
A
m
a
f
i
a
w
r
a
o
e
t
m
t
I
�

I
I
l
C
h
t
b
p
i
c
p

p
p
c
p
e
t
h
t
m
o

1

d

R

1

Journal of Imaging Science and Technology® 50(6): 556–566, 2006.
© Society for Imaging Science and Technology 2006

5

Updating a CMYK Printer Model Using a Sparse Data Set1

David Littlewood
Department of Mechanical, Aerospace, and Nuclear Engineering,

Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180
E-mail: littld@rpi.edu

Ganesh Subbarayan
Department of Mechanical Engineering,
Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907-2088

v
t
d
a
i
m

c
i
p
F
t
l
e
c
m
a
b
a
f

t
a
t
m
c
c
c
v
s
c

e
S
c
p
s
s
o
s
r

bstract. Two distinct approaches for updating a CMYK printer
odel in response to systematic changes in print device behavior
re presented. In the first method, a corrective model is constructed

rom a sparse set of newly acquired characterization data and used
n addition to the initial printer model. A number of corrective models
re investigated, including linear, quadratic, and artificial neural net-
ork models. The second method involves directly updating the pa-

ameters within the printer model. The updated model parameters
re obtained using both the original characterization data and a set
f newly acquired data. Both methods are evaluated in a set of
xperiments in which either the paper stock or the cyan toner car-

ridge is changed. The corrective model approach is found to be the
ost effective. The most successful corrective models removed be-

ween 76% and 100% of the systematic error. © 2006 Society for
maging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.�2006�50:6�556��

NTRODUCTION
n this study, we consider the accuracy of printer models that
ink device-dependent CMYK values to device-independent
IELAB values.1 The accuracy of a printer model is generally
ighest directly following a thorough device characteriza-
ion, and is diminished due to subsequent changes in device
ehavior. Calibration techniques are typically applied to a
rinting system in an attempt to maintain device character-

stics at a consistent level. If a printer model becomes unac-
eptably inaccurate, a full device recharacterization may be
erformed to bring the system back to peak performance.

A wide variety of factors can affect the accuracy of a
rinter model, resulting in both sudden changes in device
roperties and changes that occur over a period of time. The
hanging of consumables such as paper or colorants can
roduce sudden changes in device performance. Changes in
nvironmental conditions, such as humidity or temperature,
ypically alter the behavior of a print device over a period of
ours or days. Changes in the device itself, including elec-
rophotographic drum characteristics and print head perfor-

ance, also reduce the accuracy of a printer model, typically
ver a longer period of time. Differences between two indi-

Presented in part at IS&T/SID’s 12th Color Imaging Conference, Scotts-
ale, AZ, November 2004.
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idual printers of the same make and model can also be
reated as a systematic shift. If a printer manufacturer has
eveloped a printer model to capture the average behavior of
specific make and model of printer, the methods presented

n this study offer a way of fine tuning this generic printer
odel for each individual device.

Building a complete printer model anew is relatively
omplex and expensive, involving the printing and measur-
ng of a large set of color patches. The expense of building a
rinter model motivates the use of calibration techniques.
or example, adjusting device settings with the goal of main-
aining the optical density of individual colorants may pro-
ong the accuracy of a device model. This approach, how-
ver, does not take into account interactions between
olorants, and is not as accurate as rebuilding the printer
odel. Methods designed to maintain device characteristics

re less expensive than building a new printer model, but
uilding a new printer model is more accurate. Methods that
re less complex also have the advantage of being more easily
acilitated by the end user, as opposed to the system vendor.

We present methods for updating a previously charac-
erized CMYK printer model using a sparse set of newly
cquired characterization data.2 The goal is to capture sys-
ematic shifts in device behavior with one of two distinct

ethods: the introduction of a corrective model used in
onjunction with the existing printer model, and the recal-
ulation of printer model parameters using an augmented
haracterization data set. These methods can be considered
iable if they improve printer model accuracy and offer con-
iderable savings in effort relative to a complete system re-
haracterization.

For the purpose of this study, we consider systematic
rror to be distinct from other errors in a printer model.
ystematic error is considered to be the result of underlying
hanges in system behavior that occur some time after the
rint device has been characterized. These changes may re-
ult from any number of sources, such as a change of con-
umables or changes in environmental conditions that occur
ver time, as mentioned above. Errors not considered to be
ystematic include error in the original printer model, and
andom errors that contribute to the lack of repeatability of

he printing system. It is a goal of this study to bring a
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rinter model back to its original level of accuracy following
systematic shift in device behavior, in other words, to re-
ove systematic errors.

Two sets of experiments were carried out to evaluate the
roposed methods for updating a printer model. In the first
et of experiments, the paper stock was changed following
he characterization of a printer model, resulting in a reduc-
ion in colorimetric accuracy. The methods for updating a
rinter model were applied using a small set of data acquired
fter the change of paper stock. The improvement in colo-
imetric accuracy was then evaluated by comparing sets of
est patches printed before and after the application of cor-
ective methods. In the second set of experiments, a loss of
rinter model accuracy was induced by changing the cyan

oner cartridge. The methods for updating a printer model
ere then applied and evaluated as in the first set of experi-
ents. In the analysis of the proposed methods, particular

ttention was paid to the possibility of introducing new, lo-
alized errors as a result of incorrectly capturing systematic
hifts in printer behavior.

