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Abstract. This paper presents a learning-based principal compo-
nent analysis technique for accurate representation of spectral color
in low and high resolution spectral images. Three learning tech-
niques, LLE, ISOMAP, and regressive principal component analysis
(PCA), are studied for this purpose. The basic concepts for the re-
gressive PCA technique, which is computationally efficient and rep-
resents a combination of standard PCA and regression, are exam-
ined. To utilize dimensionality reduction techniques such as LLE and
ISOMAP as parametric mapping procedures, the methods must be
modified by combining them with a regression approach which pro-
vides data mapping from a low-dimensional space to the input
space. The LLE, ISOMAP, and regressive PCA learning techniques
are compared with standard PCA using low-resolution spectral im-
ages. We show that the LLE and ISOMAP approaches are
computationally demanding and are not well suited to high reso-
lution image analysis. Regressive and standard PCA are then used
in a test with high resolution spectral images. The comparative study
based on the S-CIELAB AE and RMSE employs regressive PCA
measures to illustrate accurate color representation. © 2008 Soci-
ety for Imaging Science and Technology.
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INTRODUCTION

Telemedicine, network museums, network shopping, elec-
tronic money, digital archives, mobile phones with a digital
camera, digital TV, digital copies, digital cameras, and elec-
tronic paper require the development of a high-quality color
imaging system.' The images acquired by color imaging sys-
tems based on three channels are, however, not very accu-
rate. To provide high quality in these systems, spectral (mul-
ticomponent) imaging systems are introduced. However, the
large number of components requires additional memory to
store the data and increases computational time. A recent
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study shows that eight channels or more are usually required
to get an accurate color reproduction of images; alterna-
tively, using the principal components of the image also per-
mit a more accurate representation of the spectra.” It is also
very useful in spectral image processing (low- and high-pass
filtering, wavelet transforms, etc.) to apply a preprocessing
step by reducing the dimensionality of an image containing
dozens or hundreds of components to several components.
The PCA technique is usually utilized for this purpose and
saves computational time and memory. To make this algo-
rithm more efficient, a technique incorporating not only in-
formation from retained principal components but from
higher-order (weak) principal components (PCs) as well
without changing the number of principal components is
required. A possible solution to the problem is to use a
learning technique incorporating the nonlinearity of data.
The basic techniques for nonlinear PCA and nonlinear
dimensionality reduction include generative topographic
mapping (GTM), Bayesian nonlinear factor analysis (Baye-
sian NFA), locally-linear embedding (LLE), and ISOMAP.*™®
In addition, regressive PCA, which is simple and
computationally efficient, is considered.” Regressive PCA has
been successfully used to estimate the spectral reflectance of
paintings® and to colorize gray-level images.” A limitation of
the technique is that it is only used for data with a one-to-
one mapping whereas other methods work with data char-
acterized by one-to-many mapping. On the other hand, the
advanced learning methods are quite complicated and also
have limitations. For example, GTM is used when the di-
mension of the subspace is quite small (one or two). Baye-
sian NFA has a high computational load that makes it inef-
ficient for working with high resolution images. The LLE
and ISOMAP techniques are relatively simple and perform
well with examples of face and object images.”®'" However,
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they are restricted in relation to an image size due to both
very strong computational and memory requirements.

There are a few publications in which the nonlinear
dimensionality reduction technique is considered in spectral
images. LLE and ISOMAP analysis of spectra and color im-
ages is presented by Kulpinski."' Anomaly detection in spec-
tral images by preserving spectral uniqueness in the pixels
and based on a combination of k-means clustering and LLE
is presented by Kim and Finkel."> However, these studies do
not consider applications in which a learning-based tech-
nique is utilized for high resolution spectral images. A
method where the low dimensional space of a high reso-
lution spectral image is determined has recently been intro-
duced. The method finds the low-dimensional space by di-
viding the image into a set of non-overlapping tiles where
ISOMAP can compute an optimal subspace in a relatively
short time with feasible memory requirements. The global
image subspace is then defined by merging the tile
subspaces.”> However, this technique is complicated and re-
quires an additional alignment of the tile subspaces.

