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Abstract. Spectral color management requires inversion of printer
spectral characterizations and necessarily involves the concept of
spectral gamut mapping. A printer was spectrally characterized and
the spectra were transformed to an interim connection space (ICS),
a spectral description space with low dimensionality useful for build-
ing lookup tables (LUTs) of feasible sizes. LabPQR is the ICS used.
It has separate dimensions describing colorimetry (CIELAB) and a
spectrum’s metameric black difference from a standard metamer
(PQR). The relationship between digital value and LabPQR was in-
verted using a single stage objective function combining colorimetric
and spectral criteria. The objective function’s colorimetric criterion
minimized CIEDE2000 under chosen conditions and its spectral cri-
terion minimized Euclidian distance in PQR coordinates. A weight
series was performed to find the optimal trade-off between colori-
metric and spectral error. A 1:50 weighting ratio, CIEDE2000 to PQR
difference, was deemed best. For the GretagMacbeth
ColorChecker, the proposed single stage objective function showed
equivalent levels of the performance to a full 31-dimensional un-
modified spectra approach, resulting in an average RMS error of
4.18% and an average CIEDE2000 of 0.03. The single stage objec-
tive function for spectral gamut mapping using LabPQR proved to
be promising for spectral reproduction. © 2007 Society for Imaging
Science and Technology.
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INTRODUCTION

An important goal of spectral color management is to repro-
duce images that match originals under arbitrary il-
luminants. Spectral reproduction requires new approaches
including spectral profiling of devices, spectral profile con-
nection spaces, spectral image processing, and new quality
metrics. Spectral color management will take advantage of
all these concepts and require transformation chains that
deliver high-quality results quickly. The spectral character-
ization of a printer'™ yields the forward relationship from
fractional area coverage to spectra. An inversion of the
printer characterization is necessary so fractional area cover-
ages can be chosen for a requested spectrum. Spectral gamut
mapping”® is necessary when considering the problem of
spectral color management because an answer must be de-
livered for any arbitrary spectral request. Unfortunately,
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spectra typically comprise 31 or more dimensional values.
For the purposes of spectral color management, Rosen and
co-workers have proposed that spectra be converted to a
lower-dimensional interim connection space (1Cs). 10

Derhak and Rosen proposed an ICS called LabPQR.*™
LabPQR is a six-dimensional ICS that has three colorimetric
axes (CIELAB) plus additional spectral reconstruction axes
(PQR). PQR describes a stimulus’ metameric black,'"'* a
spectral difference between the metameric and the standard
spectra. Thus, the PQR coordinates represent the spectral
difference between original and reconstructed spectra from
colorimetric values.

Rosen and Derhak compared several gamut mapping
techniques in PQR and discovered that the approach mini-
mizing PQR difference resulted in lower spectral error.” In-
tuitively, since PQR describes a stimulus’ metameric black,
Rosen and Derhak’s results seem reasonable. However, there
was no mathematical explanation that the PQR difference
had correlation with the spectral error. Also, Rosen and
Derhak evaluated their proposed approaches only in PQR
coordinates. There has been no study that tried to evaluate
the gamut mapping techniques in the full six-dimensional
LabPQR space.

Accordingly, this research explored the feasibility of
spectral gamut mapping using LabPQR. First, an appropri-
ate spectra-to-LabPQR transform was built, comparing re-
construction accuracies for unknown spectra. Then, for the
spectral gamut mapping, an objective function was defined
to perform the colorimetric and spectral matchings in a
single stage. In this stage, the spectral characterization of a
six-color ink jet printer is inverted. This approach is neces-
sary for building lookup tables (LUTs) for use in spectral
color management.

THEORY

LabPQR

LabPQR*® is a six-dimensional ICS. The first three dimen-
sions are CIELAB values under a specific viewing condition,
and the additional dimensions are spectral reconstruction
dimensions describing a metameric black (PQR),'""? as
stated above. The metameric black is a spectral difference

between the metameric and standard spectra. The PQR co-
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ordinates represent the spectral difference between original
and reconstructed spectra from colorimetric values. A six-
dimensional example of LabPQR has been discussed in the
literature*™® and it has been demonstrated for use in spectral
gamut mapping.S’13

Spectral reconstruction from six-dimensional LabPQR
is as follows:

R=TN, +VN,, (1)

where T is a n by 3 transformation matrix, V is a n by 3
matrix describing PQR bases, N is a tristimulus vector, N, is
a vector of PQR values, and n counts wavelength. Note that
T is applied to tristimulus values converted from CIELAB
values. Using a set of the tristimulus vectors, the transfor-
mation matrix T is determined by a matrix calculation using
least square analysis'*"”

T=RN'(NND, 2)

where R is measured spectral reflectances of training
samples.

