
A
i
v
t
t
a
b
t
T
a
b
t
d
s
m
l
q
T

I
S
r
p
d
t
a
a
S
t
u
o
a
t
M
s
o
d
c
r
t
i

�

R

1

Journal of Imaging Science and Technology® 50(6): 572–582, 2006.
© Society for Imaging Science and Technology 2006

5

Image Format for Spectral Image Browsing
Markku Hauta-Kasari�, Juha Lehtonen and Jussi Parkkinen�

Department of Computer Science and Statistics, University of Joensuu, P.O. Box 111,
FIN-80101 Joensuu, Finland

E-mail: juha.lehtonen@cs.joensuu.fi

Timo Jaaskelainen�
Department of Physics and Mathematics, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland

a
t
i
f
c

s
v
n
d
e

a
i
t
c
d
s
a
a
w
f
c
s
t
u
t
b
s
s
fi
s
a
o

d
e
s
p
c
m
fi

bstract. The technology for spectral imaging has developed rap-
dly during the past few years. The spectral cameras are usable in a
ariety of applications. These applications include archiving of artis-
ic and museum objects, telemedicine, and e-commerce. In all of
hese applications, a large number of images will be stored in the
rchives with a high spatial and spectral (color) resolution. A possi-
ility for fast browsing of these archives is needed. For browsing,

he speed is more important than the high resolution of the images.
he original, high resolution spectral images should be kept in the
rchive. In this paper, the authors present a new spectral image
rowsing architecture. This architecture contains a new data struc-

ure for spectral images. The data structure is based on a low-
imensional representation of original spectral images including a
patial subsampling of eigenimages. The authors show that this for-
at enables fast network transfer of spectral images with a small

oss of spatial and spectral information. Also, measures of visual
uality are given. © 2006 Society for Imaging Science and
echnology. �DOI: 10.2352/J.ImagingSci.Technol.�2006�50:6�572��

NTRODUCTION
pectral imaging technology and its applications are under
apid development. Present imaging representation and dis-
lay techniques for color images are mainly based on three-
imensional color coordinate systems. In computer applica-
ions, a RGB-system is mostly used. However, new
pplication areas like telemedicine, e-commerce, and
rchiving of images of cultural heritage objects are evolving.1

ome problems with RGB-images in these applications are
hat one cannot, e.g., manage the change of an object’s color
nder different illuminations or the accurate color of an
bject cannot be determined. Display technology also causes
problem: all the desired colors cannot be displayed due to

he limitation of the device depended color gamut.2

etamerism is a phenomenon where two objects look the
ame under one illumination but different under another
ne. This is due to the limited ability of the three-
imensional color coordinate system to express colors, but
an be overcome by using spectra for object color
epresentation.3,4 In some applications, especially in
elemedicine and e-commerce, the managing of changes in
llumination is important. This is a relevant problem since
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n image is taken under one illumination and viewed after
ransfer under another illumination. If RGB-colors are used,
t is impossible to accurately estimate the color under a dif-
erent illumination. Hence, the full spectral information of
olor is needed.

To overcome the above mentioned problems, various
pectral image processing and display systems have been de-
eloped. In these systems, the color image is represented by

component images, where n can value up to a few hun-
red. The RGB-image can be seen as a special case where n
quals 3.

In spectral image acquisition, six basic methodologies
re used. In interference filter based systems the component
mages are acquired one by one as regular gray-level images
hrough narrow band interference filters.5,6 In this system, a
omponent image is taken as one shot and the system scans
uring image acquisition over the spectral region. The object
hould stay stable during the scanning. Liquid crystal tun-
ble filter6,7 (LCTF) electronically scans the spectral region
nd is faster than the mechanically scanned interference filter
heel. The grating based imagers are line scanners, where

or one line in the object the whole spectrum of each pixel is
aptured. The final spectral image is acquired by spatial
canning over the whole object.8 Also, this is a narrowband
ype imaging system. The fourth system construction also
ses gratings for spectral dispersion, but either optical or

emporal integration is used for producing an arbitrary
roadband filter for component image acquisition. In this
ystem, the component images are spatially accurate and the
pectrum is scanned corresponding to the number of
lters.9,10 Acousto-optic tunable filters can also be used to
can the spectral region.11 Interferometry based devices are
lso developed, e.g., SpectraCube.12 The basic characteristics
f the spectral imaging systems are summarized in Table I.