In this paper we initially use the LLE and ISOMAP
techniques solely for comparison purposes and only with
low-resolution images due to their poor computational scal-
ing. There is another problem with these methods in regard
to image reconstruction: there is no direct and inverse para-
metric mapping of data between input space and low-
dimensional subspace. To provide the inverse mapping
needed for the reconstruction, we use a regression tech-
nique. We call LLE and ISOMAP combined with regression
modified LLE and modified ISOMAP. We then compare
modified LLE and ISOMAP with regressive PCA and stan-
dard PCA using low-resolution spectral images. Finally, we
analyze a set of high resolution spectral images with typical
scenes to test whether the first three principal components of
the regressive PCA of a spectral image reproduce color more
accurately than three principal components of standard
PCA. The primary goal is to reduce the dimensionality of
images obtained by the spectral (multichannel) acquisition
systems to three components and then accurately reproduce
the images. We are mainly concerned with high resolution
image analysis, which is in accord with contemporary com-
mercially available imaging systems that work with image
sizes usually measured in megapixels. To compare the differ-
ent techniques we mainly use two measures for estimating
accuracy: spectral color difference (RMSE) and colorimetric
color difference (S-CIELAB AE). The former is better for
reconstructing the spectra in archiving applications and the
latter is superior for visual observation.

This paper is arranged as follows: the next section in-
troduces the basic concepts of regressive PCA. We then de-
scribe modified LLE and ISOMAP and consider the possible
way of measuring the intrinsic dimensionality of data. Fi-
nally, the experimental results obtained by applying these
methods are given and discussed.

J. Imaging Sci. Technol.

030504-2

REGRESSIVE PRINCIPAL COMPONENT ANALYSIS
Regressive PCA represents a combination of standard PCA
and regression that approximates the components with
smaller eigenvalues by the first components.” PCA reduces
the data dimensionality while an approximation by regres-
sion incorporates the nonlinearity of multidimensional data.
We assume that x is an n-dimensional observed vector

X= (xbxb r-xn)Ta (1)

where T denotes the transposition and x,x;,...
spectral components.

For PCA the vector x in Eq. (1) is first centered by
subtracting its mean,

,X, are

X—X—u, (2)

where the symbol «— represents substitution when the value
of the right-hand side is computed and substituted in x. The
covariance matrix is then defined as

C=E(xx"), (3)

where E denotes an expectation operator. PCA involves an
eigen decomposition as follows:

C=UAU’, (4)

where U=(e,,...,e,), e;=(e;,...,e;,) " are the eigenvectors
and A=diag(\;,...,N,), Ay =\, ==\, the eigenvalues
of C. Thus the first k principal components are given by

Yi= U,?x. (5)

In regression, the principal components y; are approximated
using y, as follows:

f;’(Ypr) = E(yj|Yq)> (6)

where f{() is a nonlinear function, E(ly,) denotes a condi-
tional expectation at a given y,, q is a dimension of the
underlying subspace, k is a dimension of the intermediate
subspace and j=q+1,...,k, and w is a parametric vector or
a weight vector.

The regression of y; in Eq. (6) is defined through net-
work mapping. The network discovers the underlying non-
linear function f(y,,w). The approximated components are
then given by

Pi=fiypw). (7)

The approximated components replace the principal compo-
nents and are an estimate of y;. Finally, since U is an or-
thogonal matrix satisfying U=UTU=1, reconstruction is de-
fined as

X= Uki’k + M. (8)
The method is implemented as follows:

+ We compute the principal components using Egs.

(2)-(5).
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*+ We estimate the approximated components through the
first principal components using Egs. (6) and (7).
+ We reconstruct data using Eq. (8).