The PQR bases V are derived from principal compo-
nent analysis (PCA)"'® on a set of spectral differences be-
tween the original spectra and the reconstructed spectra
through the inverse transformation with T from N, This
spectral difference is expressed as:

E=R-TN.. (3)

Only the first three eigenvectors are preserved as the PRQ
bases:

V = (vy,V,,V3), (4)

where v; are eigenvectors in a set of the spectral difference.
Derhak and Rosen implemented the linear transforma-
tion between tristimulus vectors and spectral reflectance vec-
tors, incorporating nonlinear combination of coordinates in
the transformation.*® For this implementation, the following
vector N/ is used instead of the tristimulus vector N, in
Egs. (1)-(3):
X
Y
z
Xz
YZ

XYZ

where [X,Y,Z]" are the tristimulus values N. This modifi-
cation with additional interaction is so-called XYZ+. The
computation routine on LabPQR is fully described in Ref. 6.
Since Derhak and Rosen’s implementation scheme was su-
perior to the scheme without the XYZ+ in terms of the
round-trip spectral reconstruction, the implementation
scheme was utilized in this research.
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In Derhak and Rosen’s scheme, all the tristimulus values
in the above calculations were normalized by tristimulus val-
ues of the white point of interest. However, from our experi-
mental results, there was no significant difference between
the schemes with or without the normalization in terms of
the spectral reconstruction, thus no normalization for the
tristimulus values was performed in this research.

Spectral Gamut
The first three dimensions of LabPQR are CIELAB. Those
dimensions yield a traditional colorimetric gamut. The colo-
rimetric response gamut in Figure 1 is an example of the
gamut description that could be built from the first three
dimensions of LabPQR. In addition to having a traditional
colorimetric gamut, every point in the LabPQR colorimetric
gamut is associated with a spectral gamut of PQR values that
describe the metamer gamut for that colorimetric value.’

The printer represented has the PQR gamut shown in
Fig. 1 for (L",a",b")=(70,50,50). Each PQR value in this
spectral gamut is associated with a metamer that has
CIELAB colorimetry of (70,50,50). Every other point in the
CIELAB response gamut is associated with a different PQR
gamut. For visualization purpose, the six-dimensional
LabPQR gamut was divided into two three-dimensional
encodings in Fig. 1.

Using the inexpensive linear calculation shown in
Eq. (1), the original spectra that correspond to the given
LabPQR values were reconstructed, as illustrated in Fig. 1.
Note that each spectrum vyields the identical CIELAB values,
but different PQR wvalues. The relationships between
LabPQR and the spectral reconstruction are invertible.

Spectral Gamut Mapping

When attempting to produce a specific response from a
color output device, one important consideration is deter-
mining if a request is outside the devices’ rendering capabil-
ity. The request is considered out-of-gamut when it is out-
side the palette of available responses. In color management,
an out-of-gamut request must still be resolved to some re-
sponse from the color output device. The set of rules used to
guide this process when the request is a spectrum would be
called spectral gamut mapping.

Described here is an approach to spectral gamut map-
ping. The spectral gamut mapping has two aspects: colori-
metric and spectral. Rosen and Derhak proposed the spec-
tral gamut mapping approach in which the two were
performed independently.” In the colorimetric stage, one de-
termined if a requested stimulus was within the colorimetric
response gamut. If not, traditional colorimetric gamut map-
ping techniques were practiced to choose an in-gamut
CIELAB. On the other hand, in the spectral stage, one de-
termined if a requested spectrum was within the PQR spec-
tral gamut for the in-gamut colorimetry. If not, spectral
gamut mapping techniques were practiced to choose among
valid device values. Rosen and Derhak’s approach was rea-
sonable, but two separated stages were necessary to recog-
nize whether requested stimuli were within the colorimetric
gamut and then if they were within the spectral gamut. Also,
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CIELAB

L*a*b* = (70, 50, 50)

Invertible

Reflectance factor

Reconstructed Spectra

Wavelength, nm

Figure 1. LabPQR colorimefric and ~ spectral  gamuts.  Several different PQR  combinations for
(L",a",b")=(70,50, 50) are plotted in the PQR spectral gamut. The speciral reconstructions are derived from

the LabPQR values.

the only consideration for the out-of-gamut CIELAB re-
quests was to use standard colorimetric gamut mapping. No
attempts were made to spectrally gamut map requests that
were colorimetrically out-of-gamut.

Here, the colorimetric and spectral stages were com-
bined and performed simultaneously. The full six-
dimensional spectral gamut mapping was practiced in a
single stage. Fractional area coverages of an ink jet printer
for arbitrary requested spectra were computed by minimiz-
ing a single objective function: the weighted sum of
CIEDE2000 color difference'” and normalized Euclidian dis-
tance in PQR that yield the same range of spectral root-
mean-square (RMS) error, defined as:

ObjFuncl = Minimize(CIEDE2000 + kAPQR), (6)

where k is a weighting that may be empirically fitted.
Several studies have been reported on colorimetric
gamut mapping techniques. Kato et al.'"" proposed three-
dimensional gamut mapping approaches with the use of
weighted color difference equations such as AE;4.12 Since the
weighted difference color equations including CIEDE2000
take into account a lack of uniformity and curvature of blue
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hue loci in CIELAB,”**' the three-dimensional approaches
were effective in absolute colorimetric matching.** In the
absolute colorimetric matching, the requested stimuli are
mapped to nearest in-gamut stimuli, and no colorimetric
change is caused if the requested stimuli are in-gamut
L'ab".

