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bstract. In this paper, the analysis methods used for developing
maging systems estimating spectral reflectance are considered.
he chosen system incorporates an estimation technique for spec-

ral reflectance. Several traditional and machine learning estimation
echniques are compared for this purpose. The accuracy of spectral
stimation with this system and each estimation technique is evalu-
ted and the system’s performance is presented.
2007 Society for Imaging Science and Technology.
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NTRODUCTION
n this paper, the analysis methods used for developing im-
ging systems estimating spectral reflectance are considered.
he estimation of spectral reflectance determines perfor-
ance of a high quality color imaging system which is re-

uired for digital archives, network museums, e-commerce,
nd telemedicine.1 Especially the design of a system for ac-
urate digital archiving of fine art paintings has awakened
ncreasing interest. In such a system the digital image is eas-
ly examined by using a broadband network. The visitors to

useums, art experts and artists would be able to appreciate
variety of paintings at any viewing site regardless of where

hose paintings are located. In addition, archiving the cur-
ent condition of a painting with high accuracy in digital
orm is important to preserve it for the future. Several re-
earch groups worldwide have been working on these
roblems.2–14

Conventional color imaging systems have some limita-
ions, namely dependence of images on the illuminant and
haracteristics of the imaging system. The imaging systems
ased on spectral reflectance, unlike the conventional sys-
ems, are device independent and capable of reproducing the
mage of the scene under any illumination conditions. Also,
hese systems can incorporate the color appearance charac-
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eristics of the human visual system. Owing to the fact that
pectral characteristics are smoothed, the high-dimensional
pectral reflectance is accurately represented by a small num-
er of channel images.15–17 Therefore, the task of spectral
stimation includes statistical analysis of the reflectance
pectra and minimization of the estimation error. The
hoice of error measures is a general topic of broader inter-
st, and choices are sometimes contrary in impact. In the
rchival realm, ramifications of optimizing on RMSE versus
olor difference may depend on applications. For example,
pectral optimization may better enable the identification of
olorants used while color difference optimization may yield
uperior visual reproductions.

The traditional techniques used for the estimation in-
olve matrix-vector computation and usually assume a linear
odel of the data. Although the approach based on linear

lgebra and a nonlinear data model is proposed in the
iterature,4 machine learning techniques seem appealing.
hey estimate spectra of the scene, incorporate the data
onlinearity, and involve training and prediction procedures.
herefore, a neural networks-based method for spectral re-
onstruction has been proposed by Ribes et al.18 The tested
ethods are superior to the pseudoinverse based estimation
ethod with quantization noise. Without noise the tradi-

ional methods predict better than the neural network be-
ause of the highly linear relationship between spectral sets
sed for training and prediction. To provide color constancy
Bayesian approach of the estimation method is proposed

y Brainard and Freeman.19 Since the Bayesian approach is
omputationally demanding, the submanifold method for
pectral reflectance estimation that is an intermediate solu-
ion between the Bayesian approach and linear estimation

ethods is described by DiCarlo and Wandell.20 The
ethod extends the linear methods and introduces an addi-

ional term incorporating the nonlinearity of the data. The
ethod uses a piecewise linear way to represent the nonlin-

ar data structure and reduces the error value 12% in com-
arison with a linear method. It is important that the
ethod particularly reduces large linear errors. The limita-
ion of the method is that it needs a large training set and is
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nsufficient when the data structure is a one-to-many map-
ing. The properties of the methods considered in this paper
re quite close to the submanifold approach20 and one of the
earning algorithms based on Wiener estimation also gives a
iecewise linear solution.

Recently, many advanced machine learning techniques
sing neural networks and support vector machines have
een introduced and combined in the libraries that are con-
enient for the purpose. For example, for building the esti-
ation methods using ready-made machine learning algo-

ithms, one can obtain theoretically founded algorithms, a
nified workflow for a current and future study, and a rich
et of methods that provide flexibility for application-
riented research. In this paper, the neural networks algo-
ithms from the Netlab library21,22 will be used. They include
egression, clustering, and pattern recognition methods.

any of these methods are density models based on a like-
ihood that is important for recognition and convenient for
omparison with other methods.