Unlike spectral imaging systems, there are no spectral
isplay systems commercially available at the moment. How-
ver, there is ongoing research in projective multiprimary
ystems,1,13 e.g., in the Tokyo Institute of Technology. Also in
rinting technology, methods using more than four primary
olors are under intensive research.14 Presently, published
ultiprimary display systems use six relatively narrow band

lters in front of white light to produce six primary colors.

he system enables the display of the spectral colors more
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ccurately than RGB and offers better coverage over the
olor space, i.e., the display gamut is wider than in
GB-displays.1 First attempts toward moving spectral im-
ges have been taken in Ref. 15, and also a six-primary chan-
el video camera is developed.16 In addition, there has been
lot of improvement in sensor technology that will provide

ontrol over the illuminant variety and retune the display
utomatically.17

Hardware development means that there is a need for
pectral image processing and analyzing methods. The spec-
ral images have large memory requirements, which set the
eeds for image compression and data reduction. This is an
specially considerable issue in the browsing of large data-
ases. Examples of the memory requirements are shown in
able II.

There are some projects in art museums to store spec-
ral images of paintings into the database.18 For example, in
he National Gallery (UK) spectral information about color
hanges in paintings has been collected since late 1980s, as
ell as an archive of spectral images of paintings. In general,

rt museums around the world are going to use digital tech-
ology for archiving and conservation purposes. This devel-
pment also sets the needs for new methods of spectral im-
ge processing. We belive that there will be spectral image
rchives also in other fields, like the cosmetics industry and
elemedicine.19 However, many techniques in color image
ransmission are bound to the traditional RGB representa-

Table I. Characteristi

Interference
filters LCTFa PGP

ilter
ype

Narrow
band

Narrow/
broadbandf

Nar
ban

umber of
ilters

16–40 6–61 60–

canning
irection

Spectral Spectral Spat

cquisition
ime

Slow Fast Med

canning
ype

Mechanical Electrical Mec

ensor CCDg CCD CCD

patial
esolution

Fixed,
CCD-dep.

Fixed,
CCD-dep.

Scan
dep

pectral
esolution

Fixed,
filter-dep.

Fixed,
filter-dep.

Fixe
CCD

Liquid crystal tunable filter.
Prism-grating-prism �ImSpector�.
Linear variable filter/liquid crystal spatial light modulator �See Refs. 9 and 10�.
Acousto-optical tunable filter.
SpectraCube.
Adjustable.
Charge coupled device.
ion. The need for spectral image compression is becoming T

. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
ore and more important to avoid inefficient data
ommunications.20–23

In this paper, we consider the situation of several spec-
ral image archives in a network. One needs to browse the
mages to find a desirable one. This preliminary browsing
oes not require the full resolution image representation. We
escribe a novel browsing architecture including an image
ompression format for the fast browsing of spectral images
ith good visual quality.

The paper is organized as follows: In the section Spec-
ral Image Browsing Architecture, an architecture for con-
tructing a system for spectral image browsing is described.

Table II. Memory requirements for different image formats.

mage type �8 bits/ pixel� 256�256 pixels 512�512 pixel

ray level image 64 kB 256 kB

GB image 192 kB 768 kB

pectral image �20 nm resol.�a 1 MB 4 MB

pectral image �5 nm resol.�a 4 MB 16 MB

oving spectral image �10 s, 20 nm resol.�a,b 246 MB 983 MB

400– 700 nm.
24 frames/ s.

tral imaging systems.

LVF/LCSLMc

system AOTFd Interferometrice

Narrow/
broadbandf

Narrow
band

Narrow
band

4–8 20–40 80

Spectral Spectral Spectral

Slow/fast Fast Fast

Electrical/
mechanical

Electrical Electrical

CCD CCD CCD

Fixed,
CCD-dep.