In a similar fashion, our proposed objective function for
the spectral gamut mapping was defined. The first term on
the right hand side of Eq. (6) implies the absolute colori-
metric matching based on the CIEDE2000 color difference
while the second term represents spectral matching to mini-
mize the spectral error between requested and response
stimuli. Equation (6) can be utilized globally regardless of
whether the requested stimuli are within the colorimetric or
spectral response gamuts. If the requested stimuli are within
the colorimetric response gamut, as illustrated in Figure 2,
the CIEDE2000 portion of Eq. (6) should vanish and the
only active portion of the objective function will be the spec-
tral RMS error. On the other hand, Eq. (6) will attend to
both the colorimetric and spectral differences if the re-
quested stimuli are outside the colorimetric gamut, as illus-
trated in Figure 3. Tuning the magnitude of k allows one to
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PQR
o: Requested Stimulus
o: Response Stimulus

CIELAB

Figure 2. Spectral gamut mapping when the requested stimulus is within
the colorimetric response gamut.

CIELAB
o: Requested Stimulus

o: Response Stimulus

Figure 3. Speciral gamut mapping when the requested stimulus is outside
the colorimetric response gamut.

choose an optimal trade-off between the colorimetric and
spectral error. Choosing smaller values of k increases the
relative importance of the colorimetric matching while larger
values make the spectral aspect of the function more impor-
tant.

Equation (6) is equivalent to minimizing spectral RMS
error if the requested stimuli are within the colorimetric
response gamut, because the Euclidian distance in PQR be-
tween a metameric pair is proportional to spectral RMS er-
ror. A proof is shown in the Appendix.

EXPERIMENTAL

A Canon 19900 dye-based ink jet printer with customized
control driver was employed in this research. This printer
had the capability of an eight-ink set, but only six were
utilized: cyan (C), magenta (M), yellow (Y), black (K), red
(R), and green (G). Since light cyan and magenta inks re-
vealed spectral similarities, the light inks were not utilized.
Spatial addressability of the ink jet printer was
1200 X 2400 dpi. All samples were printed on Canon Photo
Paper Pro (PR-101) photo quality ink jet glossy paper. To
have the print head of the ink jet printer stable while print-
ing, neutral patches where the fractional area coverage of
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Figure 4. Spectral reflectance factor of each colorant at the maximum
fractional area coverage and the paper substrate.
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Figure 5. Schematic diagram for building the forward mapping from
fractional area coverage to LabPQR.

each colorant was identical were printed between every tar-
get patch. A GretagMacbeth SpectroScan spectrophotometer
was used for spectral measurements of the printed samples.
The SpectroScan had a 4 mm aperture with a 45/0 annular
geometry and measured spectral reflectance factor in the
range between 380 and 730 nm in 10 nm intervals. To en-
sure consistency with previous research™® only data between
400 and 700 nm were utilized. The measurement was car-
ried out at least 12 hours after printing. Colorimetric values
were calculated under illuminant D50 and for the CIE 1931
2° standard observer.

The spectral reflectance factor of each colorant at the
maximum fractional area coverage was measured and plot-
ted in Figure 4, along with spectral reflectance factor of the
paper substrate. Since the ink jet printer was equipped with
dye-based inks, unwanted long tail reflectance at longer
wavelengths was observed for the C, K, and G inks. In par-
ticular, the long tail of the G ink was remarkable. The long
tail is a typical spectral characteristic of dye-based inks.

In Figure 5, the steps for building the forward mapping
from fractional area coverage to LabPQR are shown. This
mapping associates a LabPQR value with every fractional
area coverage value in a full factorial sampling of fractional
area coverage space. First, the CMYKRG ink jet printer was
spectrally characterized, in a similar fashion to Chen, Berns,
and Taplin’s approach.' For 729 print patches randomly dis-
tributed in the CIELAB space, this printer model achieved
sufficient prediction accuracies: an average CIEDE2000 of
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Figure 6. Schematic diagrom describing inputs fo the inversion process.

1.25 and average spectral RMS error of 0.63%. Second, using
a set of the predicted spectra, spectra-to-LabPQR transform
was built, following the mathematical procedure described
above. In this stage, the reconstruction matrix T [Eq. (2)]
and the PQR bases V [Eq. (4)] were determined prior to
calculating the LabPQR values. Computationally, the corre-
sponding CIELAB values were calculated from the
tristimulus values. Finally, fractional area coverage to
LabPQR mapping was performed, accounting for the rela-
tionship between the fractional area coverage and the
LabPQR values of the input. For spectral color management,
this mapping must be inverted because a specific set of the
fractional area coverage values is required for any arbitrary
spectrum, LabPQR in this case.

