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bstract. Accurate recovery of spectral reflectances is important
or color reproduction under a variety of illuminations, and several
odels have been proposed to recover them. To evaluate the qual-

ty �Qr� of an image acquisition system aimed at recovery of spectral
eflectances, we proposed an evaluation model based on Wiener
stimation and showed that mean square errors between the recov-
red and measured spectral reflectances as a function of Qr agree
uite well with the prediction from the model, and that estimation of

he noise variance of the image acquisition system is essential to
he evaluation model. In this paper, the evaluation model was ap-
lied to two different reflectance recovery methods, and it is con-
rmed that the proposed model can be applied to different
ethods. © 2008 Society for Imaging Science and Technology.

DOI: 10.2352/J.ImagingSci.Technol.�2008�52:3�030503��

NTRODUCTION
olors are one of the most important characteristics of hu-
an visual response, and they have been heavily studied in

rder to acquire accurate information from color images.
he acquisition of the colorimetric information is consid-
red as the acquisition of accurate colorimetric values of
bjects through the use of sensor responses.1,2 The accuracy
epends on the spectral sensitivities of a set of sensors, the
oise present in the acquisition device, the spectral
eflectances of the objects, etc.1,2 Therefore the evaluation of
he set of sensors is important for the evaluation of the
olorimetric performance or optimization of the spectral
ensitivities of the sensors. Several models have been pro-
osed to evaluate a colorimetric performance of a set of
olor sensors,3–7 and the optimization of a set of sensors has
een performed based on these evaluation models.8,9 How-
ver, application of the evaluation models to real color image
cquisition devices such as digital cameras and color scan-
ers has not appeared because of the difficulty in estimating
oise levels. Recently, one of the present authors proposed a
ew model to estimate the noise variance of an image ac-
uisition system,10 applied it to the proposed colorimetric
valuation model and a spectral evaluation model, and con-

eceived Aug. 23, 2007; accepted for publication Feb. 21, 2008; published
nline May 19, 2008.
s062-3701/2008/52�3�/030503/7/$20.00.

. Imaging Sci. Technol. 030503-
rmed that the evaluation model agrees quite well with the
xperimental results from multispectral cameras.11

On the other hand, there is an alternative approach for
olor image acquisition; namely, acquisition of the spectral
nformation of the objects being imaged. The purpose of
his approach is the acquisition of the spectral reflectances
f the imaged objects through the use of sensor respon-
es.3,12–29The acquisition of accurate spectral reflectances of
bjects is very important in reproducing a color image under
variety of viewing illuminants.30 The accuracy of the re-

overed spectral reflectances depends on the number of sen-
ors, their spectral sensitivities, the objects being imaged, the
ecording illuminants, the noise present in a device, and the

odel used for the recovery. Therefore the evaluation of a
amera intended for recovery of spectral reflectances is im-
ortant for the optimization of an image acquisition system,
nd to get an intuitive understanding about the acquisition
f the spectral information. One of the present authors al-
eady derived an evaluation model based on Wiener
stimation.31 The proposed model is formulated by

SE��2�=Emax�1−Qr��2��, where MSE��2� is the mean
quare error between the recovered and measured spectral
eflectances with the estimated noise variance �2, Emax rep-
esents a constant that is determined only by spectral
eflectances of objects, and Qr��2� is the quality of the image
cquisition system aimed at recovery of spectral reflectances
ith the estimated noise variance �2. It was shown that

r��2� is determined by the spectral sensitivities of the sen-
ors, the spectral power distribution of the recording il-
uminant, the noise variance of the image acquisition device,
nd the spectral reflectances of the imaged objects. The
odel was applied to multispectral cameras and it was con-

rmed that it agrees quite well with experimental results; i.e.,
he MSE��2� of the recovered spectral reflectances by the

iener estimation is a linear function of the quality Qr��2�
f a set of sensors, when noise is taken into account. As

r��2� is derived by Wiener estimation, it is very important
o confirm whether this model can be applied to other re-
overy methods, since the quality Qr��2� is useful not only
or the evaluation of the image acquisition device but also
or the optimization of a set of sensors aimed at recovery of

pectral reflectances.
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In this paper, it is shown experimentally that Qr��2� is
n linear relation to the MSE��2� of the reflectances recov-
red by multiple regression analysis18 and the Imai-Berns
odel.26 Mathematical proofs of the equivalence of the
iener model, the multiple regression model and the Imai-

erns model are given. It is shown that Qr��2� is also ap-
ropriately formulated for these models. Once this linear
elationship is confirmed, we can estimate Qr��2� by the

ultiple regression model or the Imai-Berns model, without
nowing the spectral sensitivities of the sensors or the spec-
ral power distribution of the recording illuminant, or esti-

ating the noise variance.32

This article is organized as follows. The outline of the
valuation model and the method to estimate the noise vari-
nce and the models tested are briefly reviewed. In the fol-
owing sections, the experimental procedures and the results
o demonstrate the trustworthiness of the proposal are de-
cribed. The final section presents conclusions; mathemati-
al proofs are presented in an Appendix.