In this study, we statistically analyze the reflectance
pectra of color patch sets of oil and watercolor paintings
ithout noise characteristics, develop three machine-

earning based methods, and compare them with three tra-
itional methods with a synthetic data set and the real color
atch sets, as well. The traditional methods are linear esti-
ators based on low-dimensional principal component

nalysis (PCA) approximation and Wiener estimation, and a
onlinear estimator based on multiple regression approxi-
ation. The machine learning methods extend the tradi-

ional methods for estimating a nonlinear data structure.
hey include two nonlinear methods based on nonlinear
rincipal component analysis and regression analysis and the
ethod using piecewise linear Wiener estimation. The
ethod utilizing nonlinear PCA and the method exploiting

iecewise linear Wiener estimation are novel methods. To
evelop an imaging system, two measures are used for esti-
ation accuracy: spectral color difference (RMSE) and colo-

imetric color difference (CIE �E94). The former is better for
rchiving spectral reflectance and the latter is better for
valuating the appearance of the art paintings under a spe-
ific illumination to human observers.

The paper is arranged as follows: In the following sec-
ion, we formulate the generalized reconstruction of spectral
eflectance from a multichannel image in imaging systems
ith a reduced number of channels. Next, we describe three

raditional methods and three machine learning methods.
hen we present the results of the statistical analysis of the

eflectance spectra of the color patches. Later on, an experi-
ent with synthetic data and reflectance spectra of the color

atches is described. Finally, the experimental results are dis-
ussed and concluding remarks are presented.

ORMULATION OF THE SPECTRAL
EFLECTION ESTIMATION
igure 1 shows the image acquisition system. The system
onsists of a single chip, high quality charge coupled device
CCD) camera and a rotating color wheel comprising several
e

. Imaging Sci. Technol. 51�1�/Jan.-Feb. 2007
olor filters. The response � at position �x ,y� of the CCD
amera with the ith color filter is expressed as follows:3

vi�x,y� =� ti���E���S���r�x,y,��d� + ni�x,y� ,

�1�
i = 1, . . . ,m ,

here ti���, E���, S���, and r�x ,y ,�� are the spectral trans-
ittance of the ith filter, the spectral radiance of the illumi-

ant, the spectral sensitivity of the camera, and the spectral
eflectance of a painting, respectively; ni�x ,y� denotes addi-
ive noise in the ith channel image, and m denotes the total
umber of channels.

For mathematical convenience, each spectral character-
stic with l wavelengths is expressed as a vector or a matrix.
sing vector-matrix notation, we can express Eq. (1) as

ollows:

v�x,y� = TTESr�x,y� + n�x,y� , �2�

here T denotes a transposition, v is an m�1 column vec-
or representing the camera response, r is an l�1 column
ector representing the spectral reflectance of the painting,
= �t1 , t2 , . . . , tm� is an l�m matrix in which each column ti

epresents the transmittance of the ith filter, and E, S are the
� l matrices that correspond to the spectral radiance of the
lluminant and the spectral sensitivity of the CCD camera,
espectively.

Further for the sake of simplicity, �x ,y� from v, r, and n
re omitted. Equation (2) is rewritten as an overall, linear
ystem matrix F = TTES with m� l elements

v = Fr + n . �3�

The response of the spectral CCD camera v without a
oise term is as follows:

v = Fr . �4�

We will call the space spanned by r a spectral space and
he space spanned by v a sensor space or subspace. The

Figure 1. The image acquisition system.
stimation of reflectance spectra is obtained as follows:
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r̂ = Gv , �5�

here G is a matrix depending on the estimation method
sed. In the next sections, six estimation methods are
onsidered.