Figure 6 illustrates that the inversion relies on the spec-
tral printer model and the choice of the weighting k in the
objective function [Eq. (6)]. Within the inversion process of
Fig. 6, a fractional area coverage value was chosen for each
LabPQR such that the objective function was minimized for
each. The MATLAB function in the Optimization Toolbox,
fmincon, a constrained nonlinear optimization routine that
uses a sequential quadratic programming method"* was used
as the optimization engine. The constraint here was that the
fractional area coverage value of each colorant varied be-
tween 0 and 1, and the amount of the fractional area cover-
age values did not exceed the maximum ink limitation for
the selected substrate.

RESULTS AND DISCUSSION

Building Spectra-to-LabPQR Transform
Using virtual spectral samples generated by the printer
model, the reconstruction matrices T and V were derived
with the XYZ+" method.*® The training data set consisted
of 729 samples randomly distributed in the CIELAB plus
6,620 samples uniformly spaced in fractional area coverages
from 0 to 1 in five steps. This data set excluded samples of
which fractional area coverages exceeded the maximum ink
limitation for the selected substrate.

A set of the metameric blacks of the training data set,
which were derived using Eq. (3), is plotted in Figure 7.
There were relatively larger differences at longer wavelengths.
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Figure 7. A set of the metameric blacks of the data set synthesized by the
spectral prinfer model.

Statistical reflectance
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Figure 8. PQR vectors derived from PCA on the set of the metameric
blacks of the training data sef.

Maybe this is due to the long tail of the inks, as discussed in
Fig. 4. Besides, the differences at wavelength of approxi-
mately 400, 500 and 570 nm were somewhat remarkable.

The PQR bases derived through PCA on the set of the
metameric blacks are plotted in Figure 8. Each vector con-
tained large statistical reflectance at longer wavelengths, ac-
counting for the large spectral difference in this wavelength
range, shown in Fig. 7. The P vector, the first eigenvector,
had a relatively flat curve shape in comparison with the QR
vectors, because the first eigenvector is considered to de-
scribe the general tendency of the sample set.'™'® Also, the
curve shapes tended to be less flat as the significance num-
bers of the eigenvectors increased.

Evaluating Round-Trip Spectral Reconstruction
Accuracies Using the Spectra-to-LabPQR Transform

For evaluation of the round-trip spectral reconstruction ac-
curacies, four different types of data sets were prepared:
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Table . Round trip accuracies of Virtual Prints, CC, CCDC, and Munsell in terms of
spectral RMS error (%).

Data set Virtual Prints (c nc Munsell
Ave. 0.43 2.05 1.97 211
Max. 5.16 3.88 6.84 5.62
Std. Dev. 0.22 0.90 1.05 0.79
90" Percentile 0.62 3.63 2.97 3.06

1. A set of 805,355 patches synthesized by the spectral
printer model, which were spaced in fractional area
coverages in 11 steps (Virtual Prints)

2. GretagMacbeth ColorChecker (CC)

GretagMacbeth ColorChecker DC (CCDC)

4. Munsell Book of Color glossy edition containing
1600 patches23 (Munsell)

et

In this evaluation, the LabPQR values of each data set
were calculated using the spectra-to-LabPQR transform
build from the training data set of the prints, and the spectra
of each data set were reconstructed from the LabPQR values.
Spectral differences between the original and the recon-
structed spectra were calculated.

Table I summarizes the round-trip accuracies of each
data set in terms of spectral RMS error. As expected, the
reconstruction accuracies for Virtual Prints were superior to
each other data set, but the reconstruction accuracies for the
unknown data sets were acceptable, resulting in average
spectral RMS errors of 0.43%, 2.05%, 1.97%, and 2.11% for
Virtual Prints, CC, CCDC, and Munsell, respectively. As for
the color difference, there was no difference within the
round-trip, resulting in all the CIEDE2000 of 0.00. This
clearly indicated that the spectra-to-LabPQR transform
was sufficient for reconstructing the original spectra of any
arbitrary inputs in terms of colorimetric matching.

The reconstructed spectral reflectances of the No. 1 and
No. 15 patches of CC are plotted in Figure 9, along with the
original spectra. The No. 1 patch indicated the second best
reconstruction accuracy: spectral RMS error of 0.96% (The
best was 0.43% for the No. 24 patch). The spectral recon-
struction was excellent except at longer wavelengths. A lack
of the reconstruction of CC at the longer wavelengths might
be due to the long tail of the colorant. The No. 15 patch
indicated the worst reconstruction accuracy: spectral RMS
error of 3.76%. The curve shape of the reconstructed spectra
was not smooth and negative reflectance factors were ob-
tained in the range between 550 nm and 600 nm. Because
the reconstructed spectra were generated in the six-
dimensional LabPQR space, sharp curve changes of the
original were not precisely reconstructed. Therefore, it was
likely that the negative reflectance factors were computation-
ally obtained where the spectral reflectance factors changed
sharply. In this article, no clipping was performed if the
reconstructed spectra included negative reflectance factor.