ODELS FOR THE RECONSTRUCTION OF
PECTRAL REFLECTANCES
n this section, the derivation of the quality Qr��2� to evalu-
te the color image acquisition system and the models used
or the experiments are briefly reviewed.

iener Estimation Using Estimated Noise Variance
vector space notation for color reproduction is useful in

he problem. In this approach, the visible wavelengths from
00 to 700 nm are sampled at 10 nm intervals and the num-
er of the samples is denoted as N. A sensor response vector

rom a set of color sensors for an object with an N�1
pectral reflectance vector r can be expressed by

p = SLr + e , �1�

here p is an M�1 sensor response vector from the M
hannel sensors, S is a M�N matrix of the spectral sensi-
ivities of sensors in which a row vector represents a spectral
ensitivity, L is an N�N diagonal matrix with samples of
he spectral power distribution of an illuminant along the
iagonal, and e is a M�1 additive noise vector. The noise e

s defined to include all the sensor response errors such as
he measurement errors in the spectral characteristics of sen-
itivities, an illumination and reflectances, and quantization
rrors in this work and it is termed as the system noise10

elow. The system noise is assumed to be signal indepen-
ent, zero mean and uncorrelated to itself. For abbreviation,

et SL =SL. The mean square error (MSE) of the recovered
pectral reflectances r̂ is given by

MSE = E��r − r̂�2� , �2�

here E�•� represents the expectation. If r̂ is given by
=W0p, the matrix W0 which minimizes the MSE is given
y

W0 = RSSSL
T�SLRSSSL

T + �e
2I�−1, �3�

here T represents the transpose of a matrix, RSS is an

utocorrelation matrix of the spectral reflectances of samples r

. Imaging Sci. Technol. 030503-
hat will be captured by a device, and �e
2 is the noise variance

sed for the estimation. Substitution of Eq. (3) into Eq. (2)
eads to10

MSE��e
2� = �

i=1

N

�i − �
i=1

N

�
j=1

�

�ibij
2 + �

i=1

N

�
j=1

� �e
4 + �j

v2
�2

��j
v2

+ �e
2�2

�ibij
2 ,

�4�

here �i are the eigenvalues of RSS, bij, �i
v, and � represent

th row of the ith right singular vector, singular value, and a
ank of a matrix SLV�1/2, respectively, �2 is the actual sys-
em noise variance, V is a basis matrix, and � is an N�N
iagonal matrix with positive eigenvalues �i along the diag-
nal in decreasing order. It is easily seen that the MSE is
inimized when �e

2 =�2, and the MSE��2� is given by

MSE��2� = �
i=1

N

�i − �
i=1

N

�
j=1

�

�ibij
2 + �

i=1

N

�
j=1

� �2

�j
v2

+ �2
�ibij

2 .

�5�

quation (5) can be rewritten as

MSE��2� = �
i=1

N

�i�1 −

�
i=1

N

�
j=1

�

�ibij
2 − �

i=1

N

�
j=1

� �2

�j
v2

+ �2
�ibij

2

�
i=1

N

�i
� .

�6�

herefore, the quality of a set of color sensors in the pres-
nce of noise is formulated as

Qr��2� =

�
i=1

N

�
j=1

�

�ibij
2 − �

i=1

N

�
j=1

� �2

�j
v2

+ �2
�ibij

2

�
i=1

N

�i

. �7�

ence, the MSE��2� is expressed as

MSE��2� = Emax�1 − Qr��2�� , �8�

here Emax=�i=1
N �i. This equation shows that the MSE��2�

s linearly related to Qr��2� and the slope of the line is

i=1
N �i. The values of �i=1

N �i are dependent only on the sur-
ace spectral reflectance of the objects being captured. The

SE��2� decreases as the Qr��2� increases to unity.
If we let the noise variance �e

