Journal of Imaging Science and Technology® 51(1): 34-43, 2007.
© Society for Imaging Science and Technology 2007

High Dynamic Range Image Compression by Fast
Integrated Surround Retinex Model

Lijie Wang, Takahiko Horiuchi and Hiroaki Kotera
Graduate School of Science and Technology, Chiba University, Inage-ku, Chiba, Japan
E-mail: lijiewang@graduate.chiba-u.jp

Abstract. A novel compressing method of high dynamic range im-
age based on fast integrated surround Retinex model is proposed in
this paper. The proposed method has two novelties. First, multiscale
surround images are integrated to a single surround field, which is
applied to center/surround single-scale Retinex (SSR) model. The
method reduces the “banding artifact” seen in normal SSR and sim-
plifies the complicated computational steps in conventional multi-
scale Retinex. Second, the Gaussian pyramid method is introduced
to cut the computation time for generating a large-scale surround by
tracing a “reduction” and “expansion” sequences using down and up
sampling followed by linear interpolation. The computational ex-
pense is dramatically saved less than 1/ 100 for getting a surround
by Gaussian convolution with large kernel size. The proposed model
worked well in compressing the dynamic range and improving the
visibility in heavy shadow areas of natural color images while pre-
serving pleasing contrast.
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INTRODUCTION

Human vision is a complicated automatic self-adaptation
system. It is capable of seeing over five orders in magnitude
simultaneously and can gradually adapt to scenes with high
dynamic ranges of over nine orders in magnitude. The cur-
rent display devices, such as cathode ray tube (CRT), cannot
capture the dynamic range more than 100:1. To recreate the
viewer’s sensation of the original scene in current display
devices, the high dynamic range (HDR) of the scene has to
be compressed to the low dynamic range of the device. This
is a difficult problem because the visual system is too com-
plicated and current technique cannot yet understand it
completely.

The many published papers on HDR image compres-
sion are classified into two groups: Spatially-invariant tone
reproduction curve (TRC) and spatially-variant tone repro-
duction operator (TRO) methods." TRC operates pointwise
on the image data which is actually based on the global
adaptation of human vision. Algorithms by Tumblin et al.,>
Tumblin and Rushmeier,” belong to this catagory. Pattanaik
et al.* proposed a time-dependent method based on the time
adaptation of human vision, which also uses the global ad-
aptation models. TRO uses the spatial structure of the image
data and attempts to preserve local image contrast. The al-
gorithm by Chiu et al.’ belongs to this catagory. TRC is
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simple and efficient, but at the expense of local contrast loss
because of processing the whole image with a single curve.
TRO, which is traditionally based on a multiresolution de-
composition algorithm, such as Gaussian decomposition,
works well in measuring and preserving local image con-
trast. However, any methods can model only a part of the
complicated adaptation process of human vision.

This paper follows the method of TRO, but presents a
new idea based on the Retinex theory of the human vision
process. Retinex is a typical method of TRO and has been
broadly used in image processing, such as color image ap-
pearance improven1ent,6‘7 and also HDR image compres-
sion, e.g., by Carrato® who adopts a rational filter substitut-
ing for a Gaussian filter. Human vision can see the world
without being affected by the spatially nonuniformity of il-
lumination and the color of the illuminant, with what we
call lightness and color constancies. Based on these charac-
teristics, Land and McCann proposed Retinex.”'* Retinex is
very useful in color image processing and has been improved
during past forty years. Multiscale Retinex (MSR), generated
by the weighted sum of multiple single-scale Retinex (SSR),
is the most popular algorithm, because it can suppress the
banding artifacts around high contrast edges in SSR. Since
the optimization of weights is not easy,"” conventional MSR
simply applies equal weights to all scales of SSR but does not
always give a satisfactory image. Kotera et al.*” proposed an
adaptive scale-gain MSR to improve the color appearance in
conventional MSR, but the selection of scales and weights is
still complicated, and the computation cost is too expensive.

