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Abstract. In this article, we present a fast switching filter for impul-
sive noise removal from color images. The filter exploits the hue,
saturation, and lightness color space and is based on the peer
group concept, which allows for the fast detection of noise in a
neighborhood without resorting to pairwise distance computations
between each pixel. Experiments on large set of diverse images
demonstrate that the proposed approach is not only extremely fast,
but also gives excellent results in comparison to various state-of-
the-art filters. © 2007 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.(2007)51:2(155)]

INTRODUCTION

The growing use of color images in diverse applications such
as content-based image retrieval, medical image analysis,
biometrics, remote sensing, watermarking, and visual quality
inspection has led to an increasing interest in color image
processing. These applications need to perform many of the
same tasks as their grayscale counterparts, such as edge de-
tection, segmentation, and feature extraction.' However, im-
ages are often contaminated with noise which is often intro-
duced during acquisition or transmission. In particular, the
introduction of bit errors and impulsive noise into an image
not only lowers its perceptual quality but also makes subse-
quent tasks such as edge detection and segmentation more
difficult. Therefore, the removal of noise from an image is
often a necessary preprocessing step for these tasks. Modern
image filtering solutions can eliminate noise without signifi-
cantly degrading the underlying image structures such as
edges and fine details.” Recent applications of color image
denoising include enhancement of cDNA microarray
images,” virtual restoration of artworks,”® and video
filtering.” "

Numerous filters have been proposed in the literature
for noise removal from color images.'™* Among these, non-
linear vector filters have proved successful in dealing with
impulsive noise while preserving edges and image details."”
These filters treat pixels in a color image as vectors to avoid
color shifts and artifacts. An important class of nonlinear
vector filters is the one based on robust order statistics with
the vector median filter (VMF)," the basic vector directional
filter (BVDF),'® and the directional-distance filter'” (DDF)
being the most well-known examples. These filters involve
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the reduced ordering'® of a set of input vectors within a
window to compute the output vector.

The fundamental order-statistics based filters (VME
BVDE, and DDF) as well as their fuzzylg’20 and hybrid21
extensions share a common deficiency in that they are
implemented uniformly across the image and tend to modify
pixels that are not corrupted by noise.” This results in ex-
cessive smoothing and the consequent blur of edges and loss
of fine image details. In order to overcome this, intelligent
filters that switch between a robust order-statistics based fil-
ter such as the VMF and the identity operation have been
introduced.””” These filters determine whether the pixel
under consideration is noisy or not in the context of its
neighborhood. In the former case, the pixel is replaced by
the output of the noise removal filter; otherwise, it is left
unchanged to preserve the desired (noise-free) signal struc-
tures. Such an approach is computationally efficient consid-
ering that the expensive filtering operation is performed only
on the noisy pixels, which often comprise a small percentage
of the image.

In this article, we introduce a new switching filter for
the removal of impulsive noise from color images. The pro-
posed filter exploits the hue, saturation, and lightness (HSL)
color space’ and is based on the concept of a peer group,*
which allows for the fast detection of noise in a neighbor-
hood without resorting to pairwise distance computations
between each pixel. The center pixel in a neighborhood is
considered as noise-free if it has a certain number of pixels
that are similar to it. In this case, it remains intact. Other-
wise, it is replaced by the VMF output, i.e., the pixel that
minimizes the sum of distances to all other pixels in the
neighborhood. The method is tested on a large set of images
from diverse domains. The results demonstrate that the pro-
posed filter is not only extremely fast, but also gives excellent
results in comparison to various state-of-the-art filters.

PROPOSED METHOD

Let y(x):Z*— 27’ denote a RGB color image that is com-
prised of a two-dimensional array of three component
samples. Although natural images are often nonstationary,
filters operate on the assumption that they can be subdi-
vided into small regions that are stationary."* This is accom-
plished using a small window that slides through the indi-
vidual image pixels while performing the filtering operation
locally. The most commonly used window is a square-
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Cyan

Figure 1. (a) HSL double hexcone and (b) hue circle.

shaped window W={x;|i=1,2,...,n} of a finite size n,
where x;,x,,...,x, is a set of pixels centered around x(,, )
which determines the position of the window.

