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bstract. In the dental field, 3D tooth modeling, in which each tooth
an be manipulated individually, is an essential component of the
imulation of orthodontic surgery and treatment. However, in dental
omputerized tomography slices teeth are located closely together
r inside alveolar bone having an intensity similar to that of teeth.
his makes it difficult to individually segment a tooth before building

ts 3D model. Conventional methods such as the global threshold
nd snake algorithms fail to accurately extract the boundary of each

ooth. In this paper, we present an improved contour extraction al-
orithm based on B-spline contour fitting using genetic algorithm.
e propose a new fitting function incorporating the gradient direc-

ion information on the fitting contour to prevent it from invading the
reas of other teeth or alveolar bone. Furthermore, to speed up the
onvergence to the best solution we use a novel adaptive probability
or crossover and mutation in the evolutionary program of the ge-
etic algorithm. Segmentation results for real dental images demon-
trate that our method can accurately determine the boundary for

ndividual teeth as well as its 3D model while other methods fail.
ndependent manipulation of each tooth model demonstrates the
ractical usage of our method. © 2007 Society for Imaging Science
nd Technology.
DOI: 10.2352/J.ImagingSci.Technol.�2007�51:4�328��

NTRODUCTION
he accurate 3D modeling of the mandible and the simula-

ion of tooth movement play an important role in preopera-
ive planning for dental and maxillofacial surgery. The 3D
econstruction of the teeth can be used in virtual reality
ased training for orthodontics students and for preopera-
ory assessment by dental surgeons. For 3D modeling tooth
egmentation to extract the individual contour of a tooth is
f critical importance. Automated tooth segmentation meth-
ds from 3D digitized images have been researched for the
easurement and simulation of orthodontic procedures.1

hese methods provide interstices along with their locations
nd orientations between the teeth for segmentation result.
owever, it does not give individual tooth contour informa-

ion which manifests more details that are helpful in dental
tudy. A thresholding method, used in the existing segmen-
ation and reconstruction systems, is known to be efficient
or automatic hard tissue segmentation.2,3 Some morpho-
ogical filtering methods are used for creating intermediary

eceived Oct. 28, 2006; accepted for publication Mar. 30, 2007.
a062-3701/2007/51�4�/328/9/$20.00.
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lices by interpolation for modeling teeth in 3D.4 The mor-
hological operations are also combined with the threshold-

ng method for dental segmentation in x-ray films.2 How-
ver, neither the thresholding method nor the morphological
ltering method is suitable for separating individual tooth
egions using tooth computerized tomography (CT) slices,
ecause some teeth touch each other and some are located

nside of alveolar bone with a CT slice intensity profile simi-
ar to teeth.5 A modified watershed algorithm was suggested
o create closed-loop contours of teeth while alleviating the
ver-segmentation problem of the watershed algorithm.5 Al-
hough this reduces the number of regions significantly, it
till produces many irrelevant basins that make it difficult to
efine an accurate tooth contour. A seed-growing segmen-

ation algorithm6 was suggested based on B-spline fitting for
rbitrary shape segmentation in sequential images. The best
ontour of an object is determined by fitting the initial con-
our passed by previous frame to the edges detected in the
urrent frame. For the fitting operation, the objective func-
ion defined by the sum of distances between the initial con-
our and the object edges is used. For this algorithm to work
roperly, the complete object boundary should be extracted
y global thresholding and the object should be located
part from other objects. If other objects are located nearby
s in the case of the tooth CT image, the shape of the initial
ontour should be very close to the actual object contour to
revent being fitted to the boundaries of the nearby objects.

Many snake algorithms have been proposed for medical
mage analysis applications.7–10 However, in the CT image
equence where objects are closely located, the classical snake
lgorithms have not yet been successful due to difficulties in
nitialization and the existence of multiple extrema. It is only
uccessful when it is initialized close to the structure of in-
erest and there is no object which has similar intensity val-
es to those of interest.7 The snake models for object
oundary detection search for an optimal contour that mini-
izes (or maximizes) an objective function. The objective

unction generally consists of the internal energy represent-
ng the properties of a contour shape and the external po-
ential energy depending on the image force. The final shape
f the contour is influenced by how these two energy terms

re represented. However, many snakes tend to shrink when
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ts external energy is relatively small due to the lack of image
orces.7 Some snakes also suffer from the limited flexibility of
epresenting the contour shape and a large number of de-
ivative terms in their internal energy representation. A
-spline based snake has been developed as a B-spline snake
nd B-snake to enhance the geometric flexibility and opti-
ization speed by means of a small number of control