The drawback of the method is that it cannot be used if
there is a one-to-many mapping between real and approxi-
mated components. However, the data of spectral images
containing the typical scenes, i.e., several color regions, is
close to linear due to the central limit theorem. Regardless of
a linearization of data, we assume that there is a low-degree
residual nonlinearity. This makes regressive PCA attractive
for data representation because this technique providing
one-to-one mapping is capable of incorporating the low-
degree nonlinearity of the data. The advantage of the tech-
nique is also its computational effectiveness: a short compu-
tational time and no strong memory limitations. As a result,
the application field of regressive PCA overlaps the applica-
tion field of standard PCA.

To solve the regression problem in Eq. (6), the regres-
sion method based on the radial basis function (RBF)
(Gaussian function) is exploited.14 The reason is that the
RBF method is relatively fast and performs well. The param-
eters q and k are free parameters in the experiment. The
number of iterations and the number of neurons needed for
the regression part of RPCA and defined experimentally are
10 and 7, respectively.

MODIFIED LLE AND ISOMAP
LLE and ISOMAP are nonlinear dimensionality reduction
techniques.”® ISOMAP computes geodesic distance along a
subspace and then uses a multidimensional scale to reduce
dimensionality. The distribution structure of the data is de-
termined by preserving the geodesic distance between the
data. LLE maps the high-dimensional data to a single global
low-dimensional space by preserving the neighboring rela-
tionships. The methods have been successfully utilized for
reducing the dimensionality of artificial and real data.”*"’
The LLE and ISOMAP techniques have no basis func-
tions and it is, therefore, impossible to make a parametric
mapping from the high-dimensional to the low-dimensional
space. Furthermore, an inverse parametric mapping is also
impossible. The inverse mapping is necessary for recon-
structing the image. The inverse mapping proposed in Refs.
10 and 11 is unsuitable since this approach is based on the
knowledge of an original image which is not available in
reconstruction. Therefore, another technique for reconstruc-
tion is developed. The proposed approach is based on an
approximation through the regression of input data by the
data embedded in the low-dimensional space. The approxi-
mated input components are then given by

fci :fi(Yk’w) > (9)

where f; is a mapping function, y; is a vector in which the
elements are embedded components, and w is a parametric
vector.

The RBF with a Gaussian function is exploited for re-
gression where the number of iterations and the number of
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neurons are 10 and 7, respectively. For the parameters used
for LLE the number of neighbors is 100 and the neighbor-
hood size for ISOMAP is 1000. The results for LLE can
further be improved by increasing the number of neighbors.
In this case, however, the computational time increases con-
siderably. Therefore, the number is restricted to 100.

INTRINSIC DIMENSIONALITY

The capability of the method to determine the intrinsic di-
mensionality of data is an important factor. In this study this
parameter is utilized as a free parameter and the dimension-
ality measurement is partially implemented. However, due to
its importance, we present a possible way for measuring the
intrinsic dimensionality.

The LLE algorithm cannot detect intrinsic dimension-
ality. When LLE is applied, other methods are usually used
for this purpose.

The ISOMAP algorithm defines the intrinsic dimen-
sionality, for example, for the Swiss roll data, face data sets,
hand images, and handwritten digits.” For the data sets with
an essentially nonlinear data structure, ISOMAP detects the
intrinsic dimensionality better than PCA. The residual vari-
ance proposed in Ref. 6 is used to estimate the intrinsic
dimensionality as follows: I—RZ(Dm,Dy), where R is a cor-
relation coefficient, D,,, is the Euclidean input space distance
matrix (for ISOMAP this is the graph distance matrix), and
D, is the Euclidean low-dimensional space distance matrix.
We are looking for the “elbow” in the curve in order to
estimate the underlying dimensionality.®

The residual variance will also be used for PCA and
RPCA.

EXPERIMENTS

Two image sets are used as test images. Apart from toys and
cars, the low-resolution images are taken from the Colorlab
Toolbox of the University of Joensuu (Finland)."” The high
resolution images are taken from the Toolbox of Chiba Uni-
versity (Japan) (CD-ROM)." For all images, the S-CIELAB
values are calculated from spectral images using XYZ (1931)
values. The source spectral images appear as reflectance val-
ues. The illuminant D65 is used. The Intel Pentium (R) D
Processor, 2.80 GHz, 0.99 GB RAM, and MATLAB are used
to measure the computational time for the algorithms.

