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bstract. This paper reports on a simple novel concept of address-
ng the problem of underdetermination in linear spectral unmixing.

ost conventional unmixing techniques fix the number of end-
embers on the dimensionality of the data, and none of them can
erive multiple �2+� end-members from a single band. The concept
vercomes the two limitations. Further, the concept creates a pro-
essing environment that allows any pixel to be unmixed without any
ort of restrictions (e.g., minimum determinable fraction), impracti-
alities (e.g., negative fractions), or trade-offs (e.g., either positivity
r unity sum) that may be associated with conventional unmixing

echniques. The proposed mix-unmix concept is used to generate
raction images of four spectral classes from Landsat 7 ETM+data
aggregately resampled to 240 m) first principal component only.
he correlation coefficients of the mix-unmix image fractions versus

eference image fractions of the four end-members are 0.88, 0.80,
.67, and 0.78. © 2007 Society for Imaging Science and
echnology.
DOI: 10.2352/J.ImagingSci.Technol.�2007�51:4�360��

ROBLEM STATEMENT / INTRODUCTION, AND
BJECTIVE

… the number of bands must be more than the number of
nd-members…” is perhaps the most ubiquitous statement
n the field of linear spectral unmixing. This is simply be-
ause most of the conventional unmixing techniques are
ased on least squares,1 convex geometry,2 or combination
f both and the number of end-members (unknowns) is
ependent on the dimensionality (equations) of the data.
east squares can unmix as many end-members as up to the
imensionality of the data, and at the very best exceed by
ne when the unity constraint is enforced. In convex geom-
try, the number of determinable end-members (at the
nmixing stage) is equal to the number of vertices of the
ata simplex, and this number exceeds the dimensionality of

he data by one. After extracting the end-member spectra,
ost of the convex geometry-based techniques apply the

east squares approach (combined case) in computing the
ractions of the end-members.

Some linear spectral unmixing techniques include Se-
uential Maximum Angle Convex Cone (SMACC) Spectral
ool,3 (Generalized) Orthogonal Subspace Projection,4,5

onvex Cone Analysis,6 N-FINDR,7 Orasis,7 and Iterative

eceived Dec. 5, 2006; accepted for publication Mar. 22, 2007.
w062-3701/2007/51�4�/360/8/$20.00.
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rror Analysis.7 Keshava8 gives a detailed account of spectral
nmixing techniques. A number of commercially available
oftware, including ENVI, IDRISI Kilimanjaro, PCI, and
RDAS Imagine, have linear spectral unmixing modules.
he greatest fundamental commonality of all conventional

inear spectral unmixing techniques is that none of them can
erive multiple end-members �2+� from a single band. The
bject of the mix-unmix concept is to overcome this prob-

em and unmix as many end-members as can be deciphered
rom the reference data and without introducing any sort of
estrictions, impracticalities, or trade-offs that may be asso-
iated with conventional unmixing techniques.

ESCRIPTION OF THE MIX-UNMIX CONCEPT
s the term implies, the model consists of two branches,
amely, mixing and unmixing. The mixing branch entails
evelopment of hypothetical mixed pixels on the basis of
esired end-members’ actual digital numbers (DNs).
nmixing involves determination of each real image pixel’s
N’s contributory end-members and their fractions by
ack-propagating through the mixing branch using a pixel
f the same DN in the hypothetical image as a proxy. This
reliminary study demonstrates the concept on a single
imulated band.

ixing Branch
ominally, the end-members are paired up hierarchically

nto a single hypothetical mixed class (Figure 1;
M1=end-member 1, EM1.2=combined end-members 1
nd 2). Essentially, in pairing up, each and every DN from a
ember of a pair is combined with each and every DN from

he other member, at complementary percentages ranging
rom 0% to 100%, giving rise to various “mixture tables”
MTs) whose number depends on the ranges of training
Ns of the two members.

heory of the mixing branch and formation of mixture
ables (MTs)
he number of possible DN combinations, MTs, of two
embers, A and B, of a pair is equal to the product of their

raining DN ranges, i.e.,

MTs = �A max DN − A min DN + 1� � �B max DN

− B min DN + 1� ,
here
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A max DN = maximum DN of A,

A min DN = minimum DN of A,

B max DN = maximum DN of B,

B min DN = minimum DN of B.

he number of possible percentages combinations, N%s, of
he two members is given by