2 =0 for the Wiener filter in
q. (3), then the MSE�0� is derived by letting �e

2 =0 in Eq.
4),

MSE�0� = �
i=1

N

�i − �
i=1

N

�
j=1

�

�ibij
2 + �

i=1

N

�
j=1

� �2

�j
v2

�ibij
2 . �9�

he first and second terms on the right-hand side of Eq. (9)

epresent the MSE�0� for a noiseless case. We denote this
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SE as MSEfree; then the estimated system noise variance �̂2

an be represented by

�̂2 =
MSE�0� − MSEfree

�
i=1

N

�
j=1

� �ibij
2

�j
v2

, �10�

here MSEfree is given by

MSEfree = �
i=1

N

�i − �
i=1

N

�
j=1

�

�ibij
2 . �11�

herefore, the system noise variance �2 can be estimated
sing Eq. (10), since the MSEfree and the denominator of Eq.
10) can be computed if the surface reflectance spectra of
bjects, the spectral sensitivities of sensors, and the spectral
ower distribution of the illuminant are known. The
SE�0� can also be obtained experimentally using Eqs. (2)

nd (3), and applying the Wiener filter with �e
2 =0 to sensor

esponses. Therefore, Eq. (10) provides a method to estimate
ctual noise variance �2.10

The quality Qr��2� and MSE��2� can be computed by
ubstituting the estimated noise variance in Eqs. (7) and (3),
espectively.

ultiple Regression Analysis
et pi be an M�1 sensor response vector that is obtained by
mage acquisition of a known spectral reflectance ri of the
th object, where i represents a number. Let P be an M�k

atrix that contains the sensor responses p1 , p2 , . . . , pk, and
et R be an N�k matrix that contains the corresponding
pectral reflectances r1 , r2 , . . . , rk, where k is the number of
he learning samples. The pseudoinverse model is to find a

atrix W that minimizes �R−WP�, where � • � represents the
robenius Norm.33 The matrix W is given by

W = RP+, �12�

here, P+ represents the pseudoinverse matrix of the matrix
. By applying a matrix W to a sensor response vector p, i.e.,
=Wp, a spectral reflectance is estimated. Therefore this
odel does not use the spectral sensitivities of sensors or the

pectral power distribution of the illumination; it uses only
he spectral reflectances of the learning samples.

he Imai-Berns Model
he Imai-Berns model26 is considered to be a modification
f the linear model using multiple regression analysis be-
ween the weight column vectors, as basis vectors to repre-
ent the known spectral reflectances, and corresponding sen-
or response vectors.

Let � be a d�k matrix that contains the column vectors
f the weights �1 ,�2 , . . . ,�k to represent the k known spec-
ral reflectances r1 , r2 , ¯ , rk, and let P be a M�k matrix
hat contains corresponding sensor response vectors of those
eflectances p1 , p2 , . . . , pk, where d is the number of the

eights required to represent the spectral reflectances. The e

. Imaging Sci. Technol. 030503-
ultiple regression analysis between these matrixes is ex-
ressed as ��−BP�. A matrix B, which minimizes the
robenius Norm, is given by

B = �P+. �13�

ince a weight column vector � for a sensor response vector
is estimated as �̂=Bp, the estimated spectral reflectance

ector is derived from r̂ = V�̂, where a matrix V is the basis
atrix that contains first d orthonormal basis vectors of the

pectral reflectances. This model does not use the spectral
haracteristics of the sensors or the illumination.

XPERIMENTAL PROCEDURES
multispectral color image acquisition system was as-

embled by using seven interference filters (Asahi Spectral
orporation) in conjunction with a monochrome video

amera (Kodak KAI-4021M). Image data from the video
amera were converted to 16-bit-depth digital data by an AD
onverter. The spectral sensitivity of the video camera was
easured over wavelength from 400 to 700 nm at 10 nm

ntervals. The measured spectral sensitivities of the camera
ith each filter are shown in Figure 1. The illuminant used

or image capture was the illuminant that simulates daylight
Seric Solax XC-100AF). The spectral power distribution of
he illuminant measured by the spectroradiometer (Minolta
S-1000) is presented in Figure 2.

We denote the GretagMacbeth ColorChecker (24 colors)
nd the Kodak Q60R1 (228 Colors) as CC and KK, respec-
ively, for abbreviation; these arrays were illuminated from
he direction of about 45° to the surface, and the images
ere captured by the camera from the normal direction. The

mage data were corrected for nonuniformities in illumina-
ion and sensitivities of the pixels of the CCD. The com-
uted responses from the camera to a given color, estimated
sing the measured spectral sensitivities of the sensors, the

lluminant, and the surface reflectance of the color, were not

Figure 1. Spectral sensitivities of the sensors of the camera.
qual to the actual sensor responses since the absolute spec-

May-Jun. 20083
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ral sensitivities of a camera depend on the camera gain.
herefore, the sensitivities were calibrated using an achro-
atic color in the charts. In this work, the constraint is

mposed on the signal power given by �=Tr�SLRSSSL
T�,

here �=1 was used so that the estimated system noise
ariance could be compared for different sensor sets.