In this paper, a new fast and simple algorithm is pro-
posed without banding artifacts caused by the conventional
SSR model. The proposed algorithm adopts an integrated
multiscale surround image composed of several luminance
surround images to apply to the SSR model, which substi-
tutes for the conventional integrated MSR composed of sev-
eral SSR. The Gaussian pyramid is introduced to generate an
integrated surround image quickly. The original image is
repeatedly down sampled and divided by 2 in width and
height, and the coarsest down-sampled image on the top of
the pyramid is convoluted with the corresponding smallest
size Gaussian filter, resulting in a surround image equivalent
to the largest kernel size, so that the computational expense
is dramatically reduced. By this model we get results com-
parable to the published papers in HDR image compression.

In the following sections, first, we review the recent
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progress in Retinex models. Next we propose the integrated
surround Retinex algorithm, and third discuss the optimum
parameters and improvement in speed. In addition, HDR
image compression gives some examples which demonstrate
good visibility in heavy shadow while preserving pleasing
local contrast. Finally, we draw conclusions and insight into
our future work.

RETINEX MODEL

The Retinex algorithm proposed by Land” ™" is based on
their Mondrian experiments and was improved by McCann
et al.'® It is a classical vision model with forty years history
and recently received attention again.'” Land suggested that
color appearance is controlled by surface reflectance rather
than by the distribution of reflected light and proposed three
color mechanisms for the spectral responses of the cone
photoreceptors. He called these mechanisms Retinexes be-
cause they are thought to be some combination of retinal
and cortical mechanisms.'®

According to Land, human visual system has the func-
tions that recognize the world without being affected by spa-
tially nonuniform distribution of illuminant. Basically Ret-
inex is a model that eliminates the effect of the
nonuniformity of illumination. Simply, the image I captured
by camera is equivalent to the product of the reflectance R
and illuminant distribution L. According to R=1/L, we can
restore reflectance R from Image I by inferring illumination
L.

Though various enhancements to the theory have been
proposed, its key feature is that the Retinex algorithm explic-
itly treats the spatial distribution of illumination. According
to the path-based model based on Mondrian experiments of
Land and McCann,'” the luminance difference of two sepa-
rated points in the scene is obtained by the ratio of the
neighboring points along the path. When gray step patches
with linear reflectance are lit by the illumination which has
the opposite gradient, the sequence of darkness appearance
is not changed regardless of whether each patch reflects the
same amount of light physically, if the relative luminance
ratios on the boundaries of each edge are traced. To estimate
the distribution of illumination L, various ways of taking
paths into account have been published. The random walk
model'® computes the luminance product of each point
from the distributed initial points in the image by a random
walk. The Poisson model'® approaches the spatial gradient in
illumination from the change in the second derivative of the
signal and computes it by inversion. McCann-Sobel model®
iteratively computes the luminance ratio along spiral paths
while continuing to down-sample the image. Another itera-
tive model by Funt’ traces eight neighbors. The iterative
model is a two-dimensional extension of the path-based
model, where a new value is calculated for each pixel by
iterative comparison.

The center/surround model simply estimates the lumi-
nance L around a pixel in consideration by averaging the
image I with Gaussian filter. Based on the work by Land,"
NASA (Refs. 22-26) developed MSR model by integrating
multiple SSRs with different scales and weights. Further-
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more, a quadratic programming method minimizes a second
differential cost function by determining undefined Euler-
Lagrange coefficients under the constraint of a spatial
smoothing condition for image and illumination. Because
the path-based model is complicated, the concise center/
surround model is selected in this paper. The reflectance
image R(x,y) is calculated by the ratio of center I(x,y) to the
surround S(x,y), simply noted as R=C/S. The spatial dis-
tribution of illumination L(x,y) is equivalent to surround,
which is calculated by averaging the original image I(x,y)
with a Gaussian filter.