N % s = �100 % ÷ MI� + 1,

here

MI = adopted mixture interval.

ubsequently, the total number of possible DNs and percent-
ges combinations of the two is

MTs � N % s.
he expression also gives the total number of possible mix-

ure pixels of the two.
Thus all pixels, in a hypothetical band, composed of

nly two end-members, EM1 and EM2, would be defined by

Figure 1. Bottom-up pairing up of end-members
involves mixing the two members-of-a-pair’s DN ran
�super-�end-members is even but not a multiple of fo
by EM5 and EM6 �for six end-members�. For an odd
next level individually as indicated by EM7 �for sev
same hierarchical status as EM1.2.3.4. At the ba
fractions of the end-members—the DNs are known
tion of pure pixels in the image to be unmixed, etc.
resulting from mixing all the end-members’ spectra a
he following expression—discussed assuming: that the end-

. Imaging Sci. Technol. 51�4�/Jul.-Aug. 2007
embers’ training DNs range from, respectively, 10–89 and
0–150 in the band; a mixture interval of 10%, and assum-
ng linear mixing.

�1�

here

• f1,i =percentage of EM1 in pixel i �Table I�a� 1st
column�,

• f2,i =percentage of EM2 in pixel i �Table I�a� 2nd
column�,

• f1 + f2 =100%,
• DN1,i =DN of EM1 in pixel i �Table Ia 2nd row�,
• DN2,i =DN of EM2 in pixel i �Table Ia 3rd row�,
• DN1,2,i =mixture DN of DN1,i and DN2,i in pixel i

�Table I�a� all cells excluding the first two columns

l as the resultant super-end-members—pairing up
all complementary fractions. In case the number of
level of mixing is skipped for one pair as indicated
er, one end-member is simply carried forward to the
members�. In this case, EM5.6 and EM7 have the
the branch are training DN ranges and assumed
tu observation, from spectral libraries, or identifica-
p of the branch are hypothetical pixels’ DN values
ssible complementary fractions.
as wel
ges at
ur, one

numb
en end-
se of

by in si
At the to
and first three rows�,

361
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• min EM1DN=minimum DN of EM1,
• max EM1DN=maximum DN of EM1.

ounding mixture tables, and various numbers of end-
embers

rom Table I(a), it is very clear that, given constant fractions
f EM1 and EM2, the mixture class DNs (EM1.2 DNs) al-
ays fall between the values in the first and last MTs, thus

he two MTs fully give the ranges of all possible DNs of
M1.2. Hereinafter, the two are referred to as min-MT and
ax-MT, respectively, and min-max MTs collectively [Table

(b)].
Similarly, min-max MTs of the other paired end-

Table I. �a� MTs of EM1 and EM2. The EM1.2 DNs are computed as:
EM2% are complementary.

MT= 1

EM1 DN= 10

EM2 DN= 90

EM1% EM2%

0 100 90

10 90 82

20 80 74

30 70 66

40 60 58

50 50 50

60 40 42

70 30 34

80 20 26

90 10 18

100 0 10

�b� Min-max MTs of EM1 and EM2.
�c� Min-max LUTs of EM1 and EM2.

EM1 % EM2 %

Min-MT
EM1 DN= 10
EM2 DN= 90

Min-LUT

0 100 90

10 90 82

20 80 74

30 70 66

40 60 58

50 50 50

60 40 42

70 30 34

80 20 26

90 10 18

100 0 10
embers are generated: for EM3 and EM4; in Eq. (1) EM1,

62
M2, and EM1.2 are replaced with EM3, EM4, and EM3.4,
espectively. Table II(a) shows min-max MTs of EM3 and
M4 shows the DN ranges are 151–180 and 181–210, re-
pectively.

Next, second level min-max MTs are developed from
he above first level MTs: for EM1.2 and EM3.4; in Eq. (1)
M1, EM2, and EM1.2 are replaced with EM1.2, EM3.4, and
M1.2.3.4, respectively. Table III(a) shows min-max MTs of
M1.2, and EM3.4. Since EM1.2 represents EM1 and EM2,
nd EM3.4 represents EM3 and EM4, subsequently, the sec-
nd level min-max MTs inherently represent all the possible
N outcomes of mixing all the end-members EM1, EM2,
M3, and EM4 at all possible complementary fractions.