Most vector filters operate by ordering the vectors inside
the filter window. However, calculating the aggregate dis-
tances used in the ordering criterion may limit the use of
these filters in real-time applications. One way to reduce the
computational requirements of a nonlinear vector filter is to
limit the number of comparisons that are performed be-
tween the center pixel and the neighboring pixels in the
window. The fast peer group filter’’ (FPGF) uses the concept
of the peer group™ to determine the output vector according
to the following rule:

X(n+1)12

XFPGF =
XVME otherwise

where Tol is the distance threshold, m is the size of the peer
group, || is the set cardinality, |p is the L, (Minkowski)
norm, and xy, denotes the VMF output given by

n

Xynp = argmin Y, [lx; - X[, (2)
xeW j=1

Essentially, the peer group of a pixel represents the neigh-
boring pixels in the window that are sufficiently “similar” to
it according to a particular measure. This concept is due to
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Table 1. Number of elementary operations.

Function ABS ADD SuB comp Mot 0S

L 3 2 3 1
Ly 2 3 1 3

Dyt 2 3 ] 6 1
S Max .3 S Max. 3 Max. 3

if [{x; € W|j # (n+1)/2 and [[x(1)2 — ], < Tol}| = m

) (1)

Lee™ and has been used extensively in the design of various
filters, often under the name of extended spatial
neighborhood.”

The FPGF is much faster than the well-known vector
filters mentioned in the previous section because it declares
the center pixel to be noise-free as soon as m pixels in the
window are determined to be sufficiently similar to it. If m is
low, and the level of noise in the image is not very high, this
allows for a dramatic reduction in the number of distance
computations that need to be performed. In particular, the
minimum and maximum number of distance calculations
necessary to classify a pixel equal m and n—m, respectively.

J. Imaging Sci. Technol. 51(2)/Mar.-Apr. 2007



Celebi et al.: Fast switching filter for impulsive noise removal from color images

Therefore, on the average, the number of distance calcula-
tions performed by the FPGF is much lower than that per-
formed by the VME, i.e., n(n—1)/2. However, due to the
nature of the L, norm, the distance computations performed
in highly correlated spaces such as RGB remain expensive.
On the other hand, if the image is transformed into a color
space which decouples chromaticity and luminance, the dis-
tance between two color vectors can be evaluated without
such a computation. In this study, we adopted the HSL color
space in order to accomplish this.

The HSL color space is an intuitive alternative to the
RGB space.” It uses approximately cylindrical coordinates,
and is a nonlinear deformation of the RGB color cube (Fig.
1(a)). The hue H €[0,360] is a function of the angle in the
polar coordinate system and describes a pure color. The
saturation S € [0, 100] is proportional to radial distance and
denotes the purity of a color. Finally, the lightness
L e[0, 255] is the distance along the axis perpendicular to
the polar coordinate plane and represents the brightness.
The distance between two vectors x;=(h;,s;,l;) and
x;=(hj,s;,];) in the HSL space is given by

D(x;,x;)) = Dygy (x;,x;)

= \/sl2 + sf —2sisicos(h;— hy) + (L= 1)>.  (3)

Building upon the idea of the peer group in much the
same way as the FPGFE, we propose a new filtering algorithm
called the Fast HSL-based switching filter (FHSF). First, the
RGB image is transformed to the HSL space."” The output
vector in a window is then determined according to the
following rule:

(e) peppers (0 pig.

Figure 2. Representative images from the image sef.

Xz if {x; € Wi # (n+1)/2 and S(x(y11)0:%) = 1} = m
XFHSF = ’
XVME otherwise
1 if |h;—hj| < Ht and |s;— s < St and |l; - [| < Lt
S(xipxj) = ) (4)
0 otherwise

where (h;, s;, I;) and (hj, s;, I;) denote the hue, saturation, and
lightness of the pixels x; andx;, respectively. Ht, St, and Lt are
the thresholds for the hue, saturation, and lightness, respec-
tively.

The FHSF algorithm works as follows. First, it checks
whether the center pixel is noisy or not. If the pixel is deter-
mined to be noisy, it is replaced by the VMF output. Other-
wise, it remains untouched. A noise-free pixel is one which
has a minimum of m peers that are sufficiently similar to it.
The similarity is determined by the function S, which checks
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to see if the hue, saturation and lightness of the pixel are
close to those of the center pixel.