EXPERIMENTS WITH LOW RESOLUTION IMAGES
The purpose of this experiment is to compare the different
learning-based techniques to better understand the proper-
ties of regressive PCA, which will be utilized in the test with
high resolution images.

The spectral components of low-resolution images are
evenly taken in the range 380-780 nm. The images are
down sampled to the size: 64 X 48X 81 (width, height, and
spectral  dimension)  (fruitsandflowers), 57 X 40X 81
(colorchecker), 45X 57 X 81 (toys), and 58 X 36 X 81 (cars) in
order to test them using LLE and ISOMAP. Figure 1 shows
the low-resolution test images.

LLE and ISOMAP can work with the image sizes larger
than the image sizes used in this study. However, in this case,
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Figure 1. RGBrepresentation of the low-resolution images. (a)
fruitsandflowers, (b) colorchecker, (c) toys, and (d)cars.

computational time is increased. In addition, a larger neigh-
borhood size means lower computation speed. Therefore, to
provide both the best neighborhood size, which can be
rather large, and fast computation, the test images are down-
sampled.

This first experiment is conducted with the low-
resolution images using modified LLE (MLLE), modified
ISOMAP (MISOMAP), regressive PCA (RPCA), and stan-
dard PCA (PCA). In this study, the number of PCs is used as
a free parameter. This number changes from one to four and
the algorithm performance related to the number of PCs is
measured. To evaluate the algorithm performance, the
S-CIELAB AE measure, the RMSE (over all pixels), and the
residual variance measure are used.'”® The cost of the dif-
ferent methods is evaluated using a computational time and
a compression ratio. MLLE, MISOMAP, and RPCA produce
slightly different results each time we run the corresponding
learning algorithm. For each measurement we run each al-
gorithm just once.

The reconstruction results for fruitsandflowers are
shown in Fig. 2. The results for MLLE, MISOMAP, PCA,
RPCA1, and RPCA2 are shown in the first, second, third,
fourth, and fifth rows, respectively. In Fig. 2, columns one to
four represent image reconstruction for the first, first two,
first three, and first four principal (embedded) components,
respectively. RPCAl uses g=1 and k=2, g=2 and k=3,
q=3 and k=4, and g=4 and k=5 to obtain the results in the
first, second, third, and fourth column in Fig. 2, respectively.
RPCA2 uses g=1 and k=3, g=2 and k=4, q=3 and k=5,
and g=4 and k=6 to obtain the results in the first, second,
third, and fourth column in Fig. 2, respectively. The
S-CIELAB AE and RMSE, a computational time and a com-
pression ratio, are given in Tables I-1V, respectively. In Table
III, the embedding time is the time for computing the prin-
cipal (embedded) components and total time means the
time for embedding and reconstruction. The residual vari-
ance of fruitsandflowers is shown in Fig. 3. The “elbow” in
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Figure 2. fruitsandflowers. RGB-representation of the results of reconstruc-
tion for LLE (first row), ISOMAP (second row), PCA (third row), RPCA1
(fourth row), and RPCA2 (fifth row). The first, second, third, and fourth
columns correspond fo the first PC, the first two PCs, the first three PCs,
and the first four PCs, respectively.

Table 1. S-CIELAB AE (average/maximum). Numbers in cells from top to bottom are
given for the first P, the first two PCs, the first three PCs, and the first four PG,
respectively.