= �EM1 % � EM1 DN�+ �EM2 % � EM2 DN�. Note that EM1% and

3−
4 879

4 880 4 881

88 89

150 150

EM1.2 DN

150 150

143 143

137 137

131 131

125 125

119 119

113 113

107 107

100 101

94 95

88 89

Max-MT
EM1 DN= 89

EM2 DN= 150
Max-LUT

Amount of
overlap with
EM1.2 vector
�90–150�

150 60

143 53

137 47

131 41

125 35

119 29

113 23

107 17

101 11

95 5

89 0
EM1.2 DN

2

11

90

90

82

74

66

58

51

43

35

27

19

11

EM1.2 DN
J. Imaging Sci. Technol. 51�4�/Jul.-Aug. 2007
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For more end-members, the process is successively re-
eated as shown in Fig. 1. For three end-members in Eq. (1)
M1, EM2, and EM1.2 are replaced with EM1.2, EM3, and
M1.2.3, respectively.

nmixing Branch
his is similar to the mixing branch (Fig. 1) but with the
rrows (processing) reversed and the MTs renamed look-up-
ables (LUTs)—Tables I(c), II(b), and IIIb. As discussed be-
ow, a real image pixel DN is fractionalized into two highest
evel super-end-members, each of which is then split into its
wo constituent end-members. The process continues until
he finest level (end-members of interest) from which the

ixing branch was constructed (see Figure 2).

ractionalization
his discussion demonstrates the unmixing process on a

ingle-band image composed of the four end-members out-
ined in the Mixing Branch section. For each DN in the
and, all the vectors in which it lies are identified, e.g., Table
II(b) EM.1.2.3.4 italicized DNs give all the possible vectors
or DN 180, with the lower nodes located in Table III(b-1)
nd the upper nodes in Table III(b-2)—the first vector is
72–204 (bold). Each one of these vectors is a combination
f two minor vectors, one apiece from EM1.2 and EM3.4
italicized); e.g., for the vector 172–204, the constituent vec-
ors are 90–150 (bold) from EM1.2 and 181–210 (bold)
rom EM3.4.

The most probable vector (MPV) in which the DN 180
ies is computed as

o highest level super-end-members, then effectively
ctionalizing each of the highest level super-end-
til the lowest level end-members that were used to
niverse of values encompassing all the DNs in the
posed of only the end-members used in the mixing
ry percentages �fractions� of the end-members �cf.
able II. �a� Min-max MTs of EM3 and EM4. The EM3.4 DNs are computed as: EM3.4
N= �EM3 % � EM3 DN�+ �EM4 % � EM4 DN�. Note that EM3% and EM4% are
omplementary. �b� Min-max LUTs of EM3 and EM4.

Min-MT
EM3 DN= 151
EM4 DN= 181

Min-LUT

Max-MT
EM3 DN= 180
EM4 DN= 210

Max-LUT
Amount of

overlap with
EM3.4 vector

172–201M3 % EM4 % EM3.4 DN

100 181 210 20

0 90 178 207 29

0 80 175 204 29

0 70 172 201 29

0 60 169 198 26

0 50 166 195 23

0 40 163 192 20

0 30 160 189 17

0 20 157 186 14

0 10 154 183 11

00 0 151 180 8
Figure 2. Top-bottom fractionalization of a pixel; first into tw
into second highest level four super-end-members by fra
members into two. The process is repeated successively un
build up the mixing branch. At the top of the branch is a u
image to be unmixed—all: assuming that the image is com
branch. At the base of the branch are estimated contributo
363
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cMNxDN =

�
i=1

n

lower � nodes

n
, �2�

cMNyDN =

�
i=1

n

upper � nodes

n
, �3�

here

• cMNxDN=lower node of DN 180 MPV from com-

able III. �a-1� Min-MT of EM1.2 and EM3.4. The EM1.2.3.4 DNs are computed as: EM1.2.3.4 DN
b-1� Min-LUT of EM1.2 and EM3.4.

EM1.2
DNa

EM1.2
%

EM3.4
%

181 178 175 1

90 0 100 181 178 175 1

90 10 90 172 169 167 1

90 20 80 163 160 158 1

90 30 70 154 152 150 1

90 40 60 145 143 141 1

90 50 50 136 134 133 1

90 60 40 126 125 124 1

ows 8 to 117

10 70 30 61 60 60

10 80 20 44 44 43

10 90 10 27 27 27

10 100 0 10 10 10

a-2� Max-MT of EM1.2 and EM3.4.
b-2� Max-LUT of EM1.2 and EM3.4.