The similarity function S is clearly cheaper to evaluate
when compared to the L, norm in the RGB space. The su-
perficial similarity between the S function and the L; norm
can be discounted by the fact that the former operates in the
decorrelated HSL space as opposed to the correlated RGB
space and consequently the conjunction involved in this
function allows for short-circuit evaluation. That is, for in-
stance, as long as two color vectors differ in hue, the remain-
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Figure 3. m vs minimum PCD at noise levels (a) 5%, (b) 10%, (c) 15%, and (d) 20%.

ing two conditions need not be evaluated. On the other
hand, in the L, norm the absolute differences between the R,
G, and B components always need to be calculated. Table I
shows the number of elementary operations required by
each function. It can be seen that in the worst case, since
COMPs and ADDs have the same complexity,” the § func-
tion has the same number of operations as the L; norm.

EXPERIMENTAL RESULTS

Noise Model and Error Metrics

Several simplified color image noise models have been pro-
posed in the literature.'”'""? In this study, the correlated
impulsive noise model originally proposed in Ref. 10 is
adopted. In order to evaluate the filtering performance the
following error metrics are used: mean absolute error
(MAE),"” mean squared error (MSE),"” normalized color
distance (NCD)," and perceptual color distance (PCD).
MAE and MSE are based on the RGB color difference and
measure the detail preservation and noise suppression cap-
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bility of a filter, respectively. NCD and PCD are perceptually
oriented metrics that measure the color preservation capa-
bility of a filter. NCD is based on the CIELAB color differ-
ence whereas PCD is based on the S-CIELAB color differ-
ence, which is a spatial extension of the former." It should
be noted that, to the best of the authors’ knowledge, PCD
has not been used in the color image filtering literature to
date. It is included because it takes into account both the
spatial and color sensitivity of the human visual system.*’

Parameter Selection
There are four parameters involved in the proposed filter: m
(the peer group size), Ht, St, and Lt. Appropriate ranges for
these parameters need to be determined to ensure a good
filtering performance on a variety of images. Since the filter-
ing operation is very fast, a simple grid search procedure can
be used for this task. In order to do this, the parameter space
should first be quantized.

The parameters m, Ht, St, and Lt were restricted to [1,
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c) default parameters

(e) St=20 (B Lt=280

Figure 4. Filtering results for the parrots image using different parameter
configurations.

8]" (step size A=1), [6, 20] (A=2), [4, 16] (A=2), [32, 64]
and (A=4), respectively. The sizes of the intervals for the Ht,
St, and Lt parameters follow the relative importance of the
individual components of the HSL space. This is because the
human visual system is most sensitive to changes in hue,
followed by saturation, and then lightness.* For example,
the hue threshold Ht is restricted to the [6, 20] interval
because for noise removal purposes, two colors that have
more than 20° of hue difference can safely be considered as
dissimilar (see Fig. 1(b)).

A set of 100 images was collected from the World Wide
Web to be used in the grid search. These included images of
people, animals, plants, buildings, aerial maps, manmade
objects, natural scenery, paintings, sketches, as well as scien-
tific, biomedical, and synthetic images and test images com-
monly used in the color image processing literature. Figure 2
shows several representative images from this set.

The PCD measure was used to quantify the goodness of
a particular set of parameters {m,Ht,St,Lt}. Figure 3 shows
the minimum PCD values obtained during the grid search at
each m value for several images that are contaminated with
5%, 10%, 15%, and 20% impulsive noise.

fAssuming a 3 X 3 window.
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b) 10% nois

a) original

e) FPGF,

(g) PGF (h) FHSF

Figure 5. Filtering results for the cat image corrupted with 10% noise.

As explained in the Proposed Method Section, the fil-
tering operation is faster for lower values of m. In fact, the
performance of the proposed filter (in terms of both the
effectiveness and the efficiency) will approach that of the
VMEF at high values of m. It can be seen from Fig. 3 that
m=3 provides a good compromise between effectiveness
and efficiency. This is in line with the observations of
Smolka and Chydzinski.”'

The ranges for the remaining three parameters, Ht, St,
and Lt, were determined as follows. For each test image, the
parameters were varied in the earlier-mentioned intervals
and the corresponding PCD values were calculated. Consid-
ering the diversity of the images, it is unreasonable to expect

159



Celebi et al.: Fast switching filter for impulsive noise removal from color images

()

)

@)

)

)

T

(j) FHSF ' @)

Figure 6. Filtering results for the pig image corrupted with 10% noise and the corresponding absolute differ-

ence images.

the same parameter combination to give the lowest PCD
value for each image. Therefore, the parameter combinations
that achieved the lowest 5% PCD values for each image were
recorded. It is expected that a parameter combination that
will perform well on a variety of images would appear some-
where in these top 5% lists. The intersection of these lists
revealed that the following ranges perform well on the test
images, Hte [8, 12], Ste[8, 14], and Lt e[40, 56]. For
comparison with other filters, the following default values
are used: Ht=10, St=10, and Lt=48.

