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bstract. Traditional vegetation indices are based on only a few
pectral bands. However, hyperspectral spectrometers, such as the
irborne visible infrared imaging spectrometer (AVIRIS), collect data
ith 224 contiguous spectral bands. Traditional vegetation index ex-

raction methods lose much of the information contained in hyper-
pectral data. The universal pattern decomposition method (UPDM)
s tailored for hyperspectral data analysis. In this article, we consider
he UPDM as a type of multivariate analysis; standard patterns are
nterpreted as an oblique coordinate system and coefficients are
hought of as the coordinates of a pixel’s reflectance. This article
escribes UPDM hyperspectral data transformation of AVIRIS data,

he performance of a vegetation index based on the universal pat-
ern decomposition method (VIUPD), and the influences of a noise-
o-vegetation index. The results demonstrate that the VIUPD is an
ffective vegetation information extraction approach for hyperspec-

ral data. The VIUPD is more sensitive to vegetation conditions than
he normalized difference vegetation index and enhanced vegeta-
ion index. Furthermore, noise influences can be neglected in
IUPD computations, with satisfactory accuracy. © 2007 Society for

maging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.�2007�51:2�141��

NTRODUCTION
egetation indices (VIs) are spectral transformations of two
r more bands designed to enhance vegetation properties
nd allow for reliable representations of photosynthetic ac-

eceived Aug. 26, 2006; accepted for publication Nov. 11, 2006.
062-3701/2007/51�2�/141/7/$20.00.
ivity and structural canopy variations.1 These indices are
ensitive to a variety of biophysical vegetation canopy pa-
ameters, such as the leaf area index, fraction of vegetation
over, leaf angle distribution, and leaf chlorophyll
oncentration.2 VIs derived from satellite remotely sensed
ata are primary sources of information for operational
onitoring of the earth’s vegetative cover. Most of these VIs

re called broadband vegetation indices because they are
ased on algebraic combinations of reflectance in the red �R�
nd near infrared (NIR) spectral bands.3 The broadband in-
ices use average spectral information over broad band-
idths, resulting in the loss of critical information available

n specific narrow bands.4 In addition, broadband indices are
eavily affected by the soil background in conditions of low
egetation cover.5

Hyperspectral sensors measure reflectance in a large
umber of narrow wavebands, generally with bandwidths of

ess than 10 nm. Reflectance and absorption features related
o specific crop physical and chemical characteristics can be
etected with these narrow bands.6 With many airborne im-
ging spectrometer systems in use today and the rise of spa-
eborne hyperspectral sensors, better understanding of this
ype of image data is increasingly needed.7 The airborne
isible infrared imaging spectrometer (AVIRIS) has 224 con-
iguous spectral bands.8 However, application of a tradi-
ional vegetation index extraction method will lose much of
he information contained in hyperspectral data. Thus, VIs
141
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erived from the R and NIR bands are unsuitable for hyper-
pectral data (i.e., AVIRIS) analysis.

The universal pattern decomposition method (UPDM)
s a sensor-independent method that is tailored for analysis
f satellite-derived data.9,10 Sets of spectral reflectance mea-
ured by a sensor are transformed by the UPDM into three
r four coefficients with three or four fixed spectral reflec-
ance patterns. Spectral reflectance patterns are determined
n the spectral region between 350 and 2500 nm and are
alled the “universal standard spectral patterns.” Sensor
avelength values are selected from the universal standard

pectral patterns to analyze the spectral region of each sen-
or. These coefficients are “pattern decomposition coeffi-
ients.” The UPDM can be explained using two analysis
ethods: spectral mixing analysis and multivariate analysis.

or the former, the UPDM expresses the spectrum of each
ixel as the linear sum of three fixed, standard spectral pat-

erns (i.e., the patterns of water, vegetation, and soil); each
oefficient represents the ratio of the spectral patterns of the
hree components. If we think of the UPDM as multivariate
nalysis, standard patterns are interpreted as an oblique co-
rdinate system, and coefficients are thought of as the coor-
inates of a pixel’s reflectance. If an additional supplemen-

ary pattern is needed, the reason for this addition is made
learer by the multivariate analysis explanation than that by
he spectral mixing analysis. The UPDM method has been
uccessfully applied to simulated data with wavelengths ob-
erved by Landsat/ETM+, Terra/MODIS, ADEOS-II/GLI,
nd the 92 bands-CONTINUE sensors9 and validated using

ODIS and ETM+ satellite data from over the Three
orges region in China.11

This article examines the UPDM hyperspectral data
ransformation method using AVIRIS hyperspectral data; the
erformance of a vegetation index based on the universal
attern decomposition method (VIUPD); a comparison of

he VIUPD, normalized difference vegetation index (NDVI),
nd enhanced vegetable index (EVI); and the influences of
oise on the above VIs.