By using various combinations of sensors from the three
o seven in Fig. 1, the system noise variance was estimated by
he methods described above for each combination of sen-
ors. The estimated noise variance was then used to recover
he spectral reflectances by the Wiener estimation, and the

SE��2� of the recovered spectral reflectances was com-
uted. The spectral reflectances were also recovered by both

he multiple regression model and the Imai-Berns model. By
sing the estimated noise variance, the quality Qr��2� for
ach combination of sensors was computed using Eq. (7).

Figure 2. Spectral power distribution of the illumination.

igure 3. The MSEs of the recovered spectral reflectances by the
iener, regression, and Imai-Berns method for the GretagMacbeth

olorChecker �CC� and the Kodak Q60R1 �KK� are plotted as a function
f Qr��2�.
m

. Imaging Sci. Technol. 030503-
ESULTS AND DISCUSSION
he values of the MSE��2� of the CC and KK as a function
f Qr��2� for the 80 sets of sensors are shown in Figure 3.
he lines in the figure indicate the theoretical relationship
etween MSE��2� and Qr��2� as given by Eq. (8) for the two
olor charts, where Emax=�i=1

N �i was used for the determi-
ation of the slopes of the line for each color chart. The
xperimental results for MSE as a function of Qr��2� by the
ultiple regression analysis and the Imai-Berns method

gree well with the theoretical lines.
To show the importance of considering the noise vari-

nce, let Qr�0� be the value of Qr��2� when the noise vari-
nce �2 =0; i.e.,

Qr�0� =

�
i=1

N

�
j=1

�

�ibij
2

�
i=1

N

�i

. �14�

ote that Eq. (9) was used for the MSEs of the recovered
eflectances by use of the Wiener filter with zero noise vari-
nce. The relationship between MSE and Qr�0� is shown in
igure 4.

In Fig. 4, plots disagree not only with the theoretical
ines but also scatter more in comparison to Fig. 3. Espe-
ially the plots for KK data recovered by the Wiener model
catter far above the theoretical line. These scattered plots
ndicate the importance of the accurate estimation of the
oise variance in the images. We also confirmed that plots of
C data scatter more in Fig. 4 when the 6-bit AD converter

s used, instead of the 16-bit converter, to digitize the sensor
esponses.

The results in Fig. 3 agree well with the theoretical pre-
ictions, which means that Qr��2� can be used for multiple
egression analysis and for the Imai-Berns model. As a mat-
er of fact, the multiple regression model and the Imai-Berns

odel are mathematically equivalent to the Wiener estima-
ion, i.e., the matrixes W in Eq. (12) and B in Eq. (13) are
quivalent to the matrix of the Wiener filter W0 in Eq. (3),
hich can be proved by mathematical analysis. For these
roofs of the equivalences, see the Appendix.

Typical examples of the recovered reflectances and the
eproduced color images for three cases of the Qr��2� are
hown in Figures 5–7. It is very clear that the error of the
ecovered spectral reflectances increases with a decrease in
he Qr��2�, and faithfulness of the reproduced colors de-
reases with a decrease in the Qr��2�. Typical examples of
he maximum and minimum values of the Qr��2� and

SE��2� by the three models for each number (three to
even) of sensor sets are shown in Table I. It is very inter-
sting that a set of four sensors (sensor number “2457”) has

larger Qr��2� than a set of six sensors (sensor number
123456”). It is not always true that the Qr��2� increases
hen the number of the sensors increases.

It has now been confirmed that the MSE��2� of the
pectral reflectances recovered from the multiple regression
odel and from the Imai-Berns model have a linear relation

May-Jun. 20084
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o the quality Qr��2� of the image acquisition system. Once
his linear relation is confirmed, we can estimate Qr��2� by
he multiple regression or by the Imai-Berns model without
he spectral sensitivities of sensors, the spectral power distri-
ution of the recording illuminant or the noise present in
he image acquisition system since it �Qr��2�� can be easily
stimated by marking the value of the MSE by the models
n the theoretical line; i.e., the corresponding Qr��2� of the
oint gives the estimate. Now it is possible to estimate the
uality Qr��2� by the multiple regression model or by the
mai-Berns model with only the spectral reflectances and the
aptured images of the object.