Note that the full range of H is [0, 360] and thus ac-
ceptable values for Ht lie between 2.22% and 3.33% of this
range. Similarly, the range of S is [0, 100] and values for St
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lie between 8.00% and 14.00%. Finally, the range of L is
[0, 255] and values for Lt lie between 15.62% and 21.87%.
This is in line with the earlier-mentioned fact that the hu-
man visual system is most sensitive to changes in hue, fol-
lowed by saturation, and then lightness.** Figure 4 shows an
example of this phenomenon wherein a zoomed section of
the parrots image is corrupted with 10% noise and then
filtered using a parameter configuration in which two of the
thresholds are fixed while the other one is relaxed. Figure
4(c) is the filtering result with the default parameters, Fig.
4(d) is with Ht relaxed by 5% (Ht=28), Fig. 4(e) is with St
relaxed by 10% (St=20), and Fig. 4(f) is with Lt relaxed by
12.5% (Lt=80). It can be seen that although the change in
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Table I1. Comparison of the filters on the test images at 5% noise level.

Baboon (512 % 512 pixels) Peppers (512 x 480)

Filter MAE MSE NCD PCD Time Filter MAE MSE NCD PCD Time
NONE 3.021 444912 0.054147 3.190 - NONE 3.068 489.064 0.047504 4138

ASVMF 001 5.288 23915 0.034924 2.245 0.265 ASVMF o0 0.506 6.389 0.004151 0.534 0.172
ASVMF 4752 203.662 0.031785 2.189 0.672 ASVMF, i 0.507 7.089 0.004236 0.542 0.641
AVMF 1.909 114.535 0.017017 1.263 0.828 AVMF 0.419 21.954 0.006366 0.613 0.750
BVDF 11.270 379.708 0.07534 3.363 8.281 BVDF 2.150 30.059 0.018474 1.254 7.704
DDF 10.293 315.996 0.068711 3.069 8.765 DDF 1.730 15.445 0.014379 0.922 8.047
FENRF 4.044 218.383 0.027072 1.984 0.375 FFNRF 0.212 4.908 0.002637 0.436 0.329
FHSFys, 5.120 202.901 0.034014 2132 0.359 FHSFys, 0.233 3.021 0.002206 0.441 0.235
FHSF; 2.443 102.198 0.016858 1.269 0.093 FHSFs 0.208 2.672 0.002091 0.430 0.078
FPGF, 4416 201.745 0.028855 2.060 0.234 FPGF, 0.220 3.885 0.002388 0.440 0.125
FPGF, 7.164 7.9 0.046831 2.660 0.266 FPGF, 0.266 4.260 0.002657 0.471 0.109
PGF 1.483 69.330 0.010498 0.998 0.250 PGF 0.207 4.331 0.002422 0.431 0.234
SV 4005 169237 0026675 1930 0.359 SMF,, 0380 49 0003151 0489 0312
SVMF, g 4.010 169.825 0.026523 1.927 0.594 SVMF, g 0.335 3.642 0.00265 0.475 0.562
VMF 10.570 316.689 0.071926 371 0.624 VMF 1.680 10.600 0.014163 0.866 0.563
Parrots (1536  1024) Flowerbee (3088  2048)

Filter MAE MSE NCD PCD Time Filter MAE MSE NCD PCD Time
NONE 3.065 472.017 0.061343 4.685 ‘e NONE 3.066 480.868 0.046835 1.717

