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Abstract. The technology for spectral imaging has developed rap-
idly during the past few years. The spectral cameras are usable in a
variety of applications. These applications include archiving of artis-
tic and museum objects, telemedicine, and e-commerce. In all of
these applications, a large number of images will be stored in the
archives with a high spatial and spectral (color) resolution. A possi-
bility for fast browsing of these archives is needed. For browsing,
the speed is more important than the high resolution of the images.
The original, high resolution spectral images should be kept in the
archive. In this paper, the authors present a new spectral image
browsing architecture. This architecture contains a new data struc-
ture for spectral images. The data structure is based on a low-
dimensional representation of original spectral images including a
spatial subsampling of eigenimages. The authors show that this for-
mat enables fast network transfer of spectral images with a small
loss of spatial and spectral information. Also, measures of visual
quality are given. © 2006 Society for Imaging Science and
Technology. [DOI: 10.2352/J.ImagingSci.Technol.(2006)50:6(572)]

INTRODUCTION

Spectral imaging technology and its applications are under
rapid development. Present imaging representation and dis-
play techniques for color images are mainly based on three-
dimensional color coordinate systems. In computer applica-
tions, a RGB-system is mostly used. However, new
application areas like telemedicine, e-commerce, and
archiving of images of cultural heritage objects are evolving.'
Some problems with RGB-images in these applications are
that one cannot, e.g., manage the change of an object’s color
under different illuminations or the accurate color of an
object cannot be determined. Display technology also causes
a problem: all the desired colors cannot be displayed due to
the limitation of the device depended color gamut.’
Metamerism is a phenomenon where two objects look the
same under one illumination but different under another
one. This is due to the limited ability of the three-
dimensional color coordinate system to express colors, but
can be overcome by using spectra for object color
representation.” In  some applications, especially in
telemedicine and e-commerce, the managing of changes in
illumination is important. This is a relevant problem since
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an image is taken under one illumination and viewed after
transfer under another illumination. If RGB-colors are used,
it is impossible to accurately estimate the color under a dif-
ferent illumination. Hence, the full spectral information of
color is needed.

To overcome the above mentioned problems, various
spectral image processing and display systems have been de-
veloped. In these systems, the color image is represented by
n component images, where n can value up to a few hun-
dred. The RGB-image can be seen as a special case where n
equals 3.

In spectral image acquisition, six basic methodologies
are used. In interference filter based systems the component
images are acquired one by one as regular gray-level images
through narrow band interference filters.”® In this system, a
component image is taken as one shot and the system scans
during image acquisition over the spectral region. The object
should stay stable during the scanning. Liquid crystal tun-
able filter™ (LCTF) electronically scans the spectral region
and is faster than the mechanically scanned interference filter
wheel. The grating based imagers are line scanners, where
for one line in the object the whole spectrum of each pixel is
captured. The final spectral image is acquired by spatial
scanning over the whole object.® Also, this is a narrowband
type imaging system. The fourth system construction also
uses gratings for spectral dispersion, but either optical or
temporal integration is used for producing an arbitrary
broadband filter for component image acquisition. In this
system, the component images are spatially accurate and the
spectrum is scanned corresponding to the number of
filters.”'" Acousto-optic tunable filters can also be used to
scan the spectral region.'" Interferometry based devices are
also developed, e.g., SpectraCube.'” The basic characteristics
of the spectral imaging systems are summarized in Table I.

Unlike spectral imaging systems, there are no spectral
display systems commercially available at the moment. How-
ever, there is ongoing research in projective multiprimary
systems,”"” e.g., in the Tokyo Institute of Technology. Also in
printing technology, methods using more than four primary
colors are under intensive research.'® Presently, published
multiprimary display systems use six relatively narrow band
filters in front of white light to produce six primary colors.
The system enables the display of the spectral colors more
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Table I Characteristics of spectral imaging systems.