The most representative C/S MSR model of NASA is
processed in logarithmic space. The following equations de-
scribe the process:

M
Rf\/{g};(%)’) = E WmRéSR(x)ya Um) > 1 = R: G)B) (1)

m=1

Ii(x,y)

g—————————i=RGB, (2
Ii(x,y) © G,(x,)

Rigp(x,5,0,,) =lo

G,(x,y) = K, exp{— (x> + yz)/olm}, f f G,,(x,y)dxdy

=1. (3)

Equation (2) expresses the output of SSR model as the ratio
of the center pixel C=I;(x,y) to the surround S=I;®G,,,
where G,, denotes Gaussian averaging filter with scale m and
standard deviation o, and the symbol ® denotes convolu-
tion. The defect of SSR is a banding artifact appears around
high contrast edges. A MSR model without banding artifact
has been developed by Jobson et al.,”> ™ integrating multiple
SSRs with different standard deviations o, and appropriate
weight w,, as expressed by Eq. (1). However, the optimiza-
tion process of a,, and w,, is unclear and these parameters
must be decided by trial and error. In addition, logarithmic
conversion accentuates the dark noise level in shadow region
and the dynamic range expansion in the processed image
needs to be limited. Furthermore, because the basic logarith-
mic model treats R, G, and B channels independently and
the dynamic range of each channel is normalized to the
range of the display device, the color balance cannot be
maintained so that a wide uniform area in the image, such as
sky or wall tends to a gray world. Jobson et al.” regulated
the range of the output image by lower and upper clipping
of the wide histogram. Rahman et al.”® improved the color
restoration with additional logarithmic terms corresponding
to each color band signal divided by the sum of color band
signals. They call this model multiscale Retinex with color
restoration. Kotera et al.,’ proposed an adaptive scale-gain
MSR model with stable and excellent color reproduction in
linear space without using logarithmic conversion. In this
model, the surround image generated only from the lumi-
nance image is used for the R, G, and B channels in com-
mon, which maintains the color balance. They also proposed
an automatic setting method for weights adapted to the scale
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gain. However, since the computation for weights needs the
histograms luminance SSRs corresponding to the multiple
scales and takes too much time with increasing Gaussian
kernel size, it still needs improvement for practical use.

INTEGRATED-SURROUND RETINEX MODEL

In this paper, we propose a concise new Retinex model dif-
ferent from the conventional MSR. Our work is mainly
based on the work of Kotera et al.*” First, we adopted linear
space without logarithmic conversion to avoid instability for
noise and output range spreading in dark shadows. Second,
we used only the luminance channel to form the surround
for each color channel in order to keep color balance. The
major difference from Kotera’s method is that the new model
creates an integrated multiscale luminance surround from
multiple luminance surround images by Gaussian filters
with different standard deviation o,,. The proposed model
can suppress unwanted banding artifacts as well as the adap-
tive MSR model of Kotera. We introduced the Gaussian
pyramid to produce the integrated surround image, by
which the convolution computation for smoothing the origi-
nal image with a Gaussian filter was dramatically reduced.
The following subsection details improvements in our new
algorithm.

Integrated-Surround Retinex Algorithm

Figure 1 illustrates the proposed integrated-surround Ret-
inex model. Instead of the weighting sum of multiple SSRs,
the proposed model integrates m =1~ M different surround
images S,, into a single surround image S, with adaptive
weight parameters w(o,,). To keep color balance, S,, is cal-
culated by convoluting the luminance image Y(x,y) with the
Gaussian filter G,, with standard diviation o, as Eq. (6)
expressed. The output of Eq. (4) is the ratio of the center
pixel I; to integrated luminance surround Sy, and A is a
gain coefficient which will be discussed detailed in the com-
ing section on optimum parameters

Ii(x,y)
Ssum(x’y’ (Tm) ’

i=R,G,B,A: gain coefficient, (4)

SSRsum(x)y) O-M) = A

M
Ssum(x>y> Um) = E W(Um)sm(x>y> Um) > (5)

m=1

Gaussian

Input Luminance
Gy Y image
2
Ll

®:Convolution

Sm(x’y) Um) = <Gm(x)y) ® Y(x)y»;