AOTF,
CCD-dep.

Fixed,
CCD-dep.

Computational AOTF-dep. Optics-dep.
cs of spec

b

row
d

420

ial

ium

hanical

ning
endent

d
-dep.
he section Image Formats overviews the methods for in-
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ormation compression in spectral domain and gives a new
ompression format for spectral images. The section Experi-
ental Results contains experimental results of the useful-

ess and accuracy of the proposed format. The section Dis-
ussion concludes the results and includes a discussion
bout the future developments and special constraints for
he proposed technology.

PECTRAL IMAGE BROWSING ARCHITECTURE
n this study, we consider the following situation. There are
pectral images stored in the spectral image archive. The
mages may be saved either in raw spectral image format or
n principal component analysis (PCA) component image
ormat. Image formats are explained in detail in the Image
ormats section. The systems utilize a client-server model
or browsing. The client sends a request to the image archive,
hich is located in a spectral image server. The actual data-
ase search is realized by an intelligent agent which also
ecognizes the image format. When the agent returns the
mage, it is sent to the client.

In browsing, the image should not be presented in the
ighest resolution. The most important feature is the com-
unication speed. Therefore, the images have been archived

lso to the lower spectral resolution browsing format which
s still visually acceptable. This transformed image is sent to
he client. At the client, there may be many different types of
isplays from high quality multiprimary color displays to

ow-resolution PDA’s. Before the display, the spectral image
s reconstructed and this image is driven through a display
lter to match the display characteristics. The architecture is
hown in Fig. 1. A subsampling filter and spectral recon-
truction are explained in detail below.

MAGE FORMATS
s described above, spectral representation of color images
as many advantages over the RGB presentation. It is also
lear that preserving the full spectral information is memory

Figure 1. Spectral im
onsuming. There are some techniques in the literature to t

74
ompress the color spectra while preserving information
bout the raw spectrum sufficiently. These methods include
CA (Refs. 24–26) and independent component analysis27,28

ICA). Also a similar encoding format conventionally com-
atible for today’s monitors and printers has been estab-

ished, where the first three values define the tristimulus
odel and additional channels are added for defining the

pectrum more accurately.29 From these studies, one may
onclude that the color spectra can be reconstructed in rela-
ively high accuracy by using 5–10 basis vectors. The image
an also be stored in the PCA or ICA transformed format.
CA eigenimages can be compressed, e.g., with JPEG
ompression.26

It is known that the human visual system is more sen-
itive to spatial resolution in an achromatic channel than in
hromatic channels.30 This fact has been utilized in color
mage transform and compression methods. For example, in
he PAL TV-system and in the JPEG compression method,

igure 2. Subsampling schemes in which the selected pixels are shown
s black circles inside 2�2 pixels blocks �methods 4:2:2 and 4:2:0�
nd inside 1�4 pixels block �method 4:1:1�. Method 4:4:4 means that

here is no spatial compression done.

rowsing architecture.
age b
he colors are represented by YCbCr coordinates, where Y is

J. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
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he achromatic information, while Cb and Cr carry the
hromatic information of the color. In these methodologies,
patial compression of chromatic channels has been utilized
y subsampling the Cb and Cr channels.31

Subsampling is realized using the standard 4:2:2, 4:2:0,
nd 4:1:1 subsampling schemes for sampling every second or
very fourth pixel from the Cb and Cr component images.31

he idea of these subsampling methods is shown in Fig. 2, in
hich the selected pixels are shown as black circles inside
�2 pixel blocks (methods 4:2:2 and 4:2:0) and inside
�4 pixel blocks (method 4:1:1). Method 4:4:4 means that

Figure 3. The eigenvectors of PCA for

Figure 4. The spectral image �Park2� and the ei
patial compression is not done. Here A :B :C describes a o

. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
lock of 1�A pixels, where B pixels are selected from every
lock in odd rows and C pixels are selected from every block

n even rows.
In this study, we apply the subsampling idea into an

xpanded eigenimage representation. After computing PCA
igenvectors from a spectral image, one can represent the
pectral image by a set of eigenimages, which are formed by
omputing the inner product between the pixel spectrum
nd each eigenvector. The first of these eigenimages contains
verage scalar information of the spectra.