Interference LVF/LCSLMC

filters LaF g system AoTe! Interferometric®
Filter Narrow Narrow/ Narrow Narrow/ Narrow Narrow
type hand broadband' band broadband" band band
Number of 16-40 6-61 60-420 4-8 20-40 80
filters
Scanning Spectral Spectral Spatial Spectral Spectral Spectral
direction
Acquisition Slow Fast Medium Slow/fast Fast Fast
time
Scanning Mechanical Elecirical Mechanical Electrical/ Elecirical Elecirical
type mechanical
Sensor (g ()} (0} (1)} ()} (1)}
Spatial Fixed, Fixed, Scanning Fixed, AOTE Fixed,
resolution CCD-dep. CCD-dep. dependent (CD-dep. CCD-dep. (CD-dep.
Spectral Fixed, Fixed, Fixed Computational AOTF-dep. Optics-dep.
resolution filter-dep. filter-dep. CCD-dep.

*Liquid crystal tunable filter.

bPrism-gruting-prism (ImSpector).

“Linear variable filter/liquid crystal spatial light modulator (See Refs. 9 and 10).
UAcousto-optical tunable filter.

*SpectraCube.

"ndijustable.

%Charge coupled device.

accurately than RGB and offers better coverage over the
color space, ie., the display gamut is wider than in
RGB-displays.1 First attempts toward moving spectral im-
ages have been taken in Ref. 15, and also a six-primary chan-
nel video camera is developed.'® In addition, there has been
a lot of improvement in sensor technology that will provide
control over the illuminant variety and retune the display
automatically."”

Hardware development means that there is a need for
spectral image processing and analyzing methods. The spec-
tral images have large memory requirements, which set the
needs for image compression and data reduction. This is an
especially considerable issue in the browsing of large data-
bases. Examples of the memory requirements are shown in
Table II.

There are some projects in art museums to store spec-
tral images of paintings into the database.'® For example, in
the National Gallery (UK) spectral information about color
changes in paintings has been collected since late 1980s, as
well as an archive of spectral images of paintings. In general,
art museums around the world are going to use digital tech-
nology for archiving and conservation purposes. This devel-
opment also sets the needs for new methods of spectral im-
age processing. We belive that there will be spectral image
archives also in other fields, like the cosmetics industry and
telemedicine.” However, many techniques in color image
transmission are bound to the traditional RGB representa-
tion. The need for spectral image compression is becoming
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Table II. Memory requirements for different image formats.

Image type (8 bits/ pixel) 256 < 256 pixels 512 512 pixels

Gray level image 64 kB 256 kB
RGB image 192 kB 768 kB
Spectral image (20 nm resol.) 1 MB 4 MB
Spectral image (5 nm resol.)" 4 MB 16 MB
Moving spectral image (10 s, 20 nm resol.)* 246 MB 983 MB
°400-700 nm.

%24 frames/s.

more and more important to avoid inefficient data
communications.” >’

In this paper, we consider the situation of several spec-
tral image archives in a network. One needs to browse the
images to find a desirable one. This preliminary browsing
does not require the full resolution image representation. We
describe a novel browsing architecture including an image
compression format for the fast browsing of spectral images
with good visual quality.

The paper is organized as follows: In the section Spec-
tral Image Browsing Architecture, an architecture for con-
structing a system for spectral image browsing is described.
The section Image Formats overviews the methods for in-
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Figure 1. Spectral image browsing architecture.
. . . . . 4:4:4 4:2:2 4:2:0 4:1:1
formation compression in spectral domain and gives a new
compression format for spectral images. The section Experi- o0 o0 L 2K ) ’ o ‘ o ‘ o ‘ o ‘
mental Results contains experimental results of the useful- Y ole o0 eole
ness and accuracy of the proposed format. The section Dis-
cussion concludes the results and includes a discussion
about the future developments and special constraints for YK ) o o ’.‘ ‘ ‘ ‘
the proposed technology. Cb
oo L
SPECTRAL IMAGE BROWSING ARCHITECTURE
In this study, we consider the following situation. There are
spectral images stored in the spectral image archive. The o0 o o ’.‘ ‘ ‘ ‘
images may be saved either in raw spectral image format or cr oo P

in principal component analysis (PCA) component image
format. Image formats are explained in detail in the Image
Formats section. The systems utilize a client-server model
for browsing. The client sends a request to the image archive,
which is located in a spectral image server. The actual data-
base search is realized by an intelligent agent which also
recognizes the image format. When the agent returns the
image, it is sent to the client.