oints instead of snaxels.11,12 B-spline snake controls con-
our shapes by a stiffening parameter as well as its control
oints, and detects object boundaries in noisy environments
y using gradient magnitude information instead of edge

nformation. This algorithm introduces a stiffening factor to
he B-spline function13 that varies the spacing between the
pline knots and the number of sampled points used during
he evaluation of the objective function. In addition, the
actor controls the smoothness of curve and reduces the
omputation of the cost function. Although the algorithm
as proposed to extract the contour of a deformable object

n a single image, it can be applied to the tooth segmentation
n CT slices. However, in tooth CT data, the algorithm may
ause the contour of a tooth to expand to include contours
f nearby teeth and alveolar bone, or it may cause the con-
our to be contracted to a small region.

A B-spline fitting algorithm employing a genetic algo-
ithm (GA) was used to overcome local extrema indwelling
n the vicinity of an object of interest.14–17 In this case, it was
hown that the GA does not require exhaustive search while
voiding high-order derivatives for curve fitting or matching
roblems.18,19 However, the conventional GA-based B-spline
tting still suffers from the influence of other objects and
ften fails to extract the object boundary from the image
equences when similar objects are adjacent to each other.

In this paper, we propose an improved B-spline contour
tting algorithm using a GA to generate a smooth and ac-
urate tooth boundary for the 3D reconstruction of a tooth
odel. We devise a new B-spline fitting function by incor-

orating the gradient direction information on the fitting
ontours to search the tooth boundary while preventing it
rom being fitted to neighboring spurious edges. We also
resent an evolution method to accelerate the search speed
y means of automatic and dynamic determination of GA
robabilities for crossover and mutation. Experimental re-
ults show that our method can successfully extract the in-
ividual tooth boundary, compared with other methods
hich fail to do so.

ACKGROUND
ental CT images have the following two distinct character-

stics: (1) An individual tooth often appears with neighbor-
ng hard tissues such as other teeth and alveolar bone, and
2) these neighboring hard tissues have the same or similar
ntensity values to the tooth of interest. Thus, the fixed
hreshold value for each tooth in each slice is not effective as
hown in Figure 1. When we try to obtain a tooth region by
hresholding method, the lower and upper limits of a thresh-
ld value can be displayed at each slice for a given tooth by

he two curves in Fig. 1. Any threshold value within the limit

. Imaging Sci. Technol. 51�4�/Jul.-Aug. 2007
roduces the tooth region with the accuracy better than
0%. It shows us that individual segmentation method is
equired for each tooth in each slice.

There are many segmentation methods, each of which
ave their own limitations in separating individual tooth
egions on CT images.3–6 An optimal thresholding scheme20

an be attempted by taking advantage of the fact that the
hape and intensity of each tooth changes gradually through
he CT image slices.

However, even if an optimal threshold is determined for
very slice, the result of the segmentation is found unsatis-
actory because of neighboring hard tissue. For the 3D re-
onstruction of an individual tooth model, the tooth bound-
ry needs to be defined more precisely.

-Spline Contour Fitting
he B-spline curve has attractive properties for the represen-

ation of an object contour with arbitrary shape. They are
lso suitable for the curve fitting process and are summa-
ized as follows.

• An object of any shape, including those subsuming an-
gular points, can be represented by a set of control
points, a knot sequence, and a basis function. The shape
of the contour can be adjusted by simply repositioning
the control points in many fitting problems where the
knot sequence and basis function can be fixed.

• Little else remains to be different in the shape of the
contour by deducting the number of control points
within some tolerable limit for the purpose of reducing
information needed for fitting process. This allows the
fitting process to be faster with fewer variables over
which to optimize.

We choose the uniform cubic closed B-spline curve,
hown as follows in Eqs. (1) and (2), to describe the object
ontours in the image.

r�s� = �rx�s�

ry�s�� = ��
i=0

n−1

xiB0�s − i�

�
i=0

n−1

yiB0�s − i�� , �1�

igure 1. Threshold values for a certain tooth computed at different slices
y manual.
329
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B0�s� = �	s	3/2 − s2 + 2/3 if t0 � 	s	 � t1,

�2 − 	s	�3/6 if t1 � 	s	 � t2,

0 otherwise

�2�

n the equations, r�s� represents the coordinate of a contour
ixel at a specific value of parameter s and �xi ,yi� represents
oordinates of ith control point. The B-spline basis func-
ions are translated copies of B0�s�. In the case of tooth
egmentation we use a closed uniform knot sequence, as
t0 , t1 , . . . , tn�= 
0 ,1 , . . . ,n� and t0 = tn where n is the total
umber of the control points.