0,,=2", Y(x,y): luminance channel,
(6)
where
M
> wio,) = 1. (7)
m=1

In the proposed method, M times of division is avoided
in the computation of multiple SSRs and replaced with the
easy summation instead. Figure 2(f) shows a sample ob-
tained from the SSR process by the proposed method by
integrating the three surround images of o,,=(8,32,128)
with uniform weight of 1/3. It does not provide the dra-
matic improvement in shadow appearance as does NASA as
shown in Fig. 2(d) or our previous adaptive scale-gain MSR
in Fig. 2(e), but it suppresses the banding artifact very well
in comparison with a conventional middle scale SSR in Fig.
2(b) and is clearly better than the large scale SSR in Fig. 2(c).
In addition, contrast appears more natural without over em-
phasis in comparison with NASA in Fig. 2(d) or our previ-
ous MSR in Fig. 2(e).

Optimum Parameters
The Retinex model aims to reproduce the original visual
images, but in practice, the original scene is usually un-
known unless the observer has seen the captured scene
standing at the same place and the same time. Thus the
setting of the optimum parameters is difficult without the
original image. In this paper, as illustrated in Fig. 3, a test
scene “color block” under nonuniform illumination in our
laboratory is captured by a digital camera, then the camera
image is modified using Adobe Photoshop™ by trial and
error method until it is seen approximately matched to the
visual scene. The modified image is taken as a target image.”
To make a quantitative estimation for the proposed
model and find the optimum parameters, the color differ-
ences AE,, between the visual target image and the pro-
cessed images are evaluated in CIELAB color space as
follows:

AE,, = (AL?+ Aa™ + Ab™2)'2, (8)

S5R Process

Rutegrated Output
Suround image

Surround S,

Figure 1. Proposed Retfinex model using integrated surround.
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* * *

AL'=Ly—Ly,, Ad =ag—ay, Ab =bp—by, (9)

where L', a’, and b" are tristimulus values of CIELAB color
space, R represents the results of proposed method, V rep-
resents target image

) Y
L'=116%fl — | - 16,
Y,
. X Y)
a =500\l — |-l =],
X, Y,
. Y z
b =200 \A— |-l =
Y?’l Z?’l

3 for t > 0.008856
fly = (10)
7.787t + 16/116 for t < 0.008856,
where X, Y, and Z are CIEXYZ tristimulus values and X,,, Y,
and Z, are the CIEXYZ tristimulus values of the reference
white point. Considering the computation expense and pro-

(d) NASA MSR

(e) Our previous MSR

cessing speed, it is hoped to produce a MSR image from a
small number of SSRs. Empirically, to produce a MSR image
without banding artifact, at least three SSR images are
needed. As well, first, we used three scales (M=3) of sur-
round images, small (o=2), middle (o,=16), and large
(03=128) to get an integrated surround in the proposed
method. Then we adjusted the weights w(o,,,) to minimize
the color difference between the target image C and the pro-
cessed output for the camera image B in Fig. 3. Figure 4
illustrates the results in the case of M=3. Because the pos-
sible number of combinations for the weights w(o,,) with
gain parameter A becomes too large, we cut the unnecessary
tests by observing the tendency of color difference changes
corresponding to each combination. First fixing the weight
w(oy) to 0.1, with the condition w(a,) +w(o,) +w(as)=1, a
combination of w(o,) and w(o;) is changed. Next fixing
w(o,) to 0.1, a combination of w(o;) and w(o3) is also
changed. When the gain A=0.8 and the weights w(o)
=0.3, w(0,)=0.1, and w(o3)=0.6, the smallest color differ-
ence AE;h:8.6 is obtained. From the tendency of these color
difference changes in Fig. 4, we can draw the conclusion that
with the decrease in w(o3), the smallest color difference cor-
responding to each combination tends to increase and goes

(D Proposed Retinex
(0=8, 32, 128, wdght=1/3)

Figure 2. Sample by proposed Refinex model in comparison with conventional methods.