Figure 3 shows the first four eigenvectors of the PCA for
32

pectral image in the FOREST database.

ges. Original image is shown in color in Fig. 6.
ne spectral image (Park2) in the FOREST database. In

575
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ig. 4, the original image and the inner products between the
riginal spectral image and these eigenvectors, i.e., the
igenimages, are shown.

In this study, we apply the subsampling methodology
nto all the other eigenimages except the first one. Due to the
ccuracy requirements mentioned above, one may need
ore than three eigenimages for spectral image reconstruc-

ion. Therefore, we expand the subsampling into more than
wo eigenimages.

In the spectral image archive, the images are stored ei-
her in raw spectral image format or directly as a set of
igenimages. In browsing, the image is sent from the server
o the client using a subsampling filter. In the case of the raw
pectral image, the filter first computes the eigenimages. In
he case of the eigenimage format these images are read
irectly from the image archive. Then the first eigenimage is
ransferred as such, and the other eigenimages are
ubsampled using a subsampling scheme.

At the client end, the image is reconstructed by expand-
ng the subsampled eigenimages into the original size and
ombining the reconstructed spectral image from the
igenimages. The number of eigenimages and the
ubsampling scheme depend on the spectral accuracy re-
uirements and the data communication bandwidth. From
his reconstructed spectral image, the final displayed

ultiprimary, RGB, or printed image is formed by a display
lter. The process of subsampled image formation is shown
chematically in Fig. 5.

In this scheme, we first compute the eigenvectors from
he whole image, form the full size eigenimages, and do
ubsampling for those eigenimages. It is worth it to consider
f it would be computationally more effective to do
ubsampling already for the raw image components. All
ymbols of this computation are listed in Table III.

Let I�x� be the spectral image with k pixels, where the

Figure 5. Schematic presenta
c

76
ixels are ordered to a vector, and each pixel value I�xi� is a
-dimensional color spectrum. The PCA eigenimages can be
resented as projections PI�x�, where P is a vector of eigen-
ectors �1 , . . . ,�n produced by the PCA method from the
ixels spectra. Let S be the set of all pixels in the image and

i a subset of pixels. The subsampling of a spectral image

Table III. Symbols.

ymbols

1, C2 Compressed multispectral image

Original multispectral image; pixels are ordered
to a vector

s Subsampled multispectral image

1, P2 Vector of m eigenvectors produced by PCA

1
*, P2

* Vector of m-1 eigenvectors, without �1

1, S2 Set of subsampled eigenimages

Number of pixels in the image

� Number of pixels in the subsampled image

Number of eigenimages

Dimension of spectrum

Delta-function, which chooses the pixels for
subsampling

i ith eigenvector

→Y X approaches to Y

subsampled image formation.
tion of
an now be represented as

J. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
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Si = ��xi − x0�PI�x� , �1�

here ��x� is the delta function and �xi� goes over of a
ubset of pixels. Let us also define that this subset contains k�
ixels.

Let us define that P1 is a vector of eigenvectors

1 , . . . ,�m, where m is the number of eigenimages used in
he image representation. Let also P1

* be the vector of eigen-
ectors, where the first eigenvector �1 has been removed
rom the P1. Now we have eigenvectors �2 , . . . ,�m in P1

*. The
ubsampled set of eigenimages is

S1 = ��xi − x0�P1
*I�x� , �2�

here �xi� goes over of a subset of pixels. When these subsets
re chosen as shown in Fig. 2, we get different subsampling

Table IV. The spectral reconstruction errors for the CORAL database containing te

m MSD PSNR

1 46.53 29.50

2 27.06 34.60

3 18.81 37.72

4 14.86 39.98

5 12.09 41.90

6 10.21 43.45

7 8.89 44.68

8 7.76 45.89

9 6.82 47.02

10 5.93 48.28

Table V. The spectral reconstruction errors for the FOREST database containing 12

m MSD PSNR

1 33.50 32.40

2 19.83 36.88

3 12.44 41.39

4 8.75 44.57

5 6.75 46.93

6 5.65 48.62

7 4.87 49.94

8 4.30 51.10

9 3.85 52.11

10 3.45 53.09
chemes. Now s

. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
C1 = ��1
TI� � S1 �3�

orm the set of eigenimages sent to the client, where C1 is
he compressed multispectral image.