The B-spline fitting function f is represented in Eq. (3)
Ref. 11) as follows:

f = �
k=0

M−1

	�I�r�sk�	 , �3�

here M is the total number of contour points. The fitting
unction is maximized when the contour conforms to the
bject boundary. The B-spline fitting function makes use of
nly external force computed based on the gradient magni-
ude on the contour. The smoothness constraint is implicitly
epresented by the B-spline itself.

-spline Contour Fitting using Genetic Algorithm
he genetic algorithm is a probabilistic technique for search-

ng for an optimal solution. The optimal solution is de-
cribed by a vector, called a “chromosome,” which can be
btained by maximizing a fitting function. Hence the defi-
ition of the fitting function significantly affects the solution
tate. A sequence of evolutionary operations is repeated for a
hromosome to evolve to its final state. The end of the evo-
utionary operation is determined by checking the fitness
alues, which represent the goodness of each chromosome in
he population.

A chromosome is a collection of genes, and a gene rep-
esents the control point of B-spline. Since the chromosome
epresents a complete contour and a gene uses the actual
ocation of a control point, the search algorithm has neither
mbiguity on the contour location nor potential bias to par-
icular shapes. To reduce the size of a gene, we use the index
alue as a gene, instead of two coordinate values.16,17 Com-
osing a search area based on the indices provides a search
rea with arbitrary shape, where it is confined to search for
he final position of the control point to be found out. This
cheme of chromosome guarantees that gene information
oes not spread over the chromosome, which results in short

ength and order of schema.16 Accordingly, there is a high
robability to converge fast. A new generation is made

hrough the sequence of evolutionary operations and, during
he evolutionary processes, crossover and mutation steps af-
ect the quality and speed of final solution significantly.
p

30
MPROVED B-SPLINE CONTOUR FITTING USING
ENETIC ALGORITHM
itting Function Based on Gradient Magnitude and
irection
he fitting function measures the fitness of the possible con-

our to the object boundary in the current slice. The fitness
alue is the basis for determining the termination of the
volutionary process and selecting elite chromosomes for
ating pool generation. In the existing active contour mod-

ls, the fitting function consists of the internal forces con-
rolling the smoothness of the contour and the external force
sed for representing the object boundary information in

he image.7,12 One drawback of this representation is that it
equires the determination of the weight values balancing
hese two components.

B-spline snake makes use of a simple fitting function
ith only external force computed based on the gradient
agnitude on the contour. The internal force terms are re-

laced by using a stiffening parameter and implicit smooth-
ess constraint of the B-spline representation of a contour.
owever, in the image data such as the tooth CT image

lices, those fitting functions often generate the contour fit-
ed to the boundary of nearby object. They also generate the
ontour contracted to a small region unless the stiffening
arameter is set properly.

Note that the magnitude of the intensity difference may
ary between the inside and outside of an object contour.
owever, if the relative intensity between two sides of a con-

our is maintained throughout the contour, the sign of the
ntensity difference made by two sides is inverted when the
ontour expands out to the boundary of another object.
ence, when fixing moving direction of parameter s along

he curve, we are able to have knowledge of which side is
nside (or outside) in advance. This enables us to know
hether the contour is fitted to the object of interest or other

djacent objects. In this paper, the fitting function to be
aximized is designed to take advantage of this property of

he data. This gradient direction information allows the fit-
ess function to penalize the portion of a contour fitted to

he neighboring object.
To compute the fitness value for a possible solution (or

hromosome), we first generate the contour points from the
-spline representation of the solution and trace the contour
s shown in Figure 2(a). At the kth contour point r�sk�, a
nit normal vector n�sk� is computed. Next, the inner region
nd outer region pixel location pk

i and pk
o, respectively, are

dentified by using n�sk� computed at the kth point r�sk�
ccording to

pk
o = r�sk� + n�sk� �4�

nd

pk
i = r�sk� − n�sk� . �5�

Then, the fitness value is determined based on gradient
agnitude and direction information, �k, at each contour
oint according to

J. Imaging Sci. Technol. 51�4�/Jul.-Aug. 2007
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f = �
k=0

M−1

��k − �k� , �6�

here

�k = �	�I�r�sk�	 if I�pk
i � − I�pk

o� � 0,

− 	�I�r�sk�	 if I�pk
i � − I�pk

o� � 0,

nd

�k = �C , r�sk� = r�sj�

0, r�sk� � r�sj�
, ∀ j � 
0,1, . . . ,M − 1� ∧ j � k .