In browsing, the image should not be presented in the
highest resolution. The most important feature is the com-
munication speed. Therefore, the images have been archived
also to the lower spectral resolution browsing format which
is still visually acceptable. This transformed image is sent to
the client. At the client, there may be many different types of
displays from high quality multiprimary color displays to
low-resolution PDA’s. Before the display, the spectral image
is reconstructed and this image is driven through a display
filter to match the display characteristics. The architecture is
shown in Fig. 1. A subsampling filter and spectral recon-
struction are explained in detail below.

IMAGE FORMATS

As described above, spectral representation of color images
has many advantages over the RGB presentation. It is also
clear that preserving the full spectral information is memory
consuming. There are some techniques in the literature to
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Figure 2. Subsampling schemes in which the selected pixels are shown
as black circles inside 2 % 2 pixels blocks (methods 4:2:2 and 4:2:0)
and inside 1 x4 pixels block (method 4:1:1). Method 4:4:4 means that
there is no spatial compression done.

compress the color spectra while preserving information
about the raw spectrum sufficiently. These methods include
PCA (Refs. 24-26) and independent component analysis*"**
(ICA). Also a similar encoding format conventionally com-
patible for today’s monitors and printers has been estab-
lished, where the first three values define the tristimulus
model and additional channels are added for defining the
spectrum more accurately.” From these studies, one may
conclude that the color spectra can be reconstructed in rela-
tively high accuracy by using 5-10 basis vectors. The image
can also be stored in the PCA or ICA transformed format.
PCA eigenimages can be compressed, e.g., with JPEG
compression.%

It is known that the human visual system is more sen-
sitive to spatial resolution in an achromatic channel than in
chromatic channels.”® This fact has been utilized in color
image transform and compression methods. For example, in
the PAL TV-system and in the JPEG compression method,
the colors are represented by YCbCr coordinates, where Y is

J. Imaging Sci. Technol. 50(6)/Nov.-Dec. 2006
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Figure 3. The eigenveciors of PCA for Park2-spectral image in the FOREST database.

Original
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Figure 4. The speciral image (Park2) and the eigenimages. Original image is shown in color in Fig. 6.

the achromatic information, while Cb and Cr carry the
chromatic information of the color. In these methodologies,
spatial compression of chromatic channels has been utilized
by subsampling the Cb and Cr channels.”

Subsampling is realized using the standard 4:2:2, 4:2:0,
and 4:1:1 subsampling schemes for sampling every second or
every fourth pixel from the Cb and Cr component images.”’
The idea of these subsampling methods is shown in Fig. 2, in
which the selected pixels are shown as black circles inside
2 X2 pixel blocks (methods 4:2:2 and 4:2:0) and inside
1 X 4 pixel blocks (method 4:1:1). Method 4:4:4 means that
spatial compression is not done. Here A:B:C describes a

J. Imaging Sci. Technol. 50(6)/Nov.-Dec. 2006

block of 1 X A pixels, where B pixels are selected from every
block in odd rows and C pixels are selected from every block
in even rows.

In this study, we apply the subsampling idea into an
expanded eigenimage representation. After computing PCA
eigenvectors from a spectral image, one can represent the
spectral image by a set of eigenimages, which are formed by
computing the inner product between the pixel spectrum
and each eigenvector. The first of these eigenimages contains
average scalar information of the spectra.

Figure 3 shows the first four eigenvectors of the PCA for
one spectral image (Park2) in the FOREST database.’ In
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Figure 5. Schematic presentation of subsampled image formation.

Fig. 4, the original image and the inner products between the
original spectral image and these eigenvectors, ie., the
eigenimages, are shown.

In this study, we apply the subsampling methodology
into all the other eigenimages except the first one. Due to the
accuracy requirements mentioned above, one may need
more than three eigenimages for spectral image reconstruc-
tion. Therefore, we expand the subsampling into more than
two eigenimages.