There are three questions to consider: can we change
he order of subsampling and projection operation, how to
stimate P, and what are the most efficient subsampling
chemes.

For increasing the computational efficiency, we consider
he change of order of subsampling and projection opera-
ion. This means that we compute the eigenvectors from the
ubsampled raw images. Now the set S1 in Eq. (2) is replaced
y the set

S2 = P2
*���xi − x0�Is�x�� , �4�

here P2
* is vector of eigenvectors estimated from the

images. In the first column, m denotes the number of component images used.

�Eavg �ES-CIELAB Fidelity

8.24 7.43 97.17

4.60 3.73 99.12

3.00 2.15 99.59

2.02 1.29 99.75

1.51 0.89 99.84

1.15 0.59 99.91

0.96 0.45 99.93

0.65 0.30 99.95

0.48 0.23 99.96

0.36 0.16 99.97

images. In the first column, m denotes the number of component images used.

�Eavg �ES-CIELAB Fidelity

7.30 5.57 98.14

3.36 2.44 99.34

1.53 1.01 99.76

1.03 0.58 99.89

0.70 0.34 99.94

0.50 0.24 99.97

0.31 0.12 99.98

0.24 0.08 99.98

0.21 0.06 99.98

0.19 0.06 99.99
n spectral
spectral
ubsampled image Is.
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The set of image components to be sent to the client is
ow

C2 = ��1
TI� � S2, �5�

here �1
T is the first PCA eigenvector of subsampled images.

It is obvious that

C2 → C1 �6�

able VI. The average �ES-CIELAB errors and PSNR in reconstruction for the CORAL
atabase �ten spectral images�.

ORAL MSD PSNR �ES-CIELAB

CA 4:4:4 18.81 37.72 2.15

CA 4:2:2 22.49 35.58 2.29

CA 4:2:0 25.59 34.18 2.50

CA 4:1:1 27.16 33.44 2.69

able VII. The average �ES-CIELAB errors and PSNR in reconstruction for the FOREST
atabase �12 spectral images�.

OREST MSD PSNR �ES-CIELAB

CA 4:4:4 12.44 41.39 1.01

CA 4:2:2 17.28 37.94 1.31

CA 4:2:0 21.76 35.87 1.71

CA 4:1:1 23.57 34.97 2.15

Figure 6. Two examples of original and reconstructed browser image.
hen t

78
P2 → P1 �7�

nd the sets C1 and C2 are equal if P1 and P2 are estimated
rom the same set of pixels.

Algorithms for the two procedures above, Eqs. (2) and
4), are as follows:

LGORITHM 1 ALGORITHM 2

. Form correlation
atrix
n�n matrix using k
pixels O�kn2�

1. Subsample image
n component images
O�k�n� or O�kn�
depending on the
method

. Compute eigenvectors
m eigenvectors
O�n3+ �n log2 n�log b�
within relative error
bound 2−b, see Ref. 33

2. Form correlation matrix
n�n matrix using
subset of pixels
O�k�n2�

. Compute inner
roduct images
k pixels, m component
images O�knm�

3. Compute eigenvectors
m eigenvectors
O�n3+ �n log2 n�log b�
within relative error
bound 2−b, see Ref. 33

. Subsample image
m−1 component
images O�k��m−1�� or
O�k�m−1�� depending
on the method

4. Compute inner
product images

k pixels for first
eigenimage, for sub
sampled pixel set m−1
component images
O�kn+k�n�m−1��

Algorithm 2 is computationally more efficient. The ef-
ciency is based on the following steps:

1. The correlation matrix is formed from a smaller
set of pixels (step 2). When comparing to this, the
increment of component images for subsampling
(step 1) is not relevant.

2. A smaller number of inner products computed
for eigenimages (step 4). The benefit is dependent
on the subsampling scheme.