�pk
i � and I�pk

o� are intensity values of the inside and outside
f the kth contour point, respectively. This equation is fur-
her illustrated by Fig. 2(b), where some portion of the con-
our attaches to another object and in this portion
�pk

i �� I�pk
o�, so we assign the negative gradient magnitude

o penalize the fitness value. The figure also shows that in
ther portions the contour correctly conforms to the tooth
oundary and in these portions I�pk

i �� I�pk
o�, so we assign

he positive gradient magnitude to the fitness value. Note
hat when there is no difference of gradient direction, which

ay happen if inner and outer pixel values are identical,
hen I�pk

i �= I�pk
o�. This aims at preventing the contour from

eing misfitted when the contour lies inside an object region
aving uniform intensity values, such as the inside region of
tooth.

A constant-valued penalty C is deducted from the fit-
ess value when the contour is twisted as shown in Fig. 2(c).
ur experimental results showed that setting the penalty too

igh hindered searching the contour maximizing the sum of
radient magnitudes. The proposed fitting method yields the
est performance when C is set to around 0.1% of the sum
f gradient magnitudes.

mproved Adaptive Evolutionary Operations
he evolutionary process generates a new population of pos-

ible solutions through the following three genetic operators:
eproduction (or selection), crossover, and mutation. The

igure 2. �a� Definition of inner and outer regions. �b� Illustration for
tting function—right object is of interest, with adjacent left object, and
hick black curve is a fitting curve. �c� Twisted contour.
election operation constructs the mating pool from the cur-

. Imaging Sci. Technol. 51�4�/Jul.-Aug. 2007
ent population for the crossover operation. The results pre-
ented here use a tournament selection scheme.16 The cross-
ver operation generates two child chromosomes by
wapping genes between the two parent chromosomes. In
his paper we present one point cutting scheme by improved
daptive crossover probability. We also use an adaptive mu-
ation probability scheme for our evolutionary process.

The conventional GA generally uses fixed crossover and
utation probabilities. Adaptive genetic algorithm21 (AGA)
as proposed by Srinivas et al. that uses variable crossover

nd mutation probabilities that are determined automati-
ally based on fitness values during fitting process for fast
onvergence rate. The probabilities for evolution are, there-
ore, no longer required to be set to constants. At the begin-
ing stage of the fitting process, we consider all the possi-
ilities of control point locations in the search area. As the
rocess goes on, we obtain the evolutionary probabilities
uch that the possible solution near the optimal solution
uickly converges to the actual solution. In AGA,21 the cross-
ver probability is adaptively determined depending on the
tness value f, according to

pc = �k1

fbest − f

fbest − favg

, f � favg,

k2, f � favg,

�7�

here fbest and favg are the best and average fitness values in
he mating pool, respectively, and k1 and k2 are constants
nd set to 1.0. Hence, if f= fbest when f� favg, f is preserved,
lthough the value of k1 ensures high occurrence of cross-
ver. If f� favg, crossover is operated without exceptions,
ince its corresponding chromosome has low fitness value.

The mutation operation is also implemented by using
he mutation probability pm as follows:

pm = �k3

fbest − f

fbest − favg

, f � favg,

k4, f � favg,

�8�

here k3 and k4 are constants set to 0.5. As in the case of
rossover, the mutation operation does not affect the chro-
osome with the best fitness value. However if f� favg its
utation operation takes place with the most ambiguity

ince k3 =0.5.
In this paper we propose an improved adaptive cross-

ver probability. To maintain the solution with high fitness
alue, we generate a random number pr and consider the
elationship of pr with pc1 and pc2, where pc1 and pc2 denote
rossover probabilities generated from two parent chromo-
omes, father chromosome and mother chromosome respec-
ively. When two parent chromosomes are selected, two chil-
ren are generated as follows.

(1) Generate a random number pr between 0 and 1 to
determine the adaptive crossover probability, gener-
ate a random number pl between 0 and 1 to deter-

mine the crossing site, and generate a random

331
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number ps between 0 and 1 to determine which
side of the crossing site the portion of the chromo-
some should exchange with the corresponding por-
tion of its mate.

(2) Replace f in Eq. (7) by the fitness value of each
parent for computing the crossover probabilities,
pc1 and pc2.

(3) If pr �pc1 and pr �pc2, put the two parents to the
next generation without change.