EM1.2
DNc

EM1.2
%

EM3.4
%

210 207 204 2

150 0 100 210 207 204 2

150 10 90 204 201 199 1

150 20 80 198 196 193 1

150 30 70 192 190 188 1

150 40 60 186 184 182 1

150 50 50 180 179 177 1

150 60 40 174 173 172 1

ows 8 to 117

89 70 30 125 124 124 1

89 80 20 113 113 112 1

89 90 10 101 101 100 1

89 100 0 89 89 89

Column 1 elements are from EM1 and EM2 min-MT �Table I�b�, column 3�

Row 1 elements are from EM3 and EM4 min-MT �Table IIa, column 3�

Column 1 elements are from EM1 and EM2 max-MT �Table I�b�, column 4�

Row 1 elements are from EM3 and EM4 max-MT �Table IIa, column 4�
bined classes M and N (EM1.2 or EM3.4),

64
• cMNyDN=upper node ditto,
• lower nodes=all the EM1.2.3.4 italicized DN in Table

III(b-1),
• upper nodes=ditto Table III(b-2),
• n=number of EM1.2.3.4 italicized DN vectors=count

of EM1.2.3.4 italicized DN nodes in Table III(b-1) or
Table III(b-2).

From Eqs. (2) and (3), cMNxDN=156 and cMNyDN
190. From Table III(b), the pair of nodes most close to the
air 156/190 is 156/191 and it is adopted as the MPV for

he DN 180. This vector 156–191 [Table III(b) bold and
nderlined] lies at the intersection of EM1.2 vector 90–150

% � EM1.2 DN�+ �EM3.4% � EM3.4 DN�. Note that EM1.2% and EM3.4% are complementary.

EM3.4 DNb

169 166 163 160 157 154 151

EM1.2.3.4 DN

169 166 163 160 157 154 151

161 158 156 153 150 148 145

153 151 148 146 144 141 139

145 143 141 139 137 135 133

137 136 134 132 130 128 127

130 128 127 125 124 122 121

122 120 119 118 117 116 114

58 57 56 55 54 53 52

42 41 41 40 39 39 38

26 26 25 25 25 24 24

10 10 10 10 10 10 10

EM3.4 DNd

198 195 192 189 186 183 180

EM1.2.3.4 DN

198 195 192 189 186 183 180

193 191 188 185 182 180 177

188 186 184 181 179 176 174

184 182 179 177 175 173 171

179 177 175 173 172 170 168

174 173 171 170 168 167 165

169 168 167 166 164 163 162

122 121 120 119 118 117 116

111 110 110 109 108 108 107

100 99 99 99 99 98 98

89 89 89 89 89 89 89
= �EM1.2

72

72

64

56

47

39

31

23

59

42

26

10

01

01

96

91

86

81

76

70

23

11

00

89
J. Imaging Sci. Technol. 51�4�/Jul.-Aug. 2007
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nd EM3.4 vector 172–201. Therefore, by extension, the DN
80 most probably resulted from these EM1.2 and EM3.4
ectors as the combination most probably gave rise to the
N 180 MPV 156–191.

Further, percentages-wise, the DN 180 could have re-
ulted from any of the paired percentages associated with the
M1.2.3.4 italicized DNs vectors. The most probable con-

ributory paired percentages (MPPC) are computed as

MPPCx.y =

�
i=1

n

�i%x.y � pi�

n�
i=1

n

pi

±��
i=1

n

pivi
2

n2�
i=1

n

pi

, �4�

here

• i%x.y = ith paired percentages of x �EM1.2�
and y �EM3.4�,

• pi =weight of i%x.y =count of i%x.y ’ s EM1.2.3.4
italicized DNs,

• n=count of probable contributory paired
percentages,

• v= i%x.y −MPPCx,y . The second term in Eq. �4�
is computed after the first one.

rom Eq. (4), EM1.2% =16.67% ±2.34% and EM3.4%
83.33% ±2.34%. Hence, the DN 180 most probably re-

ulted from these EM1.2 and EM3.4 percentages combina-
ions as the pair most probably gave rise to the DN 180