RADITIONAL ESTIMATION TECHNIQUES
hree approaches are usually used for spectral sensor design.
he estimation techniques of reflectance spectra include: the
ethod based on PCA (low-dimensional approximation)

PCE), the method based on Wiener estimation (WE), and
he method using multiple regression approximation
MRE).4

he Method Based on PCA
sing spectral reflectance of the training set r a covariance
atrix is computed as follows:

C = E��r − E�r���r − E�r��T� , �6�

here E� � is an expectation operator.
An eigendecomposition of the covariance matrix C de-

ermines the matrix B = �b1 ,b2 , . . . ,bk�, the columns of which
re k eigenvectors corresponding to the first k largest eigen-
alues. The spectral reflectance is approximated as follows:

r � Bw , �7�

here w is a vector of principle components (PCs),
= �w1 ,w2 , . . . ,wk�T and k�m.

The spectral camera response given by Eq. (4) can be
epresented by another expression as follows:17

v = FBw . �8�

The PCs are determined as follows:

w = �FB�−1v . �9�

Using Eqs. (7) and (9) the estimation matrix G is as
ollows:

G = B�FB�−1. �10�

The estimate of the spectral reflectance of the painting
s as follows:

r̂ = Gv = B�FB�−1v , �11�

here the data is centered by v←v −E�Fr� where ← means
hat the expression on the right is first calculated and then
eplaces the expression on the left. Finally, the mean value is
dded as follows:

r̂ = r̂ + E�r� . �12�

Better accuracy of estimation can be obtained with
iener estimation, which is considered next.

he Method Using Wiener Estimation
he Wiener estimation method minimizes the overall aver-
ge of the square error between the original and estimated

3
pectral reflectance. For this method, the correlation matri- m

2

es Rrr of painting spectra and noise Rnn are first computed,
nd consequently, the estimation matrix is the following:3

G = RrrF
T�FRrrF

T + Rnn�−1. �13�

The estimate is as follows:

r̂ = Gv = RrrF
T�FRrrF

T + Rnn�−1v . �14�

If noise is not considered, the estimation matrix is as
ollows:3

G = RrrF
T�FRrrF

T�−1. �15�

And the estimate is as follows:

r̂ = Gv = RrrF
T�FRrrF

T�−1v . �16�

In this study, the Wiener estimation without consider-
tion of noise is used. The Wiener estimation gives good
ccuracy for linear data. If the data is nonlinear, the tech-
ique based on multiple regression analysis is used.

he Method Using Multiple Regression Analysis
n the case of nonlinear data, multiple regression analysis
ives better results than Wiener estimation.4

In the MRE method, the extended data matrix V of
ainting spectra is first defined through the data compo-
ents and their extended set of higher-order terms as

ollows:4

V = �v1, . . . ,vm,v1 � v1,v1 � v2 . . . ,higher-order terms, . . . � ,

�17�

here � denotes element-wise multiplication.
Then the estimation matrix is given as follows:

G = RVT�VVT�−1, �18�

here R is a matrix, the columns of which are presented by
spectral samples given by

R = �r1,r2, . . . ,rn� . �19�

ccording to the literature,4 the estimation matrix G used in
RE is equal to the noiseless variant of the Wiener estima-

ion matrix.
Finally

r̂ = GV = RVT�VVT�−1V . �20�

Owing to the fact that new advanced machine learning
lgorithms are especially relevant for working with nonlinear
tructured data, the machine learning techniques are next
iscussed for spectral estimation.

ACHINE LEARNING ESTIMATION TECHNIQUES
y analogy with the traditional estimation methods, three
achine learning techniques are proposed. They include the
ethod based on regressive (nonlinear) PCA (RPCE), the
ethod based on piecewise linear Wiener estimation

PLWE), and the method using regression analysis (RE).
quations. (1)–(5) are valid for all machine learning

ethods.

J. Imaging Sci. Technol. 51�1�/Jan.-Feb. 2007
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he Method Based on Regressive PCA
he spectral camera response is computed in the following
ay:

v = FBf�w,�f� , �21�

here f� � is a nonlinear vector-valued mapping function
nd �f is a parametric vector.

Then, PCs are defined by the following equation:

w = h��FB�−1v,�h� , �22�

here h� � is an inverse function, h� �= f� �−1, �h is a para-
etric vector, and v←v −E�Fr�.