Cameraimage!B sevees srrsanena,
: v
e Visual image:C  Captureimage:B

Photosthop

Vismal Matching
Ta Real Semne

Figure 3. Synthesis of target image visually maiched to real scene.

Try & Error
Local HSL
Adjustment
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Figure 4. Color reproducibility by proposed model with three-scale sefs
(0,=2,16,128).
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up rapidly for w(os) <0.5. Hence w(o3)=0.5 and large
scale 03=128 are necessary. We verified this condition again
by fixing w(o7;) to 0.6 and 0.5, respectively, while changing a
combination of w(o;) and w(o,), and reached the same
conclusion, which is almost the same as reported by
Yoda et al.”

We can also draw another conclusion from the experi-
ments, namely that w(o;) is more important than w(o) in
color reproduction, because the smallest color difference in-
creased for w(o,)>w(o,) when w(os) is fixed to around
0.5. Thus we moved to the tests for the simpler case of two
scales where the middle scale 0,=16 is discarded and a com-
bination of small (0,=2) and large (03=128) scales are
used. The same test process is performed. Figure 5 illustrates
the results in the case of M=2. When the gain: A=0.8, and
weights: w(o)=0.4, w(o3)=0.6, the best result AE;b:8.54
is obtained, which is a little bit smaller than the case of three
scales (M=3), but considered to be almost the same color
reproducibility as the result with three surround images.

In addition, we also tested the color reproducibility for a
different set of three scales (0,=8, 0,=32, 03=128). As
illustrated in Fig. 6, the minimum color difference AE;b is
obtained when the gain A=0.8 and weights w(o,)=0.2,
w(0,)=0.1, and w(o3)=0.7, but it is a little bit worse than
shown in Fig. 4 (M=3) and Fig. 5 (M=2).

The typical resultant images are compared with NASA
(d) and our previous adaptive scale-gain MSR (h) in Fig. 7.
The best image with the smallest color difference for M=3
by the proposed model is shown in Fig. 7(e) and that for
M=2 in Fig. 7(f), respectively. In a tested color block image,
banding artifacts are not seen in the reproduction by the
proposed integrated-surround Retinex model using only two
scales of luminance surround images.

Improvement in Fast Computation
The Retinex algorithm is very time-intensive due to a con-
volution between the original image and Gaussian filters in

(a Camera image (b) Target visual image

33,5,

(e) Proposed: 48, =8.6, 1] Pmposedmz;, =8.47,
~z 16,128 w2128

(i) Pyramid: 2, =8.54, (i) Pyramid: A, =851,
T=2,16,128 Ow=2, 128

(g) Proposed: 4E,, 8.9,

—

s oy

order to calculate surround images. Particularly, as the ker-
nel size of the Gaussian filter increases, the computation
time dramatically increases. The proposed model has the
same problem, too. For example, when using a Gaussian
filter with 0=128 (kernel size=40+1=513X513 pixels)
for the image size 1280 X 960, it took more than one hour
(Pentium 1 GHz, Memory 256 MB, MATLAB). For practical
use, the time expense has to be reduced. Because time is
mainly consumed in calculating the surround image, the
Gaussian pyramid method is introduced to accelerate the

50
45| ——A=022
40 |- —|—A=04
35| W A=05

%30 =2 A=0.55

—X—A=0.6

—8—A=0.65

——A=0.7

—=—A=0.75

—=—A038

0 " " : - A=0.9
0.1,09 02,08 0.3,0.7 0406 0505 06,04 07,03 0802 0901 |  A10

weights set: w(on),w(ow), 01=2, 0= 128

Figure 5. Color reproducibility by proposed model with two-scale sets
(0,=2.128).
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Figure 6. Color reproducibility by proposed model with three-scale sets
(0,=8,32,128).