In the spectral image archive, the images are stored ei-
ther in raw spectral image format or directly as a set of
eigenimages. In browsing, the image is sent from the server
to the client using a subsampling filter. In the case of the raw
spectral image, the filter first computes the eigenimages. In
the case of the eigenimage format these images are read
directly from the image archive. Then the first eigenimage is
transferred as such, and the other eigenimages are
subsampled using a subsampling scheme.

At the client end, the image is reconstructed by expand-
ing the subsampled eigenimages into the original size and
combining the reconstructed spectral image from the
eigenimages. The number of eigenimages and the
subsampling scheme depend on the spectral accuracy re-
quirements and the data communication bandwidth. From
this reconstructed spectral image, the final displayed
multiprimary, RGB, or printed image is formed by a display
filter. The process of subsampled image formation is shown
schematically in Fig. 5.

In this scheme, we first compute the eigenvectors from
the whole image, form the full size eigenimages, and do
subsampling for those eigenimages. It is worth it to consider
if it would be computationally more effective to do
subsampling already for the raw image components. All
symbols of this computation are listed in Table III.

Let I(x) be the spectral image with k pixels, where the
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Table 1. Symbols.
Symbols
G, G Compressed multispectral image
I Original multispeciral image; pixels are ordered
fo a vector
I, Subsampled multispectral image
P, Py Vector of m eigenvectors produced by PCA
P, P, Vector of m-1 eigenvectors, without 7,
L)) Set of subsampled eigenimages
k Number of pixels in the image
k' Number of pixels in the subsampled image
m Number of eigenimages
n Dimension of spectrum
8 Delta-function, which chooses the pixels for
subsampling
T ith eigenvector
X—Y X approaches to ¥

pixels are ordered to a vector, and each pixel value I(x;) is a
n-dimensional color spectrum. The PCA eigenimages can be
presented as projections PI(x), where P is a vector of eigen-
vectors 7, ..., 7, produced by the PCA method from the
pixels spectra. Let S be the set of all pixels in the image and
S; a subset of pixels. The subsampling of a spectral image
can now be represented as

J. Imaging Sci. Technol. 50(6)/Nov.-Dec. 2006
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Table IV. The spectral reconstruction errors for the coraL database containing ten spectral images. In the first column, m denotes the number of component images used.

m MSD PSNR Afyy N Fidelity
1 46.53 29.50 8.24 743 97.17
2 27.06 34.60 4.60 373 99.12
3 18.81 31.72 3.00 215 99.59
4 14.86 39.98 202 1.9 99.75
5 12.09 4190 151 0.89 99.84
6 1021 4345 115 0.59 99.91
7 8.89 44.68 0.96 045 99.93
8 7.76 45.89 0.65 0.30 99.95
9 6.82 47.02 048 023 99.96
10 5.93 18.28 0.36 0.16 99.97

Table V. The spectral reconstruction errors for the Forest database containing 12 spectral images. In the first column, m denotes the number of component images used.

m MSD PSNR A, Afgqrug Fidelity
1 33.50 3240 7.30 5.57 98.14
2 19.83 36.88 3.36 2.44 99.34
3 12.44 41.39 1.53 1.01 99.76
4 8.75 4457 1.03 0.58 99.89
5 6.75 46.93 0.70 0.34 99.94
6 5.65 48.62 0.50 0.24 99.97
7 487 49.94 0.31 0.12 99.98
8 430 51.10 0.24 0.08 99.98
9 3.85 5211 0.21 0.06 99.98
10 345 53.09 0.19 0.06 99.99
S = 8(x; — x0) PI(x), (1) C,=(r{DUS, 3)

where &(x) is the delta function and (x;) goes over of a
subset of pixels. Let us also define that this subset contains k’
pixels.

Let us define that P, is a vector of eigenvectors
Ty ...»T,, Where m is the number of eigenimages used in
the image representation. Let also P be the vector of eigen-
vectors, where the first eigenvector 7, has been removed
from the P;. Now we have eigenvectors 7, ..., 7, in P;. The
subsampled set of eigenimages is

S, = 8x; — x0) P I(x), (2)
where (x;) goes over of a subset of pixels. When these subsets
are chosen as shown in Fig. 2, we get different subsampling

schemes. Now

J. Imaging Sci. Technol. 50(6)/Nov.-Dec. 2006

form the set of eigenimages sent to the client, where C, is
the compressed multispectral image.