The mapping function h �� and parametric vector �h

re computed using a machine learning algorithm for
egression.21 In consequence, the spectral estimate of the
ainting is as follows:

r̂ = Bh��FB�−1v,�h� . �23�

inally, the mean value is added as follows:

r̂ ← r̂ + E�r� . �24�

In practice, this method involves a low-dimensional
ubspace and a higher-dimensional subspace including the
ow-dimensional subspace. For the low-dimensional sub-
pace, where w�k� = �w1 ,w2 , . . . ,wk�T, the mapping is as fol-
ows:

w�k� = h��FB�−1v,�h� = �FB�−1v , �25�

here v←Fr −E�Fr�.
For the higher-dimensional subspace, where

w�p� = �w�k�,w�k+1:p��T = �w1,w2, . . . ,wk,wk+1, . . . ,wp�T ,

�26�

he mapping is done for the higher-order (or weak) PCs as
ollows:

w�k+1:p� = h��FB�−1v,�h� = h�w�k�,�� . �27�

Thus the method uses the low-order real PCs and the
igher-order approximated PCs.

he Method Using Piece-Wise Linear Wiener Estimation
n this section, the other machine learning algorithm for
iece-wise linear Wiener estimation is discussed. The main

dea of the method is to separate the data structure into
arts which are suitable for linear approximation and each
art is then estimated by using the linear Wiener estimation
ethod.

For data separation, the clustering algorithm is first re-
uired. The data is divided into several clusters vi using the
aussian mixture model21 in a sensor space where i is an

ndex of the cluster. Then for the data of each cluster Wiener
stimation is utilized. Using the labels of the data it is easy to
ompute the cluster covariance matrix in the spectral do-

ain needed for estimation. When the ith cluster covariance e

. Imaging Sci. Technol. 51�1�/Jan.-Feb. 2007
atrix Ci of painting spectra is known, the spectral estimate
or the ith cluster is as follows:

r̂i = Givi = CiF
T�FCiF

T�−1vi , �28�

here vi←vi −E�Fri�.
Finally, the mean value is added as follows:

r̂i ← r̂i + E�ri� . �29�

The estimation procedure is sequentially repeated for all
lusters.

he Method Using Regression Analysis
he estimation method based on regression analysis is simi-

ar to the multiple regression approach. The difference is
hat nonlinear mapping is used instead of linear mapping
nd the higher-order terms are not synthesized. For regres-
ion analysis based on machine learning the estimate is given
s follows:

r̂ = g�v,�� , �30�

here g is a nonlinear vector-valued mapping function and
is a vector of parameters.

Then, an ith entry is defined as follows:

r̂i = gi�v,�� . �31�

There are several regression algorithms21 but only the
egression method based on the radial basis function (RBF)
s used in this study for the RE and RPCE methods. The
eason is that the RBF method is relatively fast and performs
ell.

DDITIONAL TECHNIQUES
ll machine learning algorithms may need additional tech-
iques to help in parameter adjustment.

The regressive PCA method used in this study is a tech-
ique which combines the PCA and nonlinear regression
ethods.23 In general, the methods utilized in both ap-

roaches to detect the underlying dimensionality of the data
an be combined. For PCA, this is an analysis of the residual
nergy depending on a number of PCs. Furthermore, for
egression methods this is automatic relevance determina-
ion (ARD).21 The ARD method defines the statistical de-
endence between the PCs, and, in the case of the depen-
ency between the tested components and a target
omponent, the tested components are relevant to approxi-
ating the target component. However, this technique will

ot be used in this study. For the regressive PCA the number
f real PCs will be given and a number of approximated PCs
ill be used as free parameters.

The piecewise linear Wiener estimation approach needs
o determine the number of linear components for use in a
lustering procedure. This is done based on the model selec-
ion of the mixed distribution.24 After that the Gaussian

ixture model21 with a given number of clusters is used to

xtract linear components.

