0174 0.0065 0.0022 0.0008

4 0.0391 0.0249 0.0092 0.0044

0.0369 0.0235 0.0086 0.0043

5 0.0180 0.0093 0.0062 0.0035

0.0175 0.0091 0.0058 0.0034

6 0.0364 0.0264 0.0114 0.0036

0.0352 0.0232 0.0101 0.0035

7 0.0182 0.0115 0.0042 0.0026

0.0179 0.0101 0.0040 0.0022

8 0.0453 0.0204 0.0054 0.0023

0.0445 0.0186 0.0049 0.0022
ty reduction approaches for low-resolution and high reso-
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ution spectral images was presented. The study shows that
he existence of several color regions makes learning difficult
or LLE and ISOMAP. However, ISOMAP produces more
esirable results (both �E and RMSE) for one, two, and

hree principal components than PCA. In addition,
SOMAP correctly finds the dimensionality of a nonlinear
ubspace. The dimensionality found by ISOMAP is in agree-

ent with visual estimation. LLE and ISOMAP are a com-
utational burden. In most cases, RPCA has the best spectral
nd color differences than other approaches. RPCA repro-
uces colors (up to four principal components) more accu-
ately than PCA. This is especially important in applications
ith high resolution images since RPCA is computationally

fficient. RPCA cannot be used to determine the dimension-
lity of data. In addition, RPCA with n components does
ot produce a result better than PCA with n+1 component.

Figure 5. Error map

Figure 6. Error maps
n our future study we will address this problem.

. Imaging Sci. Technol. 030504-
CKNOWLEDGMENTS
he authors thank the Academy of Finland for the funding
ranted to this study.

EFERENCES
1 Y. Miyake, “Evaluation of image quality based on human visual

characteristics”, Proc. First International Workshop on Image Media
Quality and its Applications, (Nagoya, Japan, 2005) pp. 10–14.

2 L. W. MacDonald, “Colour engineering in digital imaging”, Proc. First
CGIV (IS&T, Springfield, VA, 2000) pp. 358–363.

3 C. M. Bishop, M. Swensen, and C. K. I. Williams, “GTM: The generative
topographic mapping”, Neural Comput. 10, 215–234 (1998).

4 H. Lappalainen and A. Honkela, “Bayesian nonlinear independent
component analysis by multi-layer perceptrons,” in Advances in
Independent Component Analysis, edited by M. Girolami (Springer,
Berlin, 2000), pp. 93–121.

5 S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding”, Science 290, 2323–3236 (2000).

6 J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science 290,

test images �PCA�.

test images �RPCA�.
of the
May-Jun. 20088



Bochko, Miyake, and Parkkinen: The learning-based principal component technique...

J

2319–2323 (2000).
7 V. Bochko and J. Parkkinen, “Principal component analysis using

approximated principal components”, Research Report 90, (Department
of Information Technology, Lappeenranta University of Technology,
Finland, 2004), pp. 1–7.

8 V. Bochko, N. Tsumura, and Y. Miyake, “Spectral color imaging system
for estimating spectral reflectance of paint”, J. Imaging Sci. Technol.
51(5), 70–78 (2007).

9 V. Bochko and J. Parkkinen, “A spectral color analysis and colorization
technique”, IEEE Comput. Graphics Appl. 26(5), 74–82 (2006).

10 Y. C. Zhang, J. Wang, N. Zhao, and D. Zhang, “Reconstruction and
analysis of multi-pose face images based on nonlinear dimensionality
reduction”, Pattern Recogn. 37, 325–336 (2004).

11 D. Kulpinski, “LLE and ISOMAP analysis of spectra and color images”,
Master’s Thesis, School of Computer Science, Simon Fraser University
(2002).

12 D. H. Kim and L. H. Finkel, “Hyperspectral image processing using
locally linear embedding”, Proc. First International IEEE EMBS
Conference on Neural Engineering (IEEE, Piscataway, NJ, 2003), pp.

316–319.

. Imaging Sci. Technol. 030504-
13 C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, Exploiting
manifold geometry in hyperspectral imagery”, IEEE Trans. Geosci.
Remote Sens., GE-43(3), 441–454 (2005).

14 I. T. Nabney, Netlab Algorithms for Pattern Recognition (Springer, Berlin,
2002).

15 Spectral Database, University of Joensuu Color Group, http://
spectral.joensuu.fi/

16 Introduction to Multispectral Imaging, edited by Y. Miyake (University of
Tokyo Press, Tokyo, 2006) (in Japanese).

17 X. Zhang and B. A. Wandell, “A spatial extension of CIELAB for digital
color image reproduction”, Proc. SID Symp. Tech. Digest 27, 731–734
(1996).

18 M.-C. Yeh, I.-H. Lee, G. Wu, Y. Wu, and E. Y. Chang, “Manifold
learning: A promised land or work in progress?”, in Proc. IEEE
International Conference on Multimedia and Expo (IEEE, Piscataway, NJ,
2005), pp. 1154–1157.

19 B. Funt, D. Kulpinski, and V. Cardei, “Non-linear embeddings and the
underlying dimensionality of reflectance spectra and chromaticity
histograms”, Proc. IS&T/SID 9th Color Imaging Conf. (IS&T, Springfield,

VA, 2001), pp. 126–129.

May-Jun. 20089