Distributions of PQR Values
Using a set of 729 patches printed by the CMYKRG ink jet
printer (Prints), which is randomly distributed in the
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Figure 9. Comparison of spectral reflectance curves of the CC No. 1 (a)
and No. 15 pafches between the original and the reconstructed spectra
through the roundHrip.

CIELAB, the PQR values are plotted in the PQR space,
shown in Figure 10. A large portion of the samples was
centered (P,Q,R)=(0,0,0). Besides, it was found in our
experiment that dark colors tended to yield the PQR values
close to (0,0,0). Since the dark colors introduce lower spec-
tral reflectance factors in flat curve shapes, the spectra of the
dark colors might be easily reconstructed without using the
PQR vectors. On the other hand, high chroma colors tend to
locate on points far from the center of the PQR space. As
mentioned above, every point LabPQR colorimetric gamut
is associated with a different PQR gamut. Therefore, in prac-
tice, each PQR point in Fig. 10 belongs to each PQR gamut.

Figure 11 illustrates histograms of the PQR values of
Prints and Munsell. As expected, the P values showed the
larger distribution ranges, and the Q values showed the
smaller distribution ranges. The order of these data sets cor-
responded to the significance of the eigenvectors, though
Munsell was not utilized for building the spectra-to-LabPQR
transform. Interestingly, the P values of Munsell were
slightly shifted to the negative direction while the QR values
were centered at approximately 0. Maybe this negative shift
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Figure 10. PQR values of Prints are plotted onfo PQ (a) and QR
coordinates.

was due to higher reflectance of the P vector at longer wave-
lengths in Fig. 8. Since Munsell was made of paints and did
not include many patches with the long tail, the P values
tend to be negative values in order to reduce influences of
the positive reflectance factors of the QR vectors in the same
wavelength region.

The statistics of the PQR values of the verification data
sets are summarized in Table II. For all the verification data
sets, the ranges of the P values were approximately twice and
three times as wide as the ranges of the Q and R values,
respectively. That is, the P vector was the most significant
basis for overall the data sets. The negative shifts of the
P values were observed in CC and CCDC, as well as
Munsell.
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Figure 11. Histograms of the PQR values of Prints (a) and Munsell.

Finding an Optimal Weighting of the Objective Function
Our proposed spectral gamut mapping is performed using
the objective function, shown in Eq. (6), so tuning of the
weighting k is important in order to choose an optimal
trade-off between the colorimetric and spectral difference.
For finding the optimal k for Eq. (6), two different types of
data sets were utilized: Prints, and 1,000 randomly selected
feasible LabPQR values (Data set 1). Data set 1 was gener-
ated under a constraint that bounded reconstructed spectral
reflectance factor between 0 and 1.

The spectral gamut mapping accuracies for Prints and
Data set 1 are shown in Figures 12 and 13, respectively,
indicating the trade-off between the colorimetric and spec-
tral differences at different k values. It is clear from Fig. 12
that the spectral differences decrease with increasing k while
the colorimetric differences increase. Data set 1 included 240
samples outside the colorimetric gamut of the printer, so the
average colorimetric and spectral differences were larger
than those of Prints. Interestingly, for k over approximately
200, the spectral RMS errors increase. Perhaps the recon-
structed spectra have residual error and the colorimetric
matching must, at some level, correct for that. From these
results, it is reasonable to choose k between 20 and 50. In
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Table 1. Stafistics of the PQR values of Prints, CC, CCDC, and Munsell.

P values Q values R values
Ave. Max. Min. Range Ave. Max. Min. Range Ave. Max. Min. Range
Prints 0028 0843 0728 1570 0043 0337 -0365 0702  0.024 0225 -0259 0.484
(¢ 0211 035 -0617 0973 -0019 0192 -0277 0469 -0.037 0078 -0182 0.260
(pC -0232 0768 -0792 1560 -0.009 0249 -0351 0.600 -0.017 0186 -0326 0.512
Munsell 0258  0.665 -0.694 1359 0012 0305 -0362 0.667 -0022 0.175 -0266 0.441
- —&—Ave CIEDE2000 —8— Ave spectral RMS error oot values. To explore the efficiency of the six-dimensional
S8 ' LabPQR approach, the full 31-dimensional approach was
- 0012 also evaluated. The objective function minimized spectral
014 0010 _ differences in the full 31-dimensional reflectance space is
g 012 oooa§ expressed as:
§ 0.10 ‘ E
S oos 000 3 ObjFunc2 = minimize(CIEDE2000 + k sSRMS).  (7)
2]
0.08 0.004
_ Tables III-V summarize the spectral gamut mapping
002 s performances for each data set. Since CCDC includes several
0.00 0.000 samples exceeding the colorimetric gamut of the ink jet
0 50 100 150 200 250 300

Weighting for delta PQR (k)

Figure 12. Speciral gamut mapping accuracies for 729 print patches
(Prints) in a series of weighting (k).