73
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TATISTICAL PROPERTIES OF
EFLECTANCE SPECTRA
or statistical analysis of the spectral reflectance of paintings
e use five sets of color patches of oil or watercolor paint as

ollows: set A, 336 patches of paint (reflectance of paint); set
, 60 patches of paint (Turner acryl gouache); set C, 60
atches of paint (Turner golden acrylics); set D, 91 patches
f paint (Kusakabe oil paint); and set E, 18 patches of paint
Kusakabe haiban). All sets were extracted from the standard
bject color spectral database constructed by the Spectral
haracteristic Database Construction Working Group.25

hese sets have a spectral range of 400–700 nm and
amples are evenly taken at 10 nm.

Set A is used for training the algorithms and Sets B–E
re used for prediction of spectral reflectance. Therefore,
inear and nonlinear principal component analysis was car-

Figure 2. Reflectance spectra of set A paint patches.
Figure 3. First five principal components of set A paint patches. m

4

ied out only for set A. According to a previous publication,3

ve PCs of linear PCA are good enough for accurate spectral
stimation. Hence, spectral set A and its first five PCs that
ave a residual energy of 0.16% are analyzed and shown in
igs. 2 and 3, respectively.

If regressive PCA is applied to utilize the five real PCs
nd several approximated PCs of set A, the average RMSE
alue of the spectral approximation is reduced (Fig. 4). This
llustrates the fact that there is a way to improve the degree
f accuracy for representing spectra by incorporating the
onlinearity of the data.

XPERIMENT
ynthetic Data
n this section, the nonlinear dataset is first synthesized and
hen all methods for spectral estimation are tested with a
ynthetic set. It is assumed that one channel response is used
hile the data simulating spectra is two dimensional. The
urpose of the test is to show the feasibility of the method to
ork with data which has a nonlinear structure.

Thus two data components are generated for the test.
he first component x1 is uniformly distributed in the range

igure 4. The average RMSE of spectral approximation for set A using
egressive PCA. The first five components are given by PCA and the
omponents 6–10 are approximated by regressive PCA.

igure 5. The estimation results for the synthetic data and different esti-

ation methods.

J. Imaging Sci. Technol. 51�1�/Jan.-Feb. 2007
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0.2–0.5 and another one is x2i = �x1i −0.5�.4 Finally, a zero-
ean Gaussian noise with standard deviation 0.007 was

dded to the generated components. The estimation result of
he synthetic data is presented in Fig. 5. A vector F, a vector

1, that is a first PCA eigenvector from B, and the curve
orresponding to an underlying subspace are shown in Fig.
. The original (synthesized) data and the estimates for each
ethod are shown by the lines of dots in Fig. 5.

Although the WE method is superior to the PCE based
ethod, the PCE and WE methods give poor estimates for

he data. The MRE, RPCE, and PLWE methods are relatively
ood for estimation. The RE method gives the best result
rom among these methods.

eal Data
n experiment was conducted with sets A–E described
bove. Set A is used for training while the other sets are used
or prediction. The spectral transmittance characteristics of
he separation filters used in a CCD camera are given in Fig.
. The spectral sensitivity of a CCD area sensor (Phase One
072�horizontal pixels��2060�vertical pixels�, 14 bits) is
resented in Fig. 7. The illumination source is D65.

The parameters used in the test are the following: The
ve PCs are exploited for PCE and RPCE. In addition, the
PCE approach uses the PCs approximating the real sixth,

eventh, eighth, and ninth PCs. For the PLWE method a
ixture of Gaussian components is used for clustering

Figure 6. The spectral transmittance characteristics of the filters.
Figure 7. The spectral sensitivity of the camera. 3

. Imaging Sci. Technol. 51�1�/Jan.-Feb. 2007
here the number of components is defined in a test based
n the model selection of the mixed distribution. The MRE
echnique uses terms beginning with the first-order ones to
he second-order ones. For the RE method, regression is
ased on the radial basis function using the Gaussian func-
ion; 20 neurons and seven iterations are used in this case.

A variational Bayesian model selection method for the
ixture distribution24 in the sensor space defines the num-

er of components for the PLWE method. For this, the pro-
ram is rerun ten times. The results are presented in Table I
here the first row shows the test number and the second

ow shows the number of components determined by the
lgorithm. Figure 8 illustrates the variational likelihood
ound over the model selection of 336 paint spectra (set A).
nitially, the model has ten Gaussians. The vertical lines
how the removal of the components from the model. Fi-
ally, two components are selected.