ETHOD
he Universal Pattern Decomposition Method
e developed a UPDM for hyperspectral data analysis.12

he UPDM decomposes reflectance values at each pixel into
linear sum of standard spectral patterns for water, vegeta-

ion, soil, and any additional patterns using the following
quation:11,12

�i� → Cw · Pw�i� + Cv · Pv�i� + Cs · Ps�i� � + Ca · Pa�i� , �1�

here R�i� is the reflectance of band i measured by the
atellite sensor; Cw, Cv, and Cs are the respective decompo-
ition coefficients; Ca represents additional coefficients; and

w�i�, Pv�i�, and Ps�i� are the standard spectral patterns of
ater, vegetation, and soil for some typical sensor, which are

ntercepted from the same standard pattern normalized in
he same wave region of 350–2500 nm for any sensor, with
espect to the properties of the sensor. Pa�i� is the additional

tandard pattern for i bands and is an optional component b

42
hat is also controlled according to the purpose of the study.
Equation (1) can be expressed using matrix notation as

ollows:

R = PC + r �2�

r

�
R1

R2

�

Rn

� =�
P1w P1v P1s P14

P2w P2v P2s P24

� � � �

Pnw Pnv Pns Pn4

� ·�
Cw

Cv

Cs

Ca

� +�
r1

r2

�

rn

� , �3�

here R = �R1 ,R2 , . . . ,Rn�T is the column vector of observa-
ions, n is the number of spectral bands,
= �Pw , Pv , Ps , Pa� is the n�4 matrix of which the row vec-

or is the standard spectral pattern for band number n,
= �Cw ,Cv ,Cs ,Ca�T is the column vector of UPDM coeffi-

ients, and r is the residual column vector for band i.
The three standard spectral patterns (column vectors

w, Pv, Ps) are intercepted from Pk����k=w ,v , s�, which are
he normalized reflectance of Rk��� in the wavelength region
rom 350 to 2500 nm according to Eq. (4),

Pk��� =

� d�

� Rk���d�

Rk��� , �4�

here the Rk��� values are the spectral reflectance patterns
f standard objects, and 	d� refers to integration of the total
avelength range. The shapes and magnitudes of the stan-
ard patterns Pk��� are fixed for any sensor.15

The fourth standard spectral pattern (column vector Pa)
s intercepted from Pa���, which is defined using the nor-

alized residual value of yellow-leaf, expressed by

Pa��� =

ra��� � d�

� 
ra���
d�

, �5�

here ra��� is the residual value for a yellow leaf relative to
band, given by Eq. (6).

ra��� = Ra��� − �CwPw��� + CvPv��� + CsPs���� . �6�

ere, Ra��� is the measured value for the yellow-leaf sample
nd ra��� is the residual value. For any sensor, the standard
atterns for each sensor are defined by

Pk�i� =

�
�s�i�

�e�i�

Pk���d�

�
�s�i�

�e�i�

d�

�k = w,v,s,a� , �7�

here �s�i� and �e�i� are the start and end wavelengths for
�e�i�
and i, respectively, and 	�s�i�d� is the wavelength width of
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and i. The values of Pw�i�, Pv�i�, Ps�i�, and Pa�i� differ with
he sensor, but they are all intercepted from the same nor-

alized standard spectral pattern.
The multiple value of 	d� used in numerator of Eqs.

4) and (5) is only for the purpose of expands the normal-
zed result value, respectively.

Inverting Eq. (2) and minimizing the sum-of-squared-
rror criterion function yields a unique solution of C as
ollows:

C = �PTP�−1PTR , �8�

here R is a vector known from satellite data and P is a
tandard spectral pattern matrix as described above. The
pectral pattern matrix is derived from normalized standard
pectral patterns of water, vegetation, soil, and supplemen-
ary data.11

egetation Index Algorithm
commonly used vegetation index is the NDVI, given as

ollows:

NDVI =
�NIR − �red

�NIR + �red

. �9�

owever, this index uses only red and near infrared reflec-
ance data.13 The EVI uses the red and near infrared bands
ut also includes blue-band reflectance data to correct for
erosol influences in the red band, and some other aerosol
esistance coefficients.1 The EVI is given as follows:

EVI = G
�NIR − �red

�NIR + C1 � �red − C2 � �blue + L
, �10�

here � values are atmospherically corrected or partially at-
ospherically corrected (e.g., for Rayleigh and ozone ab-

orption) surface reflectances; L is the canopy with back-
round adjustment addressing nonlinear, differential near
nfrared- and red-band radiant transfer through the canopy;
nd C1, C2 are aerosol resistance coefficients that use the
lue band to correct for red-band aerosol influences. The
oefficients of the EVI algorithm are L=1, C1 =6, C2 =7.5,
nd G=2.5, where G is the gain factor.14