—&—Ave CIEDE2000 —®— Ave spectral RMS error

25

CIEDE2000
o

Spectral RMS error

05
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Weighting for delta PQR (k)

250

Figure 13. Speciral gamut mapping accuracies for 1000 randomly se-
lected feasible LabPQR values (Dataset 1) in a series of weighting (k).

this article, k was set to 50, thereby attaching importance to
spectral differences. The optimal weighting is likely data set
dependent.

Feasibility of the Spectral Gamut Mapping

Using CC, CCDC, and Munsell, the feasibility of the pro-
posed objective function [Eq. (6)] was explored in compari-
son to a full 31-dimensional approach and also a
colorimetric-only mapping where the weighting k was set to
zero. The full 31-dimensional and the colorimetric-only ap-
proaches are supposed to show the best accuracies in terms
of spectral and colorimetric matchings, respectively. As men-
tioned in the Appendix, the Euclidian distance in PQR be-
tween a metameric pair is proportional to spectral RMS er-
ror, but not for a sample pair with different colorimetric
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printer, its performance was worse. Colorimetrically, there
was no significant difference between the approaches. Spec-
trally, the LabPQR and full spectral approaches were equiva-
lent. For instance, the LabPQR approach resulted in an av-
erage CIEDE2000 of 0.03 and an average RMS error of
4.18% for CC. Because the CMYKRG ink jet printer cannot
reproduce exact same curve shapes of CC, there still re-
mained spectral differences. Consequently, the proposed ap-
proach with only six-dimensional LabPQR was able to yield
an effective mapping for the CMYKRG ink jet printer in
terms of both the colorimetric and spectral matchings.

Difference vectors in the CIELAB and PQR spaces are
plotted in Figures 14 and 15, respectively, in which the tail of
each arrow with a circle locates a requested stimulus and the
head of each arrow locates a response stimulus. Figure 14
shows the difference vectors of CCDC in the CIELAB space.
Obviously, there was no long arrow inside the printer’s
gamut while the closest CIELAB values on the gamut surface
were chosen for the requested out-of-gamut stimuli. Thus,
the colorimetric gamut mapping, one aspect of the spectral
gamut mapping, was successfully performed using the pro-
posed objective function. Figure 15 shows the difference vec-
tors of CC in the PQR space. Since the PQR difference vec-
tors of CCDC showed complicated configurations, CC was
utilized instead. Most of the vectors moved toward the origin
of PQR=(0,0,0) because the PQR values of the printer
were concentrated around the origin, as previously dis-
cussed. Interestingly, the differences along the P axis were
larger than those along QR bases; in contrast, the differences
along the R axis were smaller. These relationships were in
strong agreement with the significance order of the PQR
vectors where the P vector was most significant and R vector
was least significant. These results were reasonable because
the ranges in P axis were larger than the ranges in other axes
as mentioned in Fig. 11.
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Table 111 Speciral gamut mapping accuracies for CC in LabPQR, the full 31-dimensional reflectance space, and CIELAB color space.

CIEDE2000 (D50, 2-degree)

Spectral RMS error (%)

Color Space LabPQR Reflectance CIELAB LabPQR Reflectance CIELAB
Ave. 0.03 0.03 0.03 418 412 5.9%4
Max. 0.73 0.65 0.67 7.02 7.08 9.83
Std. Dev. 0.15 0.13 0.14 1.35 1.34 1.99
90th Percentile 0.00 0.00 0.00 6.07 6.03 8.01

Table IV. Spectral gamut mapping accuracies for CCDC in LabPQR, the full 31-dimensional reflectance space, and CIELAB color space.

(IEDE2000 (D50, 2-degree)

Spectral RMS error (%)

Color Space LabPQR Reflectance CIELAB LabPQR Reflectance CIELAB
Ave. 0.13 0.12 0.11 427 423 6.46
Max. 3.90 416 3.37 11.97 12.04 15.15
Sid. Dev. 0.50 0.49 0.43 1.66 1.66 2.55
90th Percentile 0.01 0.00 0.00 6.07 5.94 10.05

Table V. Spectral gamut mapping accuracies for Munsell in LabPQR, the full 31-dimensional reflectance space, and CIELAB color space.