There are three questions to consider: can we change
the order of subsampling and projection operation, how to
estimate P, and what are the most efficient subsampling
schemes.

For increasing the computational efficiency, we consider
the change of order of subsampling and projection opera-
tion. This means that we compute the eigenvectors from the
subsampled raw images. Now the set S; in Eq. (2) is replaced
by the set

SZ = P;(é\(xz - xO)Is(x)): (4)

where P, is vector of eigenvectors estimated from the
subsampled image I.
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Table VI. The average AF.qg,, errors and PSNR in reconstruction for the oL
database (ten speciral images).

oRAL MsD PSNR A s
PCA 4:4:4 18.81 37.72 215
PCA 4:2:2 2249 35.58 229
PCA 4:2:0 25.59 34.18 2.50
PCA 4:1:1 27.16 33.44 2.69

Table VII. The average AFg.qg,, errors and PSNR in reconstruction for the FOREST
database (12 spectral images).

FOREST MSD PSNR AES qeug
PCA 4:4:4 12.44 4139 1.01
PCA 4:2:2 17.28 37.94 1.31
PCA 4:2:0 21.76 35.87 1.7
PCA 4:1:1 2357 34.97 215

Reconstructed

- B

Original Reconstructed

Figure 6. Two examples of original and reconstructed browser image.

The set of image components to be sent to the client is
now

C,=(rDUS,, (5)

where 7! is the first PCA eigenvector of subsampled images.
It is obvious that

C,— C, (6)
when
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P, — P, (7)

and the sets C, and C, are equal if P, and P, are estimated
from the same set of pixels.

Algorithms for the two procedures above, Egs. (2) and
(4), are as follows:

ALGORITHM 1 ALGORITHM 2

1. Form correlation
matrix
n X n matrix using k
pixels O(kn?)

1. Subsample image
n component images
O(k'n) or O(kn)
depending on the
method
2. Compute eigenvectors 2. Form correlation matrix
m eigenvectors n Xn matrix using
O(n®+(n log? n)log b) subset of pixels
within relative error O(k'n?)
bound 27, see Ref. 33
3. Compute inner 3. Compute eigenvectors
product images m eigenvectors
k pixels, m component O(n®+(n log? n)log b)
images O(knm) within relative error
bound 27, see Ref. 33
4. Compute inner
product images
k pixels for first
eigenimage, for sub
sampled pixel set m—1
component images
O(kn+k'n(m-1))

4. Subsample image
m~-1 component
images O(k’(m—-1)) or
O(k(m-1)) depending
on the method

Algorithm 2 is computationally more efficient. The ef-
ficiency is based on the following steps:

1. The correlation matrix is formed from a smaller
set of pixels (step 2). When comparing to this, the
increment of component images for subsampling
(step 1) is not relevant.

2. A smaller number of inner products computed
for eigenimages (step 4). The benefit is dependent
on the subsampling scheme.

The vector of projections P for each image can be com-
puted from all pixels in the image or estimated from a subset
of pixels. In Algorithm 2 (step 2), this subset is chosen by
subsampling scheme. It is also possible to use random subset
in both algorithms.

Figure 2 shows the common subsampling schemes.
Since we are considering spectral images, we may use more
than three eigenimages. Therefore, we have studied new
schemes for subsampling including mean of subsampling
window. This would give us the possibility to use more
eigenimages for more accurate color with the same data
transmission bandwidth. The mean or median of pixel vec-
tors are motivated estimates if we consider that the pixel
distribution function is with normal density or Laplace dis-
tribution, respectively.**

In the previous treatment of images, the PCA eigenvec-
tors can be replaced by ICA basis vectors.”®

J. Imaging Sci. Technol. 50(6)/Nov.-Dec. 2006



Hauta-Kasari et al.: Image format for spectral image browsing

2501 Original spectrum
— — — Reconstructed spectrum

200+

Value

2501 Original spectrum
— — — Reconstructed spectrum

Value

400 450 500 550 600 650 700
Wavelength (nm)

Park2-image

0 . . .
400 450 500 550 600 650 700
Wavelength (nm)
250 Original spectrum
— — — Reconstructed spectrum
200

Value

0 L L L
400 450 500 550 600 650 700

Wavelength (nm)

Value

50
Original spectrum
— — — Reconstructed spectrum
0 . , . N N )
400 450 500 550 600 650 700

Wavelength (nm)

Horshe29-image

Figure 7. Examples of spectra in original (solid) and reconstructed (dashed) browser image.