If the estimation values of spectral reflectance are less
han zero or greater than one then they are equalized to zero
r one, respectively

In Tables II and III, the average and maximum RMSE
alues for each set are given for the traditional methods and
ethods based on machine learning algorithms, respectively.

In Tables IV and V, the average and maximum CIE
E94 values for each set are given for the traditional methods

nd methods based on machine learning algorithms.
In general, the results presented in Tables II–V demon-

trate that for the RMSE values the machine learning meth-
ds give slightly better results than their traditional opposite
ethods while the traditional methods have smaller CIE

Table I. Number of components for piecewise linear Wiener estimation.

Test number 1 2 3 4 5 6 7 8 9 10

Number of components 2 2 1 1 2 2 2 2 2 2

igure 8. The variational likelihood bound over the model selection of

36 paint spectra �set A�.
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E94 values. The exception is the RE method which has
etter prediction in comparison with the other methods for
he maximum error of the color difference.

The methods are also tested with respect to computa-
ional time. The CPU time in seconds for set A is presented
n Table VI. MATLAB 6.5, the Intel Pentium III Processor,
066 MHz and 248 MB of RAM are used in the test. For the
arious algorithms, the CPU time is given separately for
raining (upper row) and prediction (lower row). In Table
I, zero values are given for the CPU times which are very

mall (this corresponds to several matrix-vector multiplica-
ions). The test shows that the traditional methods are faster
han the machine learning methods. However, the prediction
ime for the machine learning methods is relatively short.

To see whether any nonlinearity is presented in the es-
imated spectra we measure the average RMSE value after
stimation of spectral reflectance using PCA and RPCA. The
esults are shown in Table VII for PCA with the five PCs
upper number) and for RPCA with the five real PCs and
ve approximated (from 6 to 10) PCs (lower number).
hen, the ratio between these two RMSE values is deter-
ined and presented in Table VIII.

From Table VIII, one can see that the RE and RPCE
ethods have ratio values close to the original data set. The
RE and PLWE methods give results which are farther from

he original data set. The PCE and WE ratio values are the
ost different from the original data in comparison with the

ther methods.
From among the traditional methods the method based

n MRE produces the best result. The method has small
MSE and CIE �E94 values in the training set and sets used

or prediction. While the RMSE values for all machine learn-

Table VI. CPU time in seconds.

CE WE MRE RPCE PLWE RE

0.04 0.0 0.01 0.35 0.38 6.49

0.0 0.0 0.01 0.03 0.22 0.18

able VII. Average RMSE value after spectral estimation for PCA with five PCs �upper
umber� and for RPCA with five real components and five approximated components
lower number�.

Set A PCE WE MRE RPCE PLWE RE

0.00941 0.00441 0.00043 0.00728 0.00614 0.00453 0.00807

0.00772 0.00422 0.00048 0.00539 0.00479 0.00423 0.00626

Table VIII. Ratio between the RMSE values for PCA and RPCA.

Set A PCE WE MRE RPCE PLWE RE

1.21 1.04 0.88 1.35 1.28 1.07 1.29
able II. Average and maximum �in parentheses� RMSE values for PCE, WE, and MRE.

PCE WE MRE

et A 0.0516 �0.2458� 0.0155 �0.1633� 0.0123 �0.1159�

et B 0.0836 �0.3952� 0.0346 �0.1712� 0.0324 �0.1732�

et C 0.0889 �0.3469� 0.0466 �0.2478� 0.0397 �0.2158�

et D 0.0917 �0.4083� 0.0403 �0.2304� 0.0352 �0.2075�

et E 0.0917 �0.3136� 0.0330 �0.1416� 0.0281 �0.1199�
able III. Average and maximum �in parentheses� RMSE values for RPCE, PLWE, and
E.