ONCLUSION
he evaluation of an image acquisition system aimed at re-
overy of spectral reflectances, which is derived based on the

iener estimation, was applied to the multiple regression
nalysis and the Imai-Berns method. The experimental re-
ults by multispectral cameras agree quite well with the pro-
osed model. From this result, it is concluded that the pro-
osed evaluation model is appropriately formulated and that

he estimation of the noise variance of an image acquisition
ystem is essential to evaluate the quality Qr��2�. This result
lso gives us an easy way to estimate the quality Qr��2� and
rovides us an easier way to evaluate an image acquisition
ystem aimed at reconstruction of spectral reflectances with-
ut the spectral sensitivities of sensors, the spectral power
istribution of the recording illuminant, or the noise present

n the image acquisition system.
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igure 4. The MSEs of the recovered spectral reflectances by the
iener, regression, and Imai-Berns method for the GretagMacbeth

olorChecker �CC� and the Kodak Q60R1 �KK� are plotted as a function
f Qr�0�, which is the value of Qr��2� when the estimated noise variance

s zero. This is the case without consideration for the noise.
R

. Imaging Sci. Technol. 030503-
PPENDIX

roof of the Equivalence of the Multiple Regression
odel to the Wiener Model

he multiple regression model minimizes

�R − WP� , �A1�

here P is a M�k matrix that contains the sensor response
ectors p1 , p2 , . . . , pk and let R be a N�k matrix that con-
ains the corresponding spectral reflectances vectors

1 , r2 , . . . , rk, where k is the number of the learning samples.
he N�M matrix W, which minimizes Eq. (A1), is given by

W = RP+, �A2�

here P+ represents the pseudoinverse matrix of the matrix
;

P+ = PT�PPT�−1, �A3�

ecause M	k holds in the image acquisition devices and

igure 5. �a� Typical example of the recovered spectral reflectance of the
olor red at a large Qr��2��Qr��2�=0.996 894�. �b� The color repro-
uction of the GretagMacbeth ColorChecker by the recovered spectral
eflectance at Qr��2�=0.996 894.
ank�P�=M. Let

May-Jun. 20085
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P = SLR + E, �A4�

here S is a M�N matrix of the spectral sensitivities of
ensors in which a row vector represents a spectral sensitiv-
ty, L is an N�N diagonal matrix with samples of the spec-
ral power distribution of an illuminant along the diagonal,
nd E is a M�N matrix that contains the additive noise
ectors. For abbreviation, let SL =SL. Substitution of Eq.
A3) and Eq. (A4) into Eq. (A2) leads to

W = R�SLR + E�T��SLR + E��SLR + E�T�−1. �A5�

ence, W is rewritten as

W = RSSSL
T�SLRSSSL

T + �e
2I�−1, �A6�

ecause RRt is an autocorrelation matrix of R, and EEt gives
he noise variance; RET =ERT =0 as the spectral reflectances
nd the error have no correlation. Thus, the matrix W is

igure 6. �a� Typical example of the recovered spectral reflectance of the
olor red at a middle Qr��2��Qr��2�=0.965 348�. �b� The color repro-
uction of the GretagMacbeth ColorChecker by the recovered spectral
eflectance at Qr��2�=0.965 348.
quivalent to that of the Wiener filter. o

. Imaging Sci. Technol. 030503-
roof of the Equivalence of the Imai-Berns Model
o the Wiener Model
et � be a d�k matrix that contains the vectors of the
eights to represent the k known spectral reflectances, where
is a number of the weights to represent the spectral

eflectances and let P, R, SL, and E be as defined in the
ppendix.

A d�M matrix B, which minimizes

�� = BP� �B1�

s given by

B = �P+. �B2�

rom the Eqs. (A2) through (A6), it is easily understood that

VB = V�P+ = V��RTSL
T + ET��SLRRTSL

T + EET�−1.

�B3�

rom the definition of the method, R=V�, where V is an

igure 7. �a� Typical example of the recovered spectral reflectance of the
olor red at a small Qr��2��Qr��2�=0.938 896�. �b� The color repro-
uction of the GretagMacbeth ColorChecker by the recovered spectral
eflectance at Qr��2�=0.938 896.
rthonormal basis matrix. Hence,

May-Jun. 20086
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VB = RSSSL
T�SLRSSSL

T + �e
2I�−1. �B4�

hus, the Imai-Berns model is equivalent to the Wiener
odel.
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.014 354 0.014 631 0.013 326 0.014 258
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