The vector of projections P for each image can be com-
uted from all pixels in the image or estimated from a subset
f pixels. In Algorithm 2 (step 2), this subset is chosen by
ubsampling scheme. It is also possible to use random subset
n both algorithms.

Figure 2 shows the common subsampling schemes.
ince we are considering spectral images, we may use more
han three eigenimages. Therefore, we have studied new
chemes for subsampling including mean of subsampling
indow. This would give us the possibility to use more

igenimages for more accurate color with the same data
ransmission bandwidth. The mean or median of pixel vec-
ors are motivated estimates if we consider that the pixel
istribution function is with normal density or Laplace dis-
ribution, respectively.34

In the previous treatment of images, the PCA eigenvec-
28
ors can be replaced by ICA basis vectors.

J. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
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XPERIMENTAL RESULTS
o test the proposed method, we used FOREST and CORAL

pectral image databases acquired by Chiao et al.32
FOREST

nd CORAL databases contain 12 and 10 spectral images,
espectively. The images were acquired in the range of
03–696 nm using an interference filter based spectral cam-
ra system. The spectral images contain 40 channels.

able VIII. The average �ES-CIELAB errors in reconstruction for the FOREST database containing 12
he center vector or the average vector. The results are reported for 3, 4, and 5 eigenimages.

OREST 3�3 center

umber of eigenimages 3 4

ES-CIELAB 2.02 1.81

Figure 7. Examples of spectra in original �
. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
First, the PCA was applied for each spectral image in-
ividually in both databases. The same 128�128 central
art of the image was used as in the study of Chiao et al.32

he image quality at the browser was measured as spectral
rror between original and reconstructed spectral image.
he following error measures were used:

Fidelity: measures the amount of information in m
igenvectors.

mages. The block size 3�3 pixels were used in subsampling and the block was represented by

3�3 average

5 3 4 5

1.73 1.47 1.16 1.04

nd reconstructed �dashed� browser image.
spectral i
solid� a
579
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Mean Spectral Distance (MSD): mathematical error of
alues. This is the average euclidean distance between origi-
al and reconstructed image.

Peak Signal-to-Noise Ratio (PSNR): measures the
oise in the image.

�E and �ES-CIELAB: is used as a human visuality mea-
ure. This measures the color difference between the images.
-CIELAB is a spatial extension of CIELAB proposed by Zhang
nd Wandell.35 Here, standard D65 was used as a light
ource.

We computed the results using up to ten eigenimages.
hese results are collected in Tables IV and V. It can be seen

hat 3–5 eigenimages are needed for the series to achieve
dequate results. There is no subsampling used in this com-
ression.

The Fidelity, MSD, and PSNR error measures are calcu-
ated as follows:

Fidelity = 100

�
i=1

m

�i

�
j=1

n

�j

, �8�

MSD =
1

k
�
i=1

k ��
j=1

n

�oj − rj�2, �9�

PSNR = 10 log10

2552

MSE
, �10�

here oi is the original channel value, ri is the reconstructed
hannel value, and MSE is the mean squared error.

Algorithms 1 and 2 were programmed in MATLAB on
NIX platform for all subsampling schemes shown in Fig. 2.
he spectral image reconstruction results are shown in
ables VI and VII. In the 4:4:4 subsampling scheme, there is
o spatial compression done, i.e., the reconstruction corre-
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Table IX. The CR for the CORAL and FOREST databases used in our experiments.

Number of
eigenimages Method �block size� CR

3 4:4:4 �2�2� 13.3

3 4:2:2 �2�2� 19.9

3 4:2:0 �2�2� 26.5

3 4:1:1 �1�4� 26.5

3 �3�3� 32.4

4 �3�3� 29.7

5 �3�3� 27.3
ponds to PCA spectral reconstruction. Here, three m

80
igenimages were used in the compression. There is greater
ariety in hue in CORAL-database images than in FOREST-
atabase images, which makes the average errors higher in

he CORAL database. The original and reconstructed browser
mages were also compared visually on the computer display.
wo examples of these image pairs are shown in Fig. 6 with
he 4:2:0 subsampling scheme. A couple of examples of the
riginal (solid) and reconstructed (dashed) spectra from
hese images are shown in Fig. 7, where the calculated �E is
ear the average.