RPCE PLWE RE

et A 0.0512 �0.2447� 0.0142 �0.1522� 0.0123 �0.1047�

et B 0.0834 �0.3928� 0.0343 �0.1683� 0.0315 �0.1731�

et C 0.0887 �0.3452� 0.0450 �0.2350� 0.0379 �0.2010�

et D 0.0912 �0.4066� 0.0376 �0.2209� 0.0349 �0.1992�

et E 0.0910 �0.3122� 0.0339 �0.1185� 0.0275 �0.1062�
able IV. Average and maximum �in parentheses� CIE �E94 values for PCE, WE, and
RE.

PCE WE MRE

et A 0.72 �13.65� 0.17 �4.03� 0.15 �1.68�

et B 2.96 �21.00� 0.58 �2.84� 0.54 �2.13�

et C 2.36 �15.42� 0.80 �4.08� 0.59 �4.21�

et D 2.43 �19.24� 0.71 �5.18� 0.55 �3.37�

et E 1.32 �3.57� 0.37 �2.34� 0.31 �1.18�
able V. Average and maximum �in parentheses� CIE �E94 values for RPCE, PLWE,
nd RE.

RPCE PLWE RE

et A 0.81 �14.89� 0.16 �3.46� 0.17 �3.16�

et B 3.34 �23.15� 0.67 �2.65� 0.59 �2.65�

et C 2.51 �14.90� 1.033 �8.47� 0.82 �3.47�

et D 2.71 �20.86� 0.8623 �8.19� 0.74 �2.92�

et E 1.89 �5.14� 0.57 �2.00� 0.71 �2.79�
J. Imaging Sci. Technol. 51�1�/Jan.-Feb. 2007
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ng methods are slightly better in comparison with the tra-
itional methods, the CIE �E94 values of the methods based
n machine learning except the RE method are higher. The
verall means of average color differences for the traditional
ethods are 1.95 (PCE), 0.52 (WE), and 0.42 (MRE) and

or the learning methods 2.25 (RPCE), 0.65 (PLWE), and 0.6
RE). Thus, the color differences using the machine learning

ethods are smaller than the differences between the tradi-
ional methods. The RE method incorporates nonlinearity of
ata as is clearly seen from Table VIII. The generalization of

he data given by the RE method is very good in comparison
ith the other methods. This follows from the maximum
IE �E94 values. However, given the processing and execu-

ion times the MRE method gives a better average, and in
wo out of five cases smaller maximum color difference er-
ors than the RE method. Although the traditional methods
re less time consuming than the machine learning methods,
he prediction time for the learning methods is short
nough.

In general, the traditional methods look more desirable
han the machine learning methods. This is contrary to the
nitial expectation from the result shown in Fig. 5 where the
earning methods appear superior to the traditional meth-
ds. This can be explained as follows. In this study the sen-
or space (subspace) dimensionality is defined by the five
iven filters. Although the subspace is not optimal (close to
ptimal) its dimensionality is rather high. Recently, it was
hown that for reflectance spectra the dimensionality of the
onlinear subspace is approximately three.26 Thus, one can
xpect that for spectral imaging systems having the low-
imensional sensor space or fewer channels the learning
ased methods are more efficient. We will consider this
roblem in a future study.

ONCLUSIONS
e have compared the methods for estimating the spectral

eflectance of art paintings for the development of spectral
olor imaging systems. Three traditional methods and three
ethods based on machine learning for spectral reflectance

stimation of paint were utilized. The traditional methods
nclude two linear methods—the method based on PCA and
he method based on Wiener estimation—and one method
sing multiple regression analysis. We introduced two novel
achine learning methods utilizing regressive PCA and

iecewise linear Wiener estimation. Thus, the machine
earning methods include two methods working with a glo-
al nonlinear data structure—the method based on regres-
ive PCA and the method based on regression analysis—and
he method using piecewise linear Wiener estimation. Simi-
arly to the submanifold method,20 the learning methods
sed fall between the linear and Bayesian approaches, and

he method for working with nonlinear data have a limita-
ion. They work only with a data structure with a one-to-
ne mapping. Finally, we synthesized a spectral color imag-

ng system implementing the different estimation methods
nd demonstrated the possibility for accurately estimating
he reflectance spectra using the presented techniques.
. Imaging Sci. Technol. 51�1�/Jan.-Feb. 2007
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