CIEDE2000 (D50, 2-degree)

Speciral RMS error (%)

Color Space LabPQR Reflectance CIELAB LabPQR Reflectance CIELAB
Ave. 0.02 0.02 0.02 4.54 4.51 6.73
Max. 217 2.10 2.02 10.61 10.58 15.61
Std. Dev. 0.15 0.14 0.13 1.36 1.37 2.25
90th Percentile 0.01 0.00 0.00 6.04 6.03 9.91

Two sets of the spectral reflectances of CC, which were
reconstructed by using the spectral printer model with the
fractional area coverages given from the spectral gamut
mapping, are plotted in Figure 16 along with the original
spectra. The No. 1 and No. 16 patches of CC showed repre-
sentative results of the mapping approaches. There were no
significant differences between spectral reflectance curves of
the LabPQR and the full 31-dimensional approaches. Com-
pared with the colorimetric-only approach, the improve-
ments of the LabPQR approach at longer wavelengths and
around the wavelength where the original curves change
sharply were remarkable. Because our approach used the
six-dimensional data, the reproductions are more flexible
than the colorimetric-only approach. For the No. 1 patch,
spectral RMS errors between the original and reproduced
spectra  of the LabPQR, full 31-dimensional, and
colorimetric-only approaches were 3.29%, 3.27%, and
7.81%, respectively. For the No. 16 patch, the spectral RMS
errors were 2.70%, 2.54%, and 4.12%, respectively. Since
these two patches were within the colorimetric gamut of the
printer and the results were derived by using the spectral
printer model, there was no colorimetric errors between the
original and the reproduction spectra of each approach.

J. Imaging Sci. Technol. 51(6)/Nov.-Dec. 2007

Fractional Area Coverage Difference

As described in Fig. 6, inverting the forward mapping allows
one to get a specific set of fractional area coverages of the
printer for requested LabPQR values even if the requested
LabPQR values are generated from print samples of the
printer. In order to evaluate how efficiently the inversion was
performed, the fractional area coverage differences between
input and estimated fractional area coverages were calcu-
lated. For a six-color printer, the difference in a set of frac-
tional area coverages is calculated as:

6
Fractional Area Coverage Difference = 4 | > (a;— a6,
i=1

(8)

where a; and 4; represent the fractional area coverages of the
input and estimated ones derived by Eq. (6) at the optimal k
of 50, respectively. The fractional area coverage varied be-
tween 0 and 1.

Using Prints, the fractional area coverage differences at
k of 0 (colorimetric-only matching) and 50 were calcu-
lated and grayscale-coded into CIELAB plots are shown in
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Figure 14. Difference vectors of CCDC in CIELAB are plotted onto a™b”
(a) and L'a” coordinates. The tail of each arrow with a circle locates a
requested stimulus and the head of each arrow locates a response
stimulus.

Figure 17. For the results at k of 50, excellent estimation of
the fractional area coverage was provided except at lower
lightness and for red and green color regions. These areas of
lower accuracy are not surprising. This is because the ink jet
printer used in these experiments was equipped with green
and red inks, likely leading to spectral redundancy”** in
those color regions. One thing to note is that there is no
large difference around the boundaries of the colorimetric
gamut. This indicates that few metameric pairs exist in those
regions. The colorimetric-only approach (k=0) showed a
similar behavior, but was worse than the LabPQR approach,
resulting in average and maximum fractional area coverage
differences of 11.12% and 61.69%, respectively, while the
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Figure 15. Difference vectors of CC in the PQR space are plotted onfo
PQ (a) and QR coordinates, along with the PQR gamut of the ink jef
printer (solid lines). The tail of each arrow with a circle locates a re-
quested stimulus and the head of each arrow locates a response stimulus.

LabPQR approach indicated 7.43% and 43.97%, respectively.
Therefore, spectral information might be useful to predict
the input fractional area coverage of the printer when invert-
ing the fractional area coverage to spectra relationship.

CONCLUSIONS

In this article, a spectral gamut mapping technique based on
LabPQR has been explored using a six-colorant ink jet
printer. LabPQR is a six-dimensional ICS where the first
three dimensions are CIELAB values under a particular
viewing condition, and the additional dimensions are spec-
tral reconstruction dimensions describing a metameric black
(PQR). First, spectra-to-LabPQR transform converting
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plotted.

LabPQR values from spectra was determined by using a
spectral printer model. Second, the turning of parameters
used in an objective function for the spectral gamut map-
ping was performed, accounting for a trade-off between
colorimetric and spectral errors. Finally, feasibility of the
proposed spectral gamut mapping approach for arbitrary
LabPQR inputs was evaluated.

Using a data set generated by the spectral printer model,
the spectra-to-LabPQR transform was successfully pro-
duced, resulting in sufficient reconstruction accuracies for
the data set: an average CIEDE2000 of 0.00 and average
spectral RMS error of 0.43%. Besides, the spectra-to-
LabPQR transform was effective for reconstructing original
spectra of the unknown data sets including the
GretagMacbeth ColorChecker (CC). There was no colori-
metric difference within round-trip including the spectra-to-
LabPQR transform for any arbitrary inputs.

Through the computation above, it was found that the
P basis, which was the most significant vector in the spectral
coordinates, has yielded the largest distribution range for the

J. Imaging Sci. Technol. 51(6)/Nov.-Dec. 2007

unknown data sets, as well as the training data set used for
building the spectra-to-LabPQR transform. The ranges of P
values were approximately twice and three times as large as
the ranges of Q and R values, respectively. The significance
order of the PQR bases could be applied to the unknown
data sets.