Table VIII. The average A Eg g5 errors in reconstruction for the Forest database containing 12 spectral images. The block size 3 < 3 pixels were used in subsampling and the block was represented by

the center vector or the average vector. The results are reported for 3, 4, and 5 eigenimages.

FOREST 3X 3 center 3X 3 average
Number of eigenimages 3 4 5 3 4 5
AEsqaus 202 181 173 147 116 1.04

EXPERIMENTAL RESULTS
To test the proposed method, we used FOREST and CORAL

spectral image databases acquired by Chiao et al.”> FOREST
and CORAL databases contain 12 and 10 spectral images,
respectively. The images were acquired in the range of
403-696 nm using an interference filter based spectral cam-
era system. The spectral images contain 40 channels.

J. Imaging Sci. Technol. 50(6)/Nov.-Dec. 2006

First, the PCA was applied for each spectral image in-
dividually in both databases. The same 128X 128 central
part of the image was used as in the study of Chiao et al.””
The image quality at the browser was measured as spectral
error between original and reconstructed spectral image.
The following error measures were used:

Fidelity: measures the amount of information in m
eigenvectors.
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Table IX. The (R for the coraL and ForesT databases used in our experiments.

Number of

eigenimages Method (block size) QR
3 444 (2% D) 133
3 422 (2% 2) 199
3 420 (2% 2) 2.5
3 &1:1 (1x4) 26.5
3 (3x3) 324
4 (3x3) 297
5 (3x3) 273

Mean Spectral Distance (MSD): mathematical error of
values. This is the average euclidean distance between origi-
nal and reconstructed image.

Peak Signal-to-Noise Ratio (PSNR): measures the
noise in the image.

AE and AEg_ .5 is used as a human visuality mea-
sure. This measures the color difference between the images.
S-CIELAB is a spatial extension of CIELAB proposed by Zhang
and Wandell.” Here, standard D65 was used as a light
source.

We computed the results using up to ten eigenimages.
These results are collected in Tables IV and V. It can be seen
that 3-5 eigenimages are needed for the series to achieve
adequate results. There is no subsampling used in this com-
pression.

The Fidelity, MSD, and PSNR error measures are calcu-
lated as follows:

2 7i
o i=1
Fidelity = 100—, (8)

27

=1

1 k n
MSD =2 [ 2 (= 1)), 9)
i=1 j=1

2552
PSNR = 10 log;, ——, 10
10 MSE ( )

where o; is the original channel value, 7; is the reconstructed
channel value, and MSE is the mean squared error.
Algorithms 1 and 2 were programmed in MATLAB on
UNIX platform for all subsampling schemes shown in Fig. 2.
The spectral image reconstruction results are shown in
Tables VI and VII. In the 4:4:4 subsampling scheme, there is
no spatial compression done, i.e., the reconstruction corre-
sponds to PCA spectral reconstruction.”* Here, three
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eigenimages were used in the compression. There is greater
variety in hue in CORAL-database images than in FOREST-
database images, which makes the average errors higher in
the CORAL database. The original and reconstructed browser
images were also compared visually on the computer display.
Two examples of these image pairs are shown in Fig. 6 with
the 4:2:0 subsampling scheme. A couple of examples of the
original (solid) and reconstructed (dashed) spectra from
these images are shown in Fig. 7, where the calculated AE is
near the average.