Method MLLE MISOMAP PCA RPCAT RPCA2

fruits  13.39/46.44 12.93/43.88 16.89/49.15 13.80/43.46 13.51/42.72
and 6.76/32.44  6.82/36.56 12.13/43.19 7.03/33.83  6.76/35.54
flowers  4.30/17.20 347/17.44 4.28/17.41  3.66/14.95 3.50/14.51

3.56/13.97 2.24/1213 2.01/9.18  1.95/8.65  1.95/9.01

color  14.33/55.79 13.12/38.30 14.51/35.60 13.48/34.77 13.54/39.35
checker 10.21/42.83  8.89/34.78 10.41/40.47 10.20/42.92 9.80/36.04
10.21/35.48  3.32/26.04 4.48/2417 4.06/21.90 3.53/25.04
9.61/36.15 2.67/2511 2.80/1314 2.11/11.42  2.48/11.51

toys  11.39/42.65 11.20/41.51 11.93/40.95 11.81/41.77 11.21/41.29
5.69/4043  6.36/31.23 7.39/48.59 6.56/34.48  6.64/34.35
247/1.33  151/1085 1.58/9.01  148/9.82  1.46/9.71
208/21.70  1.59/1095 0.82/6.12  079/588  0.79/5.91

cars 9.81/44.51 13.50/54.63 13.06/41.38 12.89/57.90 13.11/56.39
424/16.64 5.15/1483 8.68/21.83 5.40/14.63 5.64/15.43
5330147 194/135 1.58/6.04  1.44/529  1.45/527
454/19.37 1.95/8.68  1.31/529 1.47/574 1.41/6.12

the residual variance curve indicates the point for estimating
the underlying dimensionality. The dimensionality of the
subspace ISOMAP defined is 4. This result is in agreement
with visual estimation. The cuts of the image representing
the grape and the color differences (error maps) are given in
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Table 1. RMSE. Numbers in each cell from top to bottom are given for the first PC, the
first two PGs, the first three PCs, and the first four PCs, respectively.

Method MLLE MISOMAP PCA RPCAT RPCA2

fruitsandflowers 0.0762 0.0691 0.0784  0.0709  0.0694
0.0438 0.0315 0.0447  0.0332  0.0315
0.0277 0.0255 0.0260  0.0243  0.0246
0.0245 0.0198 0.0169  0.0169  0.0169

colorchecker 0.1319 0.0870 0.1025  0.0888  0.0878
0.10 0.0536 0.0594  0.0551  0.0551
0.0915 0.0281 0.0310  0.0301  0.0257
0.0718 0.0260 0.0247  0.0227  0.0208

toys 0.0508 0.0494 0.0523  0.0501  0.0496
0.0365 0.0232 0.0258  0.0234  0.0232
0.0153 0.0125 0.0126  0.0117  0.0117
0.0135 0.0122 0.0098  0.0097  0.0097

aars 0.0561 0.0495 0.0573  0.0512  0.0497
0.0258 0.0198 0.0285  0.212 0.0208
0.0351 0.0174 0.0181  0.0178  0.0170
0.0434 0.0164 00135 0.0126  0.0124

Table 111, Total computation time (upper number) and time for embedding (lower
number) given for MLLE and MISOMAP (fruitsandflowers).

Method MLLE MISOMAP PCA RPCAT RPCA2
Time, s 1944 167 0.12 0.50 0.91
1914 144

Table IV. A compression ratio (fruitsandflowers).

Method 1PC 2PGs 3PGs 4 PCs
MLLE and MISOMAP 3.65 3.38 315 2.95
PCA 76.94 38.95 26.08 19.60
RPCAT 60.42 34.09 2374 18.21

Fig. 3. The error maps are computed using the S-CIELAB
AE truncated for values greater than 10. The values are then
scaled from 0 to 255. Adding the fourth principal compo-
nent improves the color of the grape, making it close to the
original and, thus, reducing the color difference. The dimen-
sionality found by PCA and RPCAL is not so obvious. The
dimensionality seems to be 5.