ASVMF g 0.179 3.110 0.002168 0.1465 1.187 ASVMF o0 0.578 5.952 0.003608 0.272 5.094
ASVMF i 0.181 3.653 0.002350 0.147 3.547 ASVMF i 0.559 6.543 0.003593 0.278 14.687
AVMF 0.359 22.315 0.007956 0.251 4.390 AVMF 0.376 20.639 0.005393 0.354 17.359
BVDF 0.861 8.135 0.007753 0.384 39.719 BVDF 1.814 11.650 0.010962 0.426 184.969
DDF 0.583 3.396 0.005536 0.290 43.391 DDF 1.655 9.473 0.009879 0.394 201.374
FENRF 0.101 2.449 0.001768 0.107 1.906 FFNRF 0.167 2.630 0.001547 0.174 7.891
FHSF g 0.082 1220 000094  0.108 1.204 FHSFig, 0175 1718 000119 073 4907
FHSF 0.065 0.855 0.000741 0.097 0.047 FHSF 0.144 1.313 0.00107 0.163 1.453
FPGF, 0.107 2.263 0.001714 0.103 0.735 FPGF, 0.160 2.149 0.001369 0.166 2.969
FPGF, 0.125 2.332 0.001708 0.111 0.547 FPGF, 0.180 2.168 0.001383 0.173 2.281
PGF 0.104 2.608 0.001832 0.106 1.485 PGF 0.167 2.807 0.001518 0.171 5.969
SVMF 00 0.123 2.042 0.001472 0.120 1.922 SVMF 1 eqn 0.439 4.209 0.002671 0.243 8.344
SVMF, i 0.105 1.178 0.001072 0.111 3.500 SVMF 01 0417 3.390 0.002406 0.235 14.047
VMF 0.540 2.609 0.005351 0.267 3.500 VMF 1.697 9.660 0.010444 0.397 14.094
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Baboon (512 % 512 pixels) Peppers (512 % 480)

Filter MAE MSE NCD PCD Time Filter MAE MSE NCD PCD Time
NONE 6.168 914.459 0.109563 5.505 NONE 6.184 983.288 0.094969 6.764

ASVMF 601 5.014 210.446 0.035257 2.233 0.281 ASVMF 601 0.646 15.608 0.006727 0.618 0.203
ASVMF, 4619 20553  0.033701 209 065 AWM, 079 1854 0007333 0646 0.578
AVMF 2.680 149.962 0.026662 1.644 0.797 AVMF 0.845 44.461 0.01275 0.851 0.703
BVDF 11.650 397.573 0.078111 3.508 8.172 BVDF 2.378 40.246 0.021017 1.488 7.703
DDF 10.564 324.853 0.070965 3.153 8.813 DDF 1.888 17.109 0.016101 0.970 7.953
FENRF 4.485 231.183 0.031609 2.161 0.375 FENRF 0.439 11.573 0.005574 0.555 0.328
FHSF g 5768 12239 0038852 2333 0375 FHSF 03923 6046 0003907 0523 0.235
FHSF; 3.151 127.181 0.022178 1.539 0.109 FHSF, 0.370 6.098 0.003869 0.508 0.079
FPGF, 5.205 224.401 0.034677 2.310 0.235 FPGF, 0.429 1.172 0.004726 0.527 0.157
FPGF, 1.770 287.367 0.051368 2.819 0.281 FPGF, 0.477 7.680 0.004843 0.555 0.140
PGF 2.288 98.839 0.016958 1.356 0.329 PGF 0.432 10.999 0.005185 0.533 0.250
SV 4006 172698 008911 1978 0422 SMF,, 0539 13218 000528 0575 0.344
SVMF g 4041 173619 0028697 1984 0656 SMF, 0461 8509 0004435 0529 0.563
VMF 10.813 326.192 0.073878 3.256 0.641 VMF 1.842 13.163 0.015854 0.924 0.547
Parrots (1536 % 1024) Flowerbee (3088 x 2048)

Filter MAE MSE NCD PCD Time Filter MAE MSE NCD PCD Time
NONE 6.119 941.234 0.122676 7.956 NONE 6.129 960.795 0.093671 2.851