In the following experiments, we used more eigenim-
ages to represent the spectral domain and to keep the com-
pression ratio (CR) in a reasonable level, the block size in
subsampling was enlarged to 3 X 3 pixels. The vector, which
represents the 3 X 3 pixels block, was first selected from the
center pixel of the block. Also the mean vector of the
3 X 3 pixels block was tested. The results for the FOREST da-
tabase are collected in Table VIII. Using the average vector,
the reconstruction accuracy was improved. The compression
ratios for all the compressions performed are shown in Table
IX. The compression ratio is calculated as follows:

size of original image (bytes)
CR=— : . (11)
size of compressed image (bytes)

The size of the compressed image in Eq. (11) contains the
size of subsampled eigenimages and also the size of eigen-
vectors, which are needed for image reconstruction. The ex-
amples of the theoretical time required for transferring the
original and compressed images via network are collected in
Table X.

DISCUSSION

In the present study, we addressed the problem of browsing
spectral image archives. A browsing architecture is proposed
and considered the problem of fast image transmission from
the server to the client computer. It is assumed that in
browsing, the accurate spectral information is not needed,
but the images should have acceptable visual quality. By re-
constructing the spectral image in the client side, it can be
tuned for the wanted display by the display filter.

In the server, the images may be stored in raw spectral
image format or in PCA spectral image format. Also the ICA
format can be used. PCA and ICA formats are device inde-
pendent data formats. We experimented also with ICA based
spectral compression and concluded that the performance of
PCA and ICA in compression were almost similar.

We first used PCA to reduce the number of component
images and then the subsampling schemes used in JPEG and
MPEG type color image compression were applied for PCA
based component images. Also another approach, which first
subsamples the spectral image and then calculates PCA for
the subsampled image was discussed and tested. The recon-
struction errors were similar in both algorithms. This is be-
cause the difference between the algorithms is that, statisti-
cally, in algorithm 2 there are fewer spectra used for
calculating the correlation matrix in PCA. Therefore, there
may be small differences between the eigenvectors of the

J. Imaging Sci. Technol. 50(6)/Nov.-Dec. 2006
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Table X. Examples of theoretical time required for fransferring images via network.

Format Image size 28800 bps 56000 bps 128000 bps 512000 bps
Original image" 655360 B 3 min 1.5 min 4105 102 s
4:4:4 492728 137 s Ts 3ls 08 s
42:0 24696 B 69 35s 155 04
Original image” 63963136 B 49h 25h 1.1h 16.7 min
44:4 3145911 B 14.6 min 7.5 min 3.3 min 49s
420 1573047 B 7.3 min 3.7 min 1.6 min 25

128 < 128 pixels, 40 channels.
51024 1024 pixels, 61 channels.

algorithms and this can lead to small differences in spectral
image reconstruction. Algorithm 2 was computationally
about 10% faster than algorithm 1. The CPU times needed
for compressing and decompressing the FOREST database
containing 12 spectral images were 178 s for algorithm 1
and 159 s for algorithm 2. When the block size is constant
for each channel, then algorithm 2 can be applied. However,
for example, if the block size for the second eigenimage is
2X2 and 3 X3 for the third eigenimage, then algorithm 2
cannot be applied.

The searching of images from the archive was not in-
cluded in this study. However, if the client user has a spectral
image and wants to search for a similar image from the
spectral image database, one possibility is that the client cal-
culates the eigenvectors for a spectral image and then the
search is done by comparing the eigenvectors for images in
the database. This-way the images with similar spectral char-
acteristics can be searched. When the desired image is found
by browsing, then the raw spectral image can be down-
loaded, for example, for computational purposes where the
accurate spectral and spatial resolution are needed.

Our experiments show that the proposed compression
method is suitable for browsing, i.e., for visual purposes. The
browsed image can be tuned to a desired display device,
including also a multiprimary display. The error calculations
(AEs_cipap Values) are in a reasonable level. If more eigenim-
ages are employed in spectral representation then the spectra
are more accurate, but in order to keep the compression
ratio at a suitable level, the block size could be then made
larger. For example, in Table IX the CR for 5 eigenimages (
3 X3 block) is 27.3 and for three eigenimages (method
4:2:0) the CR is 26.5, i.e., they are compressed images with
the same size. However, the AEg_.y; .5 Value for five eigenim-
ages (1.04) is lower than for three eigenimages (1.71). The
analysis of the optimal number of eigenimages versus the
optimal block size needs to be further investigated. In Table
X, the advantage of the proposed compression in network
transfer can be clearly seen.
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