The above methods, namely broadband indices, use ei-
her two or three satellite-observed wavelength bands or re-
uire some additional coefficient inputs. We developed a
ew VIUPD.15 The VIUPD is defined as the linear sum of

he pattern decomposition coefficients but is sensor inde-
endent. The new vegetation index is normalized by total
eflectance or total brightness to minimize shadow effects
nd obtain stable values. The index is a function of the linear
ombination of the pattern decomposition coefficients. The
ormula is given as follows:

VIUPD =
�Cv − a � Cs − Ca�

Cw + Cv + Cs

, �11�

here �Cw +Cv +Cs� represents the sum of total reflectance,

ven if a additional pattern is included, because the inte- m

. Imaging Sci. Technol. 51�2�/Mar.-Apr. 2007
rated value of 	ra���d� equals zero, and coefficient a has a
alue of 0.10 and represents the standard soil pattern
oefficient.15 The value of coefficient a is experimentally de-
ermined so that for the dead leaf, the average value of
IUPD is about zero, and for standard vegetation, it is about
.0.

ATA AND ALGORITHM PERFORMANCE
he AVIRIS instrument contains 224 different detectors,
ach with a wavelength sensitive range (also known as a
pectral bandwidth) of approximately 10 nm, allowing it to
over the entire range between 380 and 2500 nm.8 AVIRIS
tandard data products were downloaded from Jet Propul-
ion Laboratory Web site.16 These data were acquired over

offett Field, CA, an area that included vegetation, urban
tructures, and water. The measurement data were converted
o ground reflectance data with proper calibration and cor-
ection for atmospheric effects.

In this study, we used the same water, vegetation, soil,
nd additional standard spectral patterns as Refs. 9–12 and
5, i.e., the fixed standard spectral pattern for any sensor. For
VIRIS data, bands that fell into regions with strong atmo-
pheric absorption and those with poor quality or zero val-
es were removed. Table I shows wavelength regions and the
VIRIS bands used in this analysis.

In the UPDM, however, we converted an uninterrupted
pectral wavelength range from 350 to 2500 nm, excluding
egions with strong atmospheric absorption. The excluded
pectral regions are 901–990, 1101–1190, 1301–1520, and
751–2080 nm, respectively (Table I). Therefore, the total
umber of bands equaled 1260 with 1 nm bandwidth. When
pplying the UPDM approach to AVIRIS data, we inter-
epted the AVIRIS standard matrix P using Eq. (7). Because
ome of AVIRIS bands had zero signal values, the final band
umber was 120; thus P = �Pw , Pv , Ps , Pa� is the 120�4 ma-

rix vector. Figure 1(a) shows the universal 1260-band nor-
alized standard patterns of soil, water, vegetation, and the

dditional pattern; Fig. 1(b) shows the 120-band AVRIS nor-
alized standard patterns.

Figure 2 shows the steps for AVIRIS data transforma-
ion and vegetation index computation. The 120-band
VIRIS data were obtained from the original 224-band data
ecorded by the AVIRIS sensor; VIUPD was computed using
PDM coefficients after conducting AVIRIS data transfor-

Table I. Wavelength regions and the AVIRIS bands used in this analysis.

elected wavelength �nm� AVIRIS band AVIRIS bands actually used

71.0–900.0 2–57 5–57

91.0–1100.0 68–78 68–78

191.0–1300.0 88–101 88–101

521.0–1750.0 124–147 124–147

081.0–2360.0 182–209 182–199
ation. The NDVI was computed using Eq. (9) and the

143
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irectly selected near-infrared band 47 �837 nm� and red
and 25 �646 nm�. The EVI was created using Eq. (10) and
he same NIR and R bands as the NDVI, as well as the blue
and 6 �458 nm�.

ESULTS AND DISCUSSION
ensitivity Comparison of Vegetation Indices
n this study, three vegetation indices (the VIUPD, NDVI,
nd EVI) were computed from AVIRIS data. Figure 3 shows
he VIUPD, EVI, and NDVI images (400�400 pixels) de-
ived from the AVIRIS data. From Fig. 3 we can see that the
IUPD image shows more detailed information than the
DVI and EVI images. The theoretic interpretation of
hich is that the VIUPD was computed using four UPDM

oefficients, i.e., the VIUPD was a linear function of Cw, Cv,

s, Ca, and was normalized with the total reflectance value.
he traditional broadband vegetation indices are usually
onstructed with NIR and R bands, while the VIUPD is

igure 1. The universal 1260-band normalized standard patterns of soil,
ater, vegetation, and the additional pattern �a� and the 120-band
VIRIS standard pattern �b�. �b� was intercepted from �a� using Eq. �7�.
omputed using all the observed wavelengths, excluding 4