(c) SSR (a=32) (a)msA 485 =154

(h) Our Previous MSR: 4E,, =8.4
T =8,32,128

¥

(k) Pyramid: AE,, =8.65,
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Figure 7. Color reproducibility results by the proposed model in comparison with conventional methods.
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convolution speed in this paper. The Gaussian pyramid sub-
stitutes a large-scale convolution for a very small-scale one
through up/down-sampling and interpolation sequences.
Accordingly, the time expense is dramatically reduced.

The convolution process in Gaussian pyramid is illus-
trated in Fig. 8. First, the original luminance image gy(x,y) is
placed at the bottom, and each successive higher level is a
smaller version scaled down by 1/2 in width and height of
the previous level. Through the K step sequences, image
group: g,,4»» - - - »gx 18 constructed. The image in level k is a
copy reduced in resolution by 27 of the image gy(x,y) in
level 0, which characterizes the multiresolution pyramid
structure. The up process from g, to g, ...,gx is finished by
down-sampling the low-pass image by a Gaussian filter with
half the rate.

In this paper, we used a low pass filter with coefficients
w=[0.0500 0.2500 0.4000 0.2500 0.0500] approximated to
Gaussian, which is circularly symmetric without half-pixel
offsets. It works very rapidly because it is symmetric and
applied separately in the horizontal and vertical directions.
Designating the 1/2 reduction function as Reduce, we ex-
press the upward down-sampling Gaussian pyramid by Eq.

(11),
g, = Reduce(g,_,) = Downsample, ,{Lowpass(gi_;)}

Lowpass(g;_;) =m ® g,_;; ® means convolution.
m= [mij] = [Wi'Wj]; hj=1,2,...,5

w=[w]=[0.05,0.25, .0.4, .0.25, . 0.05]:
lowpass filter coefficients. (11)

When the reduced image g; at the required level K is ob-
tained, convolution with a small-sized Gaussian filter with
standard deviation oy creates the reduced surround image
Sk corresponding to level K. Then Si is expanded to twice in
width and height by interpolation and up sampled at twice
the rate. The process is repeated until the surround image S,
with the same size as the original image is obtained. This
downward up-sampling process is expressed by Egs. (12)
and (13),

< (@uegpseas dyy+ soprojodiopuf) woswodyg |

I Reduction (Low pass+Down sampling) >

Figure 8. Fast computation method for surround by Gaussian pyramid.
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SK =8k ® Gm(x)y)o-K)) (12)

Si_1 = Expand(s;) = Upsample,{Interpolate(s;)};
k=KK-1,...,1. (13)

The surround S, expressed in Eq. (6) can be substituted by
So» and according to the Gaussian pyramid, S, can be ob-
tained by the K-step up-sampling process after convoluting
gx with the Gaussian filter G,,,(o%). Because the sizes of both
gk and G,,(og) are reduced to 27X X 27K the computation
time is dramatically reduced. To avoid the loss of original
image information, in this paper the minimum image size of
the top level K image obtained by the down-sampling pro-
cess is limited to 32X 32.

Table I gives examples of the computation time before
and after Gaussian pyramid for two different size images.
For the original image g, with size of 256 X 192, the size of
top image g, is reduced to 64X 48 after K=2 steps down
sampling. Because of 0,,= 0y X 2K, in this case of K=2, we
need to compute the convolutions for 0x=2,4,8,16,32,
equivalent to 0,,=8,16,32,64,128, respectively. For o,
=64 and 128, before and after Gaussian pyramid the com-
putation time is reduced to about 1/10 and 1/15, respec-
tively. The time is further reduced with increasing o,,. For
larger image size, 1280X960, after K=4 steps down-
sampling, the size of top image g, is reduced to 80X 60. As
Table I(b) illustrates, we need only to compute ox=2,4,8,
equivalent to ¢,,,=32,64,128, respectively. The computation

Table I. Reduction in process time by Gaussian pyramid.