The spectral characterization of the CMYKRG ink jet
printer has been inverted using the spectral gamut mapping
technique based on LabPQR. The spectral gamut mapping
was carried out with an objective function that minimized
the weighted sum of CIEDE2000 and normalized Euclidian
distance in PQR coordinate. This objective function was
based on traditional absolute colorimetric matching tech-
niques. Mathematically, the Euclidian distance in PQR be-
tween a metameric pair is proportional to spectral RMS er-
ror. This objective function can be utilized globally
regardless of whether the requested stimuli are within the
colorimetric or spectral response gamuts. At 1:50 weighting
ratio k, CIEDE2000 to PQR difference, the proposed ap-
proach achieved the equivalent level of mapping accuracies
to the full 31-dimensional approach. For CC, our approach
resulted in an average RMS error of 4.18% with a maximum
of 7.02%. In the spectral mapping, mapping directions in
PQR led almost all stimuli toward the origin of PQR. Also,
the differences along P axis between requested and response
stimuli were the largest, in comparison with the differences
in QR coordinates. As for the colorimetric matching, the
proposed approach showed sufficient accuracies, resulting in
an average CIEDE2000 of 0.03 with a maximum of 0.73 for
CC. Thus, our proposed spectral gamut mapping has been a
successful approach for both colorimetric and spectral
matchings.

Following the spectral gamut mapping, fractional area
coverage differences between input and estimated fractional
area coverages were evaluated using print patches of the
CMYKRG ink jet printer. From the evaluations overall
CIELAB, it was found that the differences represented a
unique set of fractional area coverage at the printer gamut.
The larger fractional area coverage differences were obtained
at lower lightness, and for red and green color regions while
there was no large difference round the boundaries of the
gamut.

There are a number of areas for future research. In this
research, a spectra-to-LabPQR transform was generated us-
ing a specific data set, virtual spectral samples of CMYKRG
ink jet printer, so the spectra-to-LabPQR transform has
strong correlation with the data sets used for building it.
Apparently, different spectra-to-LabPQR transforms will be
provided if different types of printer or different types of
targets are used. The reproduction accuracies might depend
on the targets. Therefore, one of the new considerations of
spectral color management would be how to generalize
spectra-to-LabPQR transform that could be applied to dif-
ferent types of output devices. To do that, the transform may
be generated using a number of sample collections. Also, the
color-matching functions can be incorporated. The first
term in Eq. (1) to reconstruct spectra from tristimulus val-
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k of O (upper) and 50. The solid lines represent the colorimetric gamut boundaries of the printer.

ues may be derived using Cohen and Kappauf’s spectral re-
production scheme know as the “matrix-R operation”,” in-
stead of using least square analysis on the sample collections.

Another consideration would be dimensionality of ICS.
The goal of the present research is to build LUTs, so a low-
dimensional ICS can be used to approximately match re-
quested spectra to that which an output device is capable of
delivering. However, since the loss of dimensionality could
lead to spectral reconstruction inaccuracies, it is important
to find the optimal trade-off between the reconstruction ac-
curacy and the dimensionality of ICS.

The last is to produce LUTs based on LabPQR. Testing
reproduction accuracies with the use of the LUTs would ob-
viously be of interest. When attempting to produce the
LUTs, the smaller memory size of the LUTs is desirable.
However, the smaller size LUTs would certainly lead to lower
reproduction accuracies. Exploring the trade-off between the
size of the LUTs and reproduction accuracies would be an-
other issue of spectral color management.
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APPENDIX: PROOF ON PROPORTIONALITY OF
EUCLIDIAN DISTANCE IN PQR TO SPECTRAL RMS
ERROR

Equation (6) is equivalent to minimizing spectral RMS error
if the requested stimuli are within the colorimetric response
gamut, because the Euclidian distance in PQR between a
metameric pair is proportional to spectral RMS error. To

show this, let ﬁl and ﬁz denote reconstructed spectra of a
metameric pair with the identical tristimulus values. From
Eq. (1) we obtain

R;=TN, + VN, 9)
where
Di
Np,i = ql' . (10)
T
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The spectral RMS error between the reconstructed spectra is
defined as

SRMS = (R, — Ry)%n = (TN, + VN, ; = TN, — VN, ,)*/n
= IV(N,, =N, )}/n

= \/{(Pl —p)Vi+ (1 — q)vy + (ry = r)vsfin,  (11)

where n is the number of samples in a spectrum. Since
|[vil|=1 and (v;,v;)=0 for i #j, Eq. (11) may be rewritten as

sRMS = \/{(Pl _Pz)2 +(q, — ‘12)2 +(ry=1)%}n
= APQR/\n. (12)

Thus, Eq. (12) shows that the Euclidian distance of PQR is
proportional to spectral RMS error for a metameric pair.
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