ASVMF,,, 0310 10874 0005117 0222 1250 ASVMF,,, 06449 12948 000535 032 5.250
ASME,, 033 12633 0005785 0221 3610 ASVMF,,  0.655 15074 0005739 0346 14797
AVMF 0.718 4431 0.015853 0.419 4.250 AVMF 0.762 41.588 0.010859 0.566 17.595
BVDF 0.935 9.100 0.008498 0.412 40.797 BVDF 1.925 13.044 0.01177 0.452 183.641
DDF 0.646 4.444 0.006251 0313 43.906 DDF 1.737 10.189 0.010584 0411 192.375
FENRF 0.218 6.047 0.003981 0.160 1.953 FENRF 0.348 6.361 0.003401 0.235 8.016
FHSFys, 0.149 3.201 0.001901 0.161 1.344 FHSFys, 0.307 4.138 0.002272 0.217 5.578
FHSF 0.132 3.448 0.001691 0.162 0.485 FHSF 0.274 3.904 0.002131 0.209 1.828
FPGF, 0.214 4.490 0.003445 0.144 0.905 FPGF, 0.328 4.430 0.002792 0.212 3.813
FPGF, 0.227 4.236 0.003273 0.150 0.718 FPGF, 0.348 411 0.002714 0.218 2.938
PGF 0.226 6.976 0.00403 0.177 1.531 PGF 0.355 7.583 0.003343 0.233 6.625
SVMF 00 0.238 7.857 0.003813 0.196 2.047 SVMF 00 0.524 9.415 0.004118 0.284 8.859
SVME 0.170 3210 0002165 0149 3265 WMy, 0470 5194 0003169 025 14235
VMF 0.616 3.241 0.006174 0.296 3.250 VMF 1.778 10.406 0.011118 0.417 14.156
162 J. Imaging Sci. Technol. 51(2)/Mar.-Apr. 2007
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Table IV. Comparison of the filters on the test images at 15% noise level.

Baboon (512 % 512 pixels) Peppers (512 % 480)

Filter MAE MSE NCD PCD Time Filter MAE MSE NCD PCD Time
NONE 9.212 1357.231 0.163820 1.241 - NONE 9.200 1465.480 0.141325 9.101

ASVMF g 5.043 222431 0.039034 2319 0.234 ASVMF 0 0.902 32.168 0.010989 0.812 0.187
ASVMF,, 4726 219993 0038661 2285 0410 ASVMF,,  0.962 36363 0012038 0843 0.578
AVMF 3.572 190.028 0.037089 1.957 0.719 AVMF 1.240 64.149 0.018588 1.097 0.687
BVDF 12.032 417.613 0.080963 3.640 8.109 BVDF 2.623 57.374 0.023845 1.812 7.657
DDF 10.846 335.445 0.073274 3.246 8.672 DDF 2.039 19.385 0.017644 1.043 7.953
FFNRF 5.017 251.5711 0.037636 2.341 0.344 FFNRF 0.691 20.228 0.009018 0.709 0.328
FHSFys, 6.483 246.382 0.044302 2519 0.360 FHSFys, 0.590 14.166 0.006159 0.680 0.249
FHSF 3.937 157.523 0.028343 1.805 0.110 FHSF 0.566 14.178 0.006134 0.676 0.094
FPGF, 6.042 249.839 0.040849 2.524 0.281 FPGF, 0.645 11.784 0.007078 0.632 0.172
FPGF, 8.400 305.442 0.056120 2.959 0312 FPGF, 0.691 11.280 0.00703 0.663 0.156
PGF 3135 132.236 0.023939 1.679 0.328 PGF 0.677 20.420 0.008287 0.735 0.281
SVMF 00 4.205 189.528 0.03397 2.106 0.391 SVMF 00 0.803 29.786 0.009688 0.79 0.344
SVME 4258 189290 0033357 2086 059 SWMFy, 0659 17584 0007142 0.668 0.547
VMF 11.066 337.448 0.075857 3.343 0.594 VMF 1.987 15.428 0.017381 0.996 0.563
Parrots (1536 < 1024) Flowerhee (3088 < 2048)

Filter MAE MSE NCD PCD Time Filter MAE MSE NCD PCD Time
ASVM,qn 0.536 25.797 0.010298 0.379 1.297 ASVMF 601 0.841 27.884 0.008753 0441 5.312
ASME, 0597 0275 001164 0368 3500 ASVMF,,,  0.888 31652 0009704 0483 14469
AVMF 1.086 66.930 0.023909 0.585 4.187 AVMF 1.148 62.520 0.016352 0.763 17.250
BVDF 1.017 11.178 0.009398 0.456 41.063 BVDF 2.048 15.394 0.012673 0.484 176.156
DDF 0.716 5.083 0.007065 0.343 44.156 DDF 1.825 11.110 0.011324 0.430 186.750
FFNRF 0.362 11.560 0.006896 0.236 1.984 FENRF 0.551 12.041 0.005667 0.304 1.875
FHSFys 0.237 8304 000338 0276 1547 FHSFys 0.458 9270 000363 0270 6.250
FHSF; 0.225 9.875 0.00328 0.304 0.563 FHSF; 0.427 9.834 0.003582 0.268 2.124
FPGF, 0.328 6.961 0.005292 0.192 1.094 FPGF, 0.502 7.020 0.004282 0.254 44N
FPGF, 0.338 6.384 0.004945 0.198 0.906 FPGF, 0.523 6.352 0.00410 0.259 3.501
PGF 0.376 14717 0.006867 0.311 1.703 PGF 0.568 15.801 0.005609 0.309 1.151
SVMF 0.449 22600 0008443 0391 2172 SWMF,,, 077 BT 0007241 0384 8.907
SVME 0.287 9050 000406 0244 3375 SWMF, 0600 1385 0004855 0300 13.906
VMF 0.697 4.048 0.007065 0.331 3.360 VMF 1.864 11.356 0.011815 0.437 13.875
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the hue threshold is the smallest, the degradation in the
filtering result is the greatest. On the other hand, the change
in the lightness threshold is the largest, but the filtering re-
sult is better than those of Figs. 4(d) and 4(e).