Image size

256192 256 < 192(64 x 48)
(0) Scale process time (s) process time (s)
m O Normal Pyramid
3 8 0.29 0.24
4 16 0.75 0.24
5 32 240 0.39
6 64 9.13 0.90
7 128 166.3 10.65
Image size
1280 < 960 1280 < 960(80  60)
(b) Scale process time (s) process fime (s)
m O Normal Pyramid
5 32 59.10 513
6 64 236.1 5.34
7 128 4118 9.29
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time is reduced to about 1/10, 1/45, and 1/450 after the
pyramid, respectively. The computation time is even more
dramatically reduced not only with increasing o,,, but also
with increasing image size. As shown in Table I(b), for image
size 1280 X 960, the computation time is reduced to 1/443
for o,,=128 after pyramid.

Since Gaussian pyramid processing uses the coarsest
down-sampled image version of the original image for com-
putation of the surround image, whether the Retinex image
quality is affected or not has to be re-estimated. Again we
evaluated the color difference between the resultant images
after Gaussian pyramid and the target visual image color
block. As shown in Fig. 9, in the case of M=3 with
7,,=(2,16,128), the smallest color difference AE,,=8.54 is
obtained when gain A=0.65, w(o,,)=0.1,0.1,0.8. As well,
for the case of M=2 with o,,=(2,128) in Fig. 10, the small-
est color difference AE,,=8.5 is obtained when gain A
=0.6, w(o,,)=0.1,0.9. We also tested o,,=(8,32,128)
equivalent to ox=(2,8,32) for the same condition as sub-
section Optimum Parameters. Figure 11 illustrates the re-
sults. We obtain almost the same color reproduction accura-
cies through Gaussian pyramid processing.

Figure 12 gives some examples before and after Gauss-
ian pyramid with the same parameters. The resultant image
with Gaussian pyramid is much the same as the results with-
out Gaussian pyramid. As visually observed in Fig. 12(a)
through (f), the three pairs of resultant images for [A=0.5,
w(o,)=1/3, 0,,=8,32,128], [A=0.6, w(c,,)=0.1,0.1,0.8,
0,=8,32,128], and ([A=0.8, w(0,)=0.2,0.1,0.7,
0,,=8,32,128] resulted in much the same image appear-
ance with and without Gaussian pyramid, and bear com-
parison with NASA in (h). Because the true target image is
unknown in this outdoor scene, the optimal parameters may
be different from those of test target image color block. The

——A=02
—— AS04
A=05
A=0.55
—%— A=06
== —8— A=0.65
& —+—A=07
0 —=—A=0.75
———A=08
Q Q%Q{)Q(\Q%Qb B(o %Qb;b%% Q{l' %%\ \B'\ \QQ)Q\Q(QQ\Q Q\Q% \DWQ\Q\Q(])BBQ Q‘OQ(}Q(O A=0.9

M M M Y Y M QY m‘l’ & NARNARNY m'\ NARNGENGENY A=1.0

AEab*

weights set: w(01),w(02),w(a3), 01=2, 0:=16,0:=128

Figure 9. Color reproducibility by proposed pyramid with three-scale
sefs (o,=2,16,128).

01,09 az0s8 0s3a7 04,06 05,05 0604 0703 0s02 09,01

weights set: w(oy),w(03), 01=2, 0,=128

Figure 10. Color reproducibility by proposed pyramid with two-scale
sets (o,,=2,128).
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proposed system resulted in the excellent rendition (i) even
for the default parameters, A=0.5, w(o,)=w(0,)=0.5,
0,,=2,128 with Gaussian pyramid.

HIGH DYNAMIC RANGE (HDR) IMAGE
COMPRESSION

The proposed model also worked well for HDR image com-
pression. Considering the computation time, we again
adopted the pyramid process to create the surround image.
We did not need any particular postprocess for normal LDR
images after Retinex process to regulate the dynamic range.
But for the most HDR images, a postprocess is necessary for
displaying them onto normal LDR display devices. Here the
luminance channel is also applied to compute the surround
for our HDR image compression in order to maintain color
balance. First, we compute the integrated surround Retinex
image Yg(x,y) for HDR luminance channel by

Y(x,y)