In the following experiments, we used more eigenim-
ges to represent the spectral domain and to keep the com-
ression ratio (CR) in a reasonable level, the block size in
ubsampling was enlarged to 3�3 pixels. The vector, which
epresents the 3�3 pixels block, was first selected from the
enter pixel of the block. Also the mean vector of the
�3 pixels block was tested. The results for the FOREST da-

abase are collected in Table VIII. Using the average vector,
he reconstruction accuracy was improved. The compression
atios for all the compressions performed are shown in Table
X. The compression ratio is calculated as follows:

CR =
size of original image �bytes�

size of compressed image �bytes�
. �11�

he size of the compressed image in Eq. (11) contains the
ize of subsampled eigenimages and also the size of eigen-
ectors, which are needed for image reconstruction. The ex-
mples of the theoretical time required for transferring the
riginal and compressed images via network are collected in
able X.

ISCUSSION
n the present study, we addressed the problem of browsing
pectral image archives. A browsing architecture is proposed
nd considered the problem of fast image transmission from
he server to the client computer. It is assumed that in
rowsing, the accurate spectral information is not needed,
ut the images should have acceptable visual quality. By re-
onstructing the spectral image in the client side, it can be
uned for the wanted display by the display filter.

In the server, the images may be stored in raw spectral
mage format or in PCA spectral image format. Also the ICA
ormat can be used. PCA and ICA formats are device inde-
endent data formats. We experimented also with ICA based
pectral compression and concluded that the performance of
CA and ICA in compression were almost similar.

We first used PCA to reduce the number of component
mages and then the subsampling schemes used in JPEG and

PEG type color image compression were applied for PCA
ased component images. Also another approach, which first
ubsamples the spectral image and then calculates PCA for
he subsampled image was discussed and tested. The recon-
truction errors were similar in both algorithms. This is be-
ause the difference between the algorithms is that, statisti-
ally, in algorithm 2 there are fewer spectra used for
alculating the correlation matrix in PCA. Therefore, there

ay be small differences between the eigenvectors of the

J. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
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lgorithms and this can lead to small differences in spectral
mage reconstruction. Algorithm 2 was computationally
bout 10% faster than algorithm 1. The CPU times needed
or compressing and decompressing the FOREST database
ontaining 12 spectral images were 178 s for algorithm 1
nd 159 s for algorithm 2. When the block size is constant
or each channel, then algorithm 2 can be applied. However,
or example, if the block size for the second eigenimage is
�2 and 3�3 for the third eigenimage, then algorithm 2
annot be applied.

The searching of images from the archive was not in-
luded in this study. However, if the client user has a spectral
mage and wants to search for a similar image from the
pectral image database, one possibility is that the client cal-
ulates the eigenvectors for a spectral image and then the
earch is done by comparing the eigenvectors for images in
he database. This-way the images with similar spectral char-
cteristics can be searched. When the desired image is found
y browsing, then the raw spectral image can be down-

oaded, for example, for computational purposes where the
ccurate spectral and spatial resolution are needed.

Our experiments show that the proposed compression
ethod is suitable for browsing, i.e., for visual purposes. The

rowsed image can be tuned to a desired display device,
ncluding also a multiprimary display. The error calculations
�ES-CIELAB values) are in a reasonable level. If more eigenim-
ges are employed in spectral representation then the spectra
re more accurate, but in order to keep the compression
atio at a suitable level, the block size could be then made
arger. For example, in Table IX the CR for 5 eigenimages (
�3 block) is 27.3 and for three eigenimages (method
:2:0) the CR is 26.5, i.e., they are compressed images with
he same size. However, the �ES-CIELAB value for five eigenim-
ges (1.04) is lower than for three eigenimages (1.71). The
nalysis of the optimal number of eigenimages versus the
ptimal block size needs to be further investigated. In Table
, the advantage of the proposed compression in network

ransfer can be clearly seen.
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