Dimensionality reduction techniques like LLE and
ISOMAP have three limitations."® First, the manifold must
be well sampled or data must be densely populated in the
manifold. Second, noise can prevent correct learning. Third,
for high-dimensional data, the first two problems become
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Figure 3. The residual variance computed using fruitsandflowers. (a)
ISOMAP. (b) PCA and RPCA. The image cuts together with error maps
measured from the corresponding cuts are shown in the top plot. ISOMAP
reliably determines the data dimensionality while the results produced by
PCA and RPCA are not so clear. For the first PC the residual variance is

0.059, 0.058, and 0.041 for ISOMAP, PCA, and RPCA, respectively.

more severe. In our study, the sensors we used have a high
signal-to-noise ratio. Spectral color data is restricted to the
region having lower dimensionality. Thus, the last two prob-
lems are not considered. However, the first problem is valid.
In their study, Kim and Finkel'? concluded that the existence
of several disjointed objects in the low resolution image
challenges the manifold learning. In our case the test low
resolution images have many color objects. In general, the
S-CIELAB AE and RMSE results are, thus, not so good for
MLLE and MISOMAP. However, the learning-based meth-
ods have relatively good results in comparison with PCA,
especially for the first one, first two, and first three PCs at
visual observation (Fig. 2). MISOMAP shows the average
colorimetric color differences and the spectral color differ-
ences better for one, two, and three principal components
than PCA. Colorimetric color differences and spectral color
differences by MISOMAP for one, two, and three principal
components are comparable with colorimetric color differ-
ences and spectral color differences by RPCA1 and RPCA2.
The MISOMAP results are sometimes close to the results
produced by RPCA2. Figure 2 illustrates the visual similarity
between these two approaches. Although MLLE is not as
good as other approaches, its results can be further improved
at the expense of computational time. We can expect the
best algorithmic performance by MLLE and MISOMAP in
images containing an object described by the dichromatic
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reflection model. In this case, the data structure considered
represents one nonlinear global cluster with densely distrib-
uted samples and the intrinsic dimensionality of data is
one.” LLE and ISOMAP are also effective for images (for
example, cars), where the number of color regions is small
and the intrinsic dimensionality of data is low.

Recently, Funt et al."” studied nonlinear embeddings of
reflectance spectra in their datasets. They concluded that the
reflectance spectra lie in a nonlinear subspace with a dimen-
sionality of 3 and ISOMAP is useful in determining the di-
mensionality of the data. Our experiments using the residual
variance found by ISOMAP show that the nonlinear sub-
space dimensionality is 4 for fruitsandflowers (Fig. 3), 3 for
colorchecker, 3 for toys, and 2 for cars. This also explains
the fact that the learning methods are most effective for
low-dimension subspaces. It is interesting to note that
colorchecker has more colors and less dimensionality than
fruitsandflowers. This is due to the fact that all colors in
colorchecker are presented in equal proportions. In this sense
the result for colorchecker is close to that for reflectance spec-
tra. In experiments with high resolution images, this prob-
lem will be addressed one more time.

Next, we discuss measurements only for fruitsandflow-
ers. Tables IIT and IV present computational time and com-
pression ratio. As can be seen from these tables, the MLLE
method has the longest computational time and a small
compression ratio. The computational time consumed by
the LLE algorithm even without mapping is long (1914 s).
As displayed in Tables III and IV, the MISOMAP method
also has a long computational time and a small compression
ratio. The computational time of the ISOMAP algorithm
excluding the inverse mapping procedure is also long
(144 s). The poor value of the compression ratio for modi-
fied LLE and ISMAP is explained by the small size of the
image and the need for a large number of network data
structure sets equal to the number of data components. PCA
has the best compression ratio, as shown in Table 1V, and
the best computational time.

Both RPCAL and RPCA2 are referred to as RPCA be-
cause their results are close to each other. In most cases,
RPCA demonstrates better results than LLE, ISOMAP, and
PCA. RPCA is superior to PCA for the first PC and the first
two PCs and gives slightly better results for the first three
and the first four PCs, which can be seen in Fig. 2 and Table
L. Table II shows that the spectral differences are minimal for
RPCA and Table III demonstrates that the RPCA algorithm
is rather fast. The compression ratio for RPCA is lower in
comparison to PCA. RPCA cannot be used for computing
the dimensionality of the data structure. Finally, we can con-
clude that RPCA performs well and is computationally effi-
cient. Only PCA and RPCA will be used in the following
study with high resolution spectral images.