PV 156-191.
Next, the EM1.2 90-150 and EM3.4 172-201 vectors are

hecked against the lower level min-max LUTs, Tables I(c)
nd II(b), respectively, and all the vectors with which they
EM1.2 and EM3.4 vectors) overlap form the universe of
ossible vectors (PVs) from which they (EM1.2 and EM3.4
ectors) or, in other words, a fraction of the value 180, arose.

igure 3. Possible universal overlap scenarios. A is EMx.y’s most prob-
ble vector, e.g., EM1.2 MPV 90-150 or EM3.4 MPV 172-201; all/
ome of the other non-arrowed lines �B-H� are vectors contained in
Mx.y’s min-max LUTs �e.g., Table I�c� for EM1.2, or Table II�b� for
M3.4�; arrowed lines are the respective overlaps.
he probability (weight) of each of the Table I(c) PVs having w

. Imaging Sci. Technol. 51�4�/Jul.-Aug. 2007
iven rise to the EM1.2 vector 90–150 is taken to be propor-
ional to the amount of overlap with it. Each probability is
lso taken to be the probability of the corresponding paired
ercentages (PPs) having given rise to the EM1.2 vector 90–
50 since the PV was developed from them (PPs). Similarly
or Table II(b) PVs and PPs in the case of EM3.4 vector
72–201. There are seven possible overlap scenarios as de-
icted by Figure 3. Table I(c) last column gives the weights
f the EM1 and EM2 vectors to EM1.2 vector 90–150, and
able II(b) ditto EM3 and EM4 vectors to EM3.4 vector
72–201.

From Fig. 3 and Tables I(c) and II(b), the most probable
ercentage contribution (MPPC) of each daughter class to

ts mother class is computed as

cM % =

�
i=1

q

cM%i � pi

q�
i=1

q

pi

±��
i=1

q

pivi
2

q2�
i=1

q

pi

, �5�

here

• cM% =MPPC of daughter class cM (EM1 or EM2) to
its mother class (EM1.2). EM3 or EM4 for EM3.4;

• cM%i =percent of cM ’ s ith probable vector—Table I(c)
columns 1 and 2 for EM1 and EM2, respectively; Table
II(b) columns 1 and 2 for EM3 and EM4, respectively;

• pi =overlap range of cM ’ s ith probable vector with its
�cM� mother’s MPV. Table I(c) last column for EM1
and EM2. Table II(b) last column for EM3 and EM4;

• q=count of probable paired-percentages;
• v= cM%-cM%i. The second term in Eq. (5) is com-

puted after the first one.

From Eq. (5) and Tables I(c) and II(b), the MPPCs of
M1 and EM2 to EM1.2, and EM3 and EM4 to EM3.4 are;
M1=71% ±2.84%, EM2=29% ±2.84%, EM3
59% ±2.42%, and EM4=41% ±2.42%.

The MPPC of an end-member to the original pixel DN
s simply the product of all MPPCs along the path from the
nd-member itself to the pixel DN. Hence, for end-member:

• 1=EM1% �EM1.2% =71% �16.67%
=11.84±1.73%,

• 2=EM2% �EM1.2% =29% �16.67%
=04.83±0.83%,

• 3=EM3% �EM3.4% =59% �83.33%
=49.16±2.44%,

• 4=EM4% �EM3.4% =41% �83.33%
=34.17±2.23%.

The standard deviation of product AB is computed as

�AB = AB���A

A
	2

+ ��B

B
	2

, �6�
here �k =standard deviation of k.

365
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TUDY TEST
our spectral end-members are mapped from a single-band
imulated raw image.

tudy Area and Data
andsat ETM+ data, of 21 February 2000, covering
outhern-central Kenya is utilized to generate both the ref-
rence and raw data. The land covers in the area transition
rom dense vegetation (forest) to bare land (Figure 4).

imulation of Reference and Raw Data
-mean classification is run on the ETM+ data bands 1, 2,
, 4, 5, and 7 to produce four spectral classes. The spectral
lasses are adopted as reference data. The six bands data is
esampled to 240 m resolution (mimics moderate resolution
ata, e.g., MODIS bands 1 and 2–250 m resolution) and

hen principal components transformation (PCT) executed
n the new data set. Each of the resampled bands and PCs is
aken as a candidate raw image.

election of Band to Unmix, and its Unmixing
section from the 30 m resolution reference spectral classes

igure 4. �Left� location of the study area; �right� 30 m resolution Landsat
TM+ data RGB=342.