Yi(xy) = (14)

sum

Then we make use of Yy to obtain the condition for
compressing the HDR image to LDR image for the display
device. We found that the histogram of Yy is mostly concen-
trated in the lower range, while scattered in the middle to
higher ranges for our tested HDR images as illustrated in
Fig. 13. Thus we divided the higher range of Yy by large
interval and the lower range by small interval not to lose the
details. First, the histogram of Yy is divided into two parts
[Min-Mean] and [Mean-Max] by the mean value Mean.
Second, the pixel numbers Num, less than Mean and Num,
larger than Mean are calculated respectively. Third, the ratios
of Num; and Num, to all pixel numbers are calculated by
Egs. (15) and (16). Then, the bins are calculated by Eq. (17),

Numl
ratiol - (15)
Numl + Num2

y Num, 16)
ratioy=——m—,
g Num; + Num,

bin, = 255 * ratio;;  bin, = 255 * ratio,. (17)
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A=0.5
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5 —— A=0.7
P ub m"’ u Bq’ \u \u c("\ Q S —— A=0.8
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0 : —— A=0.75
S
weights set: w(o1),w(03),w(03), 01= 8, 0,=32,05=128 A=1.0

Figure 11. Color reproducibility by proposed pyramid with three-scale
sels (0, 8,32, 128).
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Figure 12. Samples by the proposed model.

Then the two ranges of [Min-Mean] and [Mean-Max] are
uniformly divided into bin; and bin, respectively. Accord-
ingly, the Yy image is divided into 255, which provides an
image which can be displayed on normal display devices,
expressed by Y,(x,y). Finally, the compressed color image
I;i(x,y) is reproduced by Eq. (18), where y denotes a gamma
correction coefficient. In this paper, y=0.5 is used

Ii(x)y)
Y(x,y)

Figures 14-17 show some experimental results. For the next
part, the images in (a) by the proposed model are compared
with those in (b) by Larson’s histogram adjustment
method.”In total, our results are much the same as Larson’s
results in spite of its simple and fast algorithm. However,
unfortunately, our result in Fig. 14 looks worse than Larson’s
and different from other samples. It has a drawback that the
water drops on the right side glass door are overenhanced
thereby reducing its resolution. We have not found the cause
of this phenomenon yet, but it may come from an improper
choice of weights and kernel sizes to create the integrated
surround. On the contrary, in Figs. 16 and 17, the proposed
method could display some areas visibly which are invisible
in Larson’s results.”®

Y
Idi(x’y) = < ) Yd(x)y)- (18)

CONCLUSIONS

In this paper, a concise and fast Retinex algorithm different
from conventional MSR is proposed by integrating multi-
scale surround images into a single surround. The proposed
model worked as well as MSR in suppressing the banding
artifacts obtained by conventional SSR. In addition, the
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Figure 13. Histogram of luminance image by proposed Retinex of high
dynamic range image.

computation time was dramatically reduced by introducing
the Gaussian pyramid. This simple model worked nicely in
appearance improvement for both normal LDR and HDR
images with range compression. Retinex has a goal to repro-
duce the original scene just as the observer may have seen it.
To find the optimum parameters, we synthesized a target
image on display visually matched to the real scene as ob-
served by naked eye in the experimental room. A simple test
target color block is captured under nonuniform illumina-
tion in the experimental room and used for evaluating the
color reproducibility. Finding more robust and stable pa-

a1
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(a) Proposed Model (b) Larson

Figure 14. Bathroom: (a) by proposed model and (b) by Larson with
histogram adjustment.

(a) Proposed Model (b) Larson

Figure 15. Memorial Church: (a) by proposed model and (b) by Larson
with histogram adjustment.

(a) Proposed Model (b) Larson

Figure 16. Win office: (a) by proposed model and (b) by Larson with

histogram adjustment.

rameters in a full automatic mode for more complicated
target images is left to future work involving psychophysical
tests.
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(a) Proposed Model

(b) Larson

Figure 17. Air traffic fower: (a) by proposed model and (b) by Larson
with histogram adjustment.
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