EXPERIMENTS WITH HIGH RESOLUTION IMAGES

The second experiment is conducted with high resolution
images using standard PCA and regressive PCA. The set of
images is shown in Fig. 4 and includes p1 (Chart), p2 (Oil
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Figure 4. The set of high resolution images. (a) p1 (Charf), (b) p2 (Oil
Paint), (c) p3 (Japanese Painf), (d) p4 (Standard Image), (e) p5 (Por-
traif), (f) p6 (Fruif), (g) p7/ (Gloss Image), and (h) p8 (Wool).

Paint), p3 (Japanese Paint), p4 (Standard Image), p5 (Por-
trait), p6 (Fruit), p7 (Gloss Image), and p8 (Wool). The size
of the high resolution images acquired with a five-band
camera is 764 X 508 (width and height) for pl-p4, p6, p7
and 508 X 764 for p5 and p8.

The number of PCs from one to four is varied in the
next experiment. We are particularly interested in whether
three PCs of RPCA give (visually and quantitatively) better
results than three PCs of standard PCA.

Table V shows the S-CIELAB AE values for PCA and
RPCA. RPCA has better results for most cases. On the basis
of this table and results obtained in the experiment with the
low-resolution images we can conclude that the difference in
color reproduction between RPCA and standard PCA is re-
duced by increasing the number of PCs. It is also evident
that RPCA with n PCs cannot produce results better than
standard PCA with n+1 PCs. Table VI indicates that the
RMSE values obtained by using RPCA are less than the PCA
values.
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Table V. S-CIELAB AE (average/maximum) for PCA (upper number) and RPCA
(lower number).

Image PCA: 1 PC PCA: 2 PGs PCA: 3 PGs PCA: 4 PGs
RPCA: RPCA: RPCA: RPCA:
g=1 =1 =3 q=4
k=2 k=3 k=4 k=5

pl 5.69/99.56 4.30/54.50 2.73/33.46 0.44/8.33

6.24/98.74 4.34/51.24 1.52/21.06 0.38/7.93
p2 8.34/44.79 3.18/22.34 0.84/9.19 0.70/9.30
5.93/47.64 2.52/26.88 0.71/8.97 0.62/9.16
p3 2.63/29.94 1.48/29.98 0.66/13.18 0.16/2.42
2.48/31.72 1.33/15.76 0.59/14.26 0.16/2.79
pd 10.99/103.85 6.38/74.34  4.30/48.21 0.53/9.86
10.02/101.03 6.23/71.33 3.70/43.72 0.53/9.68
p5 5.07/21.00 2.99/25.60 2.72/22.05 0.73/7.90
5.00/26.94 3.07/25.72 2.38/19.87 0.69/8.39
pb 9.88/89.94 9.04/77.81 5.50/42.77 1.35/18.08
9.73/92.50 8.23/55.49 4.29/33.1 1.25/14.47
p/ 4.41/43.97 2.55/36.36 1.11/29.42 0.74/15.78
4.40/43.64 2.38/31.13 1.13/29.09 0.69/13.15
pd 12.46/56.86 4.46/24.56 2.39/17.39 0.22/1.49
12.11/55.63 4.27/23.03 2.09/16.40 0.21/1.64

We then compute the error maps of the test images
using PCA with the first three PCs and RPCA with param-
eters g=3 and k=4. Figures 5 and 6 show the error maps for
PCA and RPCA, respectively. As in the first experiments, the
error maps of the test images are computed using the
S-CIELAB AE. The error values greater thanlO are trun-
cated. The error values are then scaled from 0 to 255. The
error maps computed from images p1, p3, p5, p6, and p8 are
better for RPCA than for PCA. It is difficult to compare the
error maps of p2, p4, and p8.