igure 5. �Left� reference data: 30 m resolution spectral classes. The
pectral classes correspond to broad information classes dense vegeta-
ion �C1�, dense vegetation/bare land �C2�, bare land/dense vegeta-
ion �C3�, and bare land �C4�; �right� raw image: 240 m resolution first
rincipal component. The rectangles show locations of reference �black�
nd mix-unmix �red� training sites.
mage, black rectangle in Figure 5, hereinafter referred to as c

66
eference training site, is geographically overlaid on each
andidate raw image (240 m resolution) and pure pixels in
he overlay section, red rectangle in Fig. 5, hereinafter re-
erred to as mix-unmix training site, of the candidate raw
mage for each spectral class identified. A pixel in the mix-
nmix training site is pure if the geographically correspond-

ng 8-pixel�8-pixel block in the reference training site is
omposed of a single class, 8 is the ratio of the two resolu-
ions. Figure 6(a) compares the four spectral classes’ pure-
ixels’ DNs’ distribution curves in the mix-unmix training
ite. Since the four spectral classes exhibit the highest spec-
ral dissimilarity between themselves in the first PC, it is
dopted as the raw image to be unmixed. The training DN
anges of the four spectral classes (now denoted as end-

embers, EMs) are as shown in Fig. 6(b). The raw image
first PC) is unmixed under the mix-unmix concept on the
asis of the training DNs into the four end-members.

ix-Unmix Fraction Images versus Reference Fraction
mages
eference fraction images of the four spectral classes (Fig. 5)
re generated by computing the percentage coverage of each

igure 6. �a� Comparison of DNs’ distribution curves of C1, C2, C3,
nd C4 in mix-unmix training site across original bands and principal
omponents �PCs�. The least overlap between the curves occurs in PC1
nd, thus, it is adopted as the raw band to unmix. Y axes=frequencies,
nd X axes=DNs—but values not shown. �b� Training DNs of EM1,
M2, EM3, and EM4.
lass in every 8-pixel�8-pixel block (each block is 240 m

J. Imaging Sci. Technol. 51�4�/Jul.-Aug. 2007
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240 m). The reference fraction images are compared with
he mix-unmix fraction images. Figure 7 outlines the entire
mage processing flow, and Figure 8 compares the fraction
mages. The correlation coefficients of the mix-unmix image
ractions versus the reference image fractions of the four
nd-members are 0.88 (EM1), 0.80 (EM2), 0.67 (EM3), and
.78 (EM4).

ISCUSSION
he mix-unmix fraction images show similar transition pat-

erns (highest to lowest concentration levels) as the reference
raction images for all the end-members; though the corre-
ation coefficients are not “very high.” Although a mixture
nterval of 10% is used throughout this study, any value that
s a divisor of 100 gives a whole number can be used. We
annot use 100 itself as it would mean that each pixel con-
ains just a single end-member.

UTURE
s discussed in the Mixing Branch section, only the extreme
N values (i.e., bounding mixture tables) are used in this

tudy. Also, the training DNs of end-members are assumed
o be “frequency-less.” As the mix-unmix software develops,
ll mixture tables and training DNs’ distribution curves will
e incorporated.

The effect of adopted mixture interval and overlap of
raining DNs on accuracy of the concept will be addressed
n implementation of the above. Also, performance of the
oncept across different numbers of end-members, different
esolutions, and different geographical scales will be tested.

ONCLUSIONS
his preliminary investigation shows that the mix-unmix

Figure 7. Data processing flowchart.
oncept is capable of addressing the problem of under-

. Imaging Sci. Technol. 51�4�/Jul.-Aug. 2007
etermination in linear spectral unmixing—a very revolu-
ionary dimension in data processing as the number of end-

embers is not pegged on that of available bands. It is the
nly method that truly solves the problem of under-
etermination. Sequential Maximum Angle Convex Cone
SMACC) Spectral Tool does not work on a single band, and
eneralized Orthogonal Subspace Projection cannot gener-

te additional bands from a single band. Further, the mix-
nmix concept creates a processing environment that allows
ny pixel to be unmixed without any sort of restrictions
e.g., minimum determinable fraction), impracticalities (e.g.,
egative fractions), or trade-offs (e.g., either positivity or
nity sum) that may be associated with conventional unmix-

ng techniques.
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