44
avelengths with strong atmospheric absorption and bands
ith poor quality data. Therefore, the VIUPD is more sen-

itive than the EVI and NDVI as shown in Fig. 3. Previous
tudies have reported that the VIUPD reflects vegetation
oncentrations, the amount of CO2 absorption, and the de-
ree of terrestrial vegetation vigor more sensitively than the
DVI and EVI, or is especially sensitive to CO2

bsorption,15 however, the data used are ground-measured
eflectance data (i.e., measured using ASD field spectra in-
trument) rather than data acquired via aircraft-mounted or
atellite sensor.

This paper assess the performance of the VIUPD using
he AVIRIS image collected in 1997 over the Moffett Field
CA), However, without the knowledge of ground truth data
o be used, the experiments using the AVIRIS data are only
ualitative with a reasonable theoretic explanation.

For proving the better performance of the VIUPD over
DVI and EVI, we also compared the relationship between

he VIUPD and the traditional EVI and NDVI (top left cor-
er of Fig. 3; 200�200 pixels), as shown in Fig. 4. Figure
(a) shows the relationship between the VIUPD and EVI;
he horizontal axis is the VIUPD, and the vertical axis rep-
esents the EVI. Compared to the EVI, the VIUPD expands
he ranges of the vegetation index. For example, the values
or water range from −0.2 to 0.4 for the VIUPD but only
rom −0.1 to 0.1 for the EVI, as shown by Fig. 4(a). The
IUPD can also detect small vegetation changes caused by

he phytoplankton concentration in the water. For the soil
nd vegetation samples, the VIUPD and EVI range from 0.2
o 1.2 and 0.2 to 0.8, respectively. The linear correlation
oefficient is 0.9425 between the EVI and VIUPD for all
amples. This means that the VIUPD and EVI have a high
orrelation but the regression lines have a lower slopes (Fig.

Figure 2. Flowchart of vegetation index computation.
(a)), thus the VIUPD is more sensitive than the EVI. The

J. Imaging Sci. Technol. 51�2�/Mar.-Apr. 2007
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ower and the upper limits for the VIUPD are about −0.3
nd 1.2, which are determined by the factor a in the VIUPD
ormula.

Figure 4(b) shows the relationship between the VIUPD

igure 3. Image of vegetation indices derived from AVIRIS data �400
400 pixels�.
. Imaging Sci. Technol. 51�2�/Mar.-Apr. 2007
nd NDVI. The horizontal and vertical axes represent the
IUPD and NDVI, respectively. For water, the VIUPD and
DVI have approximately the same change in scope. How-

ver, for other samples, they show an increasingly depressed
rend for the NDVI value, with the NDVI finally reaching its
aturation point. The linear correlation coefficient is 0.8960
etween the NDVI and VIUPD for all samples.

oise Influences on the Vegetation Indices
o estimate the influences of noise on the vegetation index,
e compared the vegetation index derived from original data

nd those derived from noise-removed data using the prin-
ipal component transform (PCT) method illustrated in Fig.
.17 Applying the PCT algorithm to AVIRIS data, the first 16
omponents of the PCT contained 99.99% of the data vari-
nces with the noise removed. The horizontal axes of (a),
b), and (c) show the original data derived VIUPD, EVI, and
DVI, respectively. The vertical axis shows the noise-

emoved vegetation index. Figure 5 shows that the VIUPD
nd EVI have neglectable noise influence, while the NDVI
as more influences for NDVI values below zero.

igure 4. Relationship between the VIUPD and traditional EVI and
DVI.
145
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ONCLUSIONS
his study examined UPDM hyperspectral data transforma-

ion of AVIRIS hyperspectral data, the performance of a
IUPD and the influences of noise on vegetation indices.

The VIUPD reflects the linear sum of the four pattern
ecomposition coefficients. Two or three reflectance bands
re used to calculate the EVI and NDVI, while the VIUPD is
omputed using four UPDM coefficients. Thus the VIUPD
s more suitable for hyperspectral data analysis than the EVI
nd NDVI.

The results demonstrate that the VIUPD is an effective
egetation information extraction approach for hyperspec-
ral data. The VIUPD is more sensitive to vegetation condi-
ions than the NDVI and EVI. Furthermore, noise influences
an be neglected in VIUPD computations with satisfactory
ccuracy.

The experiments using the AVIRIS data are only quali-
ative for the lack of ground real reference data. The lower
nd the upper limits for the VIUPD are about −0.3 and 1.2,
espectively, which are determined by the factor a in the
IUPD formula.
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