In summarizing the results from both experiments one
observation must be made. The images fruitsandflowers, p6
and p8, are difficult to represent using three principal com-
ponents by the tested methods. These images contain several
color regions, which are very different. In these images only
gray, yellow, brown, red, cyan, and blue are reproduced close
to the original image. Green and magenta are poorly recon-
structed. The analysis made for fruitsandflowers shows that
the first eigenvector is relatively smooth and relates to a gray
color. The second and third eigenvectors have only one
dominant transition between low spectral values and high
spectral values. This is the case of yellow, brown, red, blue,
and cyan. The fourth eigenvector has two dominant transi-
tions and is responsible for reconstructing green and ma-
genta. Although RPCA incorporates information from the
weak components, RPCA is not efficient enough for learning
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Table VI. RMSE. PCA (upper number) and RPCA (lower number).

Image PCA: 1 PC PCA: 2 PGs PCA: 3 PGs PCA: 4 PGs
RPCA: RPCA: RPCA: RPCA:
g=1 q=2 q=3 q=4
k=2 k=3 k=4 k=5

pl 0.0285 0.0192 0.0062 0.0027

0.0278 0.0186 0.0044 0.0023

p2 0.0273 0.0120 0.0033 0.0022

0.0242 0.0109 0.0028 0.0020
p3 0.0201 0.0073 0.0026 0.0008
0.0174 0.0065 0.0022 0.0008
p4 0.0391 0.0249 0.0092 0.0044
0.0369 0.0235 0.0086 0.0043
p5 0.0180 0.0093 0.0062 0.0035
0.0175 0.0091 0.0058 0.0034
po 0.0364 0.0264 0.0114 0.0036
0.0352 0.0232 0.0101 0.0035
p7 0.0182 0.0115 0.0042 0.0026
0.0179 0.0101 0.0040 0.0022
p8 0.0453 0.0204 0.0054 0.0023
0.0445 0.0186 0.0049 0.0022

green and magenta colors. In our future study we will ad-
dress this problem.

The average computation time measured for the image
set for PCA (3 PCs) is approximately 0.78 s, and for RPCA
(q=3 and k=4) 52.25s. The compression ratio for high
resolution images is 1.66 for PCA (3 PCs) and for RPCA
(q=3 and k=4). The compression ratio values for both
methods are approximately equal because the network data
structure size required by RPCA is small in comparison to
the size of the principal components of a high resolution
image. PCA is faster than RPCA.

The experiments confirm the improvements in the re-
constructed images obtained through the use of RPCA.
Thus, it is very useful in spectral image processing where the
number of components is reduced and image processing al-
gorithms are applied to them. The utilization of this method
saves computational time and memory. The merit of the
technique is that the reconstructed image includes informa-
tion not only from the retained principal components but
also partial information from weak (approximated) compo-
nents. Hence, RPCA reproduces colors (up to four principal
components) more accurately than PCA, requires approxi-
mately the same memory in applications with high reso-
lution images, and is relatively fast.

CONCLUSIONS

In this paper, the comparative study of several dimensional-
ity reduction approaches for low-resolution and high reso-
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Figure 6. Error maps of the fest images (RPCA).

lution spectral images was presented. The study shows that
the existence of several color regions makes learning difficult
for LLE and ISOMAP. However, ISOMAP produces more
desirable results (both AE and RMSE) for one, two, and
three principal components than PCA. In addition,
ISOMAP correctly finds the dimensionality of a nonlinear
subspace. The dimensionality found by ISOMAP is in agree-
ment with visual estimation. LLE and ISOMAP are a com-
putational burden. In most cases, RPCA has the best spectral
and color differences than other approaches. RPCA repro-
duces colors (up to four principal components) more accu-
rately than PCA. This is especially important in applications
with high resolution images since RPCA is computationally
efficient. RPCA cannot be used to determine the dimension-
ality of data. In addition, RPCA with n components does
not produce a result better than PCA with n+1 component.
In our future study we will address this problem.
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