Comparison with State-of-the-Art Filters

The proposed filter is compared with recent switching filters
such as the (PGF),” the adaptive vector median filter
(AVMF),*® the fast fuzzy noise reduction filter (FFNRF),*
the FPGE’' the vector sigma filters based on the mean and
lowest ranked vectors (SVMF, ..n, SVMank),33 and their
adaptive counterparts (ASVMF,, c.n» ASVMF,,.,).” The tra-
ditional filters mentioned in the introduction (VMFE, BVDE,
and DDF) are also included in this comparison to highlight
the merits of the switching technique. Finally, for compari-
son purposes, the FHSF version that uses the 3D distance
function in the HSL space (FHSFyg;) and the L, version of
the FPGF (FPGF,) are also considered in the experiments. In
the following discussion, the standard versions of the FHSF
and the FPGF are denoted as FHSFg (Eq. (4)) and FPGF,
(Eq. (1) with p=2), respectively.

Figure 5 shows the filtering results for a zoomed section
of the cat image. Figures 5(c) and 5(d) show the outputs of
the nonswitching filters, i.e., the VMF and the DDF. It can
be seen that even though these filters suppress the noise very
well, this comes at the expense of the blurring of image
details, e.g., the whiskers. On the other hand, the switching
filters, i.e., the FPGF,, the FFNREF, the PGF, and the FHSF
preserve the details satisfactorily. Among these, the FHSF;
strikes the best balance between noise removal and detail
preservation.

Figure 6 shows the filtering results for a section of the
pig image and the corresponding difference images. In order
to obtain the difference images, the pixelwise absolute differ-
ences between the original and the filtered images are mul-
tiplied by 5 and then negated. As expected, the VMF and the
DDF outputs show significant differences when compared to
the original image. In contrast, the switching filters show a
clear improvement in restoring the original image. Among
these, it can be seen that the AVME, the PGFE, and the FHSF;
give the best performance.

Tables II-IV compare the filters using the criteria de-
scribed in the subsection Noise Model and Error Metrics,
i.e., MAE, MSE, NCD, PCD, and the execution time® in
seconds. It can be seen that the FHSFg compares favorably
with the best filters in terms of filtering effectiveness, as as-
sessed by the first four criteria. The execution time is also a
very important factor which determines the practicality of a
noise removal filter. From this perspective, due to their high
computational requirements, the nonswitching filters in gen-
eral are not appropriate for denoising large images that are
common in domains such as astronomy, remote sensing,
and biology. Regarding the remaining filters, as the image
size increases, the computational advantage of the FHSFg
over the others becomes apparent. In general, the FHSFy is
almost twice as fast as the next fastest filter, i.e., the FPGF,.

K¢ language, GCC 3.4.4 compiler, Intel Centrino 1.6 GHz processor.
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Note that the timing for the FHSF; includes the RGB to HSL
transform, although this is negligible.H

In summary, the experiments demonstrate that the
FHSFg combines simplicity, excellent filtering performance
and significant computational efficiency, which makes it a
practical method for impulsive noise removal from color
images.

CONCLUSIONS

In this article, we introduced a fast switching filter for the
removal of impulsive noise from color images. The proposed
filter exploited the HSL color space in conjunction with the
concept of a peer group in order to allow for the fast detec-
tion of noise in a neighborhood. The method was tested on
a large set of images from diverse domains, as well as clas-
sical images used in the color image processing literature.
The experiments demonstrated that the new method is
much faster than state-of-the-art filters and that the filtering
quality is also excellent.
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