(4) If pr is between pc1 and pc2, thus pc1 �pc2 and
ps �0.5 then the left portion of the father chromo-
some should be exchanged with the corresponding
portion of the mother chromosome to generate one
child and put mother chromosome directly to the
generation as another child. If ps �0.5 then the
right portion from the father chromosome should
be exchanged to generate one child and another
child is a copy of the mother chromosome. Simi-
larly if pc1 �pc2 then the mother chromosome
should be changed and put to the next generation
while the father chromosome is put to the next
generation without any change. In addition, the
crossover scheme is determined by the value of ps.

(5) If pr is less than both pc1 and pc2, generate two child
chromosomes as the normal crossover method
does.

In the proposed operation, the chromosomes with high
tness values can survive until a new chromosome with
igher fitness is created. It supports rapid searching for an
ptimal solution by taking advantage of the crossover
cheme swapping either side to the crossing site.

XPERIMENTAL EVALUATION
e tested the proposed contour segmentation with two

inds of sets of data: synthetic images and two sets of real
ental CT image sequences with a slice thickness of 0.67mm
nd 1mm and x-y resolution of 512�512. Visual C++ with
ICOM libraries22 for reading 16-bit CT images and the 3D

raphics library OpenGL were used as tools to implement
he proposed algorithm. CT images are saved in DICOM
ormat, an international standard for medical images, after
cquisition through the commercially available Shimadzu
td. SCT-7800 CT scanner. The test data were prepared to
eveal the capability of the proposed algorithm in finding an
ccurate boundary among many similar objects nearby. We
ompared the proposed algorithm with the existing B-spline
nake algorithm that uses the gradient magnitude based ex-
ernal force in the fitting function.11

First, we applied these algorithms to a synthetic image
imilar to a tooth surrounded by alveolar bone. To generate
he results, we constructed a B-spline contour with 8 control
oints and selected 20 initial chromosomes for each
0�40 window. For the following examples of B-spline
nake the stiffening parameter is set to 2. As shown in Figure
, the proposed algorithm extracts an accurate object
oundary while the existing B-spline snake fails.
We also applied the two algorithms to real CT image i

32
equences where an individual tooth often appears with
eighboring hard tissues such as other teeth and alveolar
one. If too many control points are used for a contour, it
educes the smoothing effect on the curve and consequently
enerates twisted parts of contour as shown in Figure 4.
igure 5 shows part of test results using different set of slices,
hich have lower resolution. Since the test image is small, a
0�10 search area suffices for a control point.

As shown in Fig. 5, an individual tooth often appears
ith neighboring hard tissues such as other teeth and alveo-

ar bone, and the proposed algorithm produces better results
han B-spline snake. The difference in the results stems from
he fitting function.

Part of the segmentation results of slice sequences is
hown in Figure 6 and those of a molar having a more
omplicated shape are shown in Figure 7. In Fig. 6, the fig-
res at the far left side show the results of teeth initialization

or the first slice by applying a proper threshold to each
ooth interactively. As the segmentation is performed slice by
lice, in contrast with the results of proposed method, malfit-
ing error contained in the results of the existing method

igure 3. Contours extracted from the synthetic data �number of control
oints CP=8�. �a� By B-spline snake method. �b� By the proposed
ethod.
ncreases.

J. Imaging Sci. Technol. 51�4�/Jul.-Aug. 2007
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Table I lists part of the numerical results of the segmen-
ation. N is the number of slices over which each tooth
pans. FPE (false positive error) is the percent of area re-
orted as a tooth by the algorithm, but not by manual seg-
entation. FNE (false negative error) is the percent of area

eported by manual segmentation, but not by the algorithm.
imilarity and dissimilarity indices,23,10 which show the
mount of agreement and disagreement, Sagr and Sdis, re-
pectively, between the algorithm area Aalg and the manual
egmentation area Aman, are computed according to

Sagr = 2
Aman � Aalg

Aman + Aalg

, �9�

Sdis = 2
Aman � Aalg − Aman � Aalg

A + A
. �10�

igure 4. Tooth contours extracted from CT image �CP=16�. �a� By the
roposed method. �b� By B-spline snake.
man alg p

. Imaging Sci. Technol. 51�4�/Jul.-Aug. 2007
These indices are calculated for validation on N slices of
ach tooth. Averaged values of Sagr as well as its minimum
nd maximum values are shown in Table I, and we conclude
hat the proposed method for segmentation isolates indi-
idual region of tooth successfully, in contrast with the re-
ults of B-spline snake shown in Table II.

The proposed fitting method is designed for the fast
ontour extraction by the improved crossover method which
ses a random number for copying genes of a superior chro-
osome to an inferior one when the random number falls

nto the range of crossover probabilities of its parents, pc1

nd pc2. Furthermore, the proposed crossover method de-
ides which part of crossing site will be exchanged between

igure 5. Tooth contours extracted from CT image sequence �CP=8�.
a� By the proposed method. �b� By B-spline snake.
arent chromosomes. The decided part fosters chromo-

333
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omes to be competent with a high fitness value. We imple-
ent two genetic B-spline fittings with existing crossover
ethods to analyze the performance of the proposed cross-

ver. Both existing methods generate the initial population
andomly, with uniform distribution, while using different
rossover methods. “Method A” uses a fixed pc of 0.75 and
Method B” uses AGA, which determines pc adaptively. Fig-
re 8 compares the convergence rate of the proposed cross-
ver method with those of the existing methods in terms of
he fitness value along chromosome generation. The figure

Figure 8. Comparison of convergence rates.

able I. Segmentation results for 8 teeth of the proposed method from the same scans
f CT set.

ooth N FPE�%� FNE�%� Sagr Smin Smax Sdis

20 4.43 8.37 0.935 0.915 0.977 0.131

22 7.88 3.45 0.945 0.916 0.973 0.111

25 8.96 4.48 0.935 0.901 0.968 0.131

24 8.46 6.47 0.926 0.905 0.970 0.148

27 5.81 8.29 0.929 0.917 0.967 0.143

26 2.07 7.05 0.953 0.923 0.971 0.094

25 5.21 3.79 0.955 0.927 0.976 0.089

23 5.69 1.42 0.965 0.932 0.983 0.069

able II. Segmentation results for 8 teeth of B-spline snake from the same scans of CT
et.

ooth N FPE�%� FNE�%� Sagr Smin Smax Sdis

20 6.12 27.21 0.814 0.574 0.952 0.373

22 26.01 1.16 0.879 0.628 0.956 0.241

25 45.86 11.28 0.756 0.316 0.897 0.487

24 29.89 4.59 0.842 0.764 0.941 0.313

27 28.06 8.06 0.836 0.726 0.933 0.328

26 15.09 8.81 0.884 0.818 0.948 0.232

25 27.98 5.03 0.852 0.755 0.936 0.296

23 10.12 3.89 0.932 0.771 0.972 0.136
igure 7. Extracted contours of molar �CP=32�. �a� By the proposed
igure 6. Tooth contours extracted from CT image sequence �CP=16�.
a� By the proposed method. �b� By B-spline snake.
hows that the proposed crossover method results in a better
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onvergence rate than either method A or B. The proposed
rossover method preserves the chromosomes with high fit-
ess for fast convergence and the results shows it is effective

o randomly select either side to crossing site for improved
rossover operation.

Individual segmentation of all teeth can be used to re-
onstruct a model of the mandible, as shown in Figures 9
nd 10. Every tooth can be separated from the jaw for simu-
ation of dental treatments.

ONCLUSIONS
n this paper, we presented the improved genetic B-spline
urve fitting algorithm for extracting individual smooth
ooth contours from CT slices while preventing the contour
rom being twisted. This enables us to obtain individual ac-
urate contours of teeth by overcoming the problem of the
ontour of a tooth expanding out to other teeth boundaries
n the fitting process. Furthermore, we also devised the
rossover method which accelerates convergence rate by
eans of both conserving chromosomes with high fitness

alue and allowing exchange of either side of cross site. The

igure 9. Wireframe models of tooth and mandible. �a� 3D reconstruc-
ion of tooth. �b� 3D reconstruction of mandible.
est results show that the proposed segmentation algorithm

. Imaging Sci. Technol. 51�4�/Jul.-Aug. 2007
uccessfully extracts a smooth tooth contour under specific
onditions such as the existence of objects in close vicinity.

This paper also demonstrated the possibility of recon-
truction of a 3D model in which each tooth was modeled
nd manipulated separately for the simulation of dental sur-
ery. These anatomical 3D models can be used for facilitat-
ng diagnoses, pre-operative planning and prosthesis design.
hey will provide radiography of the mandible, an accurate
echanical model of the individual tooth and that of its root

or endodontics and orthodontic operations. Hence the 3D
econstruction of the teeth can be used in virtual reality
ased training for orthodontics students and for preopera-
ory assessment by dental surgeons.
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