REVIOUS WORK
he subject of compensating for changes in print device
haracteristics with efficient characterization and calibration
echniques is addressed by several studies in the literature.
hese studies all strive for an improvement in colorimetric
ccuracy, but differ in their balance of efficiency, accuracy,
nd control. Several of the calibration studies present tech-
iques for on-line printer adjustment, and often restrict

hemselves to optical density measurements for speed and
ost effectiveness. The approaches investigated in the present
tudy were performed off-line, and utilized spectrophotom-
ter data, which offer greater control and accuracy but are
enerally more expensive than optical density measure-
ents. The present study focuses on the mathematics of

pdating an existing printer model with a sparse set of re-
haracterization data, as opposed to the development of an
n-line calibration system. It is quite feasible, however, that
he methods in the present study could be incorporated with
elated methods in the literature.

Compared to research present in the literature, the work
ompleted in this study is most closely related to that of
alasubramanian and Maltz.3 Balasubramanian and Maltz
ypothesized that a local linear transform can adequately
apture the difference between actual printer behavior and a
rinter model. They created local, matrix-based correction
odels to capture printer model error, printer drift, and

ook-up table (LUT) approximation error. The coefficients
or the correction matrices were determined by weighted
egression in such a way that they could vary considerably
ver the printer color space. The corrective models in the
resent study take a number of forms, and are constant over

he printer gamut. Balasubramanian and Maltz tested their
ethod by attempting to improve the accuracy of a LUT-

ased color management system for a Xerox®5760 xero-
raphic printer. They were successful in reducing the average
odel error from 4.85 �Eab

* to just over 2.62 �Eab
* for a set
f 500 test patches. f

. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
Wu presented a method for calibration that combines
ne-dimensional and three-dimensional approaches.4 He
ddressed differences in the output of two individual print-
rs of the same model, and of a single printer at two differ-
nt times. He differentiated between luminance changes,
hich he addressed with a one-dimensional linearization
ethod, and chrominance changes, which he addressed by

pdating specific regions in the three-dimensional LUT used
y the color management system. In relation to the present
tudy, the LUT update method employed by Wu is similar to
full recharacterization of the print device, but is limited to
carefully chosen section of the gamut. Wu focused on spe-

ific gamut regions, such as the neutral axis and skin tone
egions, and recharacterized the print device only in those
reas.

Bala et al. applied two-dimensional transforms for de-
ice calibration.5 They sought to overcome the limitations
nherent in standard one-dimensional tone response correc-
ion methods with only a modest increase in computational
xpense. Their method first computes two intermediate val-
es using the device space values provided by the character-

zation. The intermediate values are then used to determine
he final device values from a two-dimensional LUT. In the
ontext of their work, the methods presented in this study
re full device-correction functions which offer greater con-
rol but are more computationally expensive than one-
imensional or two-dimensional calibration approaches.

Chu et al. investigated a system for per-cartridge char-
cterization that has several themes in common with our
ork.6,7 They were motivated by observed variations be-

ween individual ink cartridge characteristics and those pre-
icted by vendor supplied profiles. Their method involves

aking a small number of measurements for individual car-
ridges at the manufacturing level and using these data to
pdate an ICC profile at the time the cartridge is installed by

he user. They sought an approach that does not require the
nd user to make measurements, and therefore restricted
heir updating characterization data to step wedges for indi-
idual cartridges. While their study investigated the feasibil-
ty of per cartridge characterization and the associated work-
ow, the present study focuses specifically on computational
ethods for updating a printer model with a sparse set of

echaracterization data. In addition to the difference in gen-
ral thrust of the work, an important difference lies in the
hoice of recharacterization set; Chu et al. used single colo-
ant data, whereas the present study attempts to capture
olorant interactions.

The need for improvement of an existing printer model
s mentioned in other studies in the literature as well. Shiau
nd Williams, for example, considered a combined scanner-
rinter system.8 They developed a method in which a cor-
ective matrix is applied to the RGB values output by a
canner, prior to calculating the device independent values
ent to the printing system. The topic of efficient calibration
nd characterization in general was studied by Haneishi et
l., who investigated the number of measurements required

9
or scanner characterization. Emmel and Hersch mention
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he need to recharacterize quickly when the paper or ink
artridge of a printer is changed; they relate this to rechar-
cterization by pointing out that a full system recharacter-
zation can be achieved more efficiently if a small number of

easurements are required to generate the full LUT.10

The error correction methods developed in this study
ay also be placed in the general context of model transfer.
odel transfer refers to a model developed for one task

eing reused for related tasks.11 In relation to general model
ransfer methods, the techniques developed in this study fall
n the category of representational transfer. Representational
ransfer indicates that the adoption of the original model
ccurs at some time after the initial model creation. Further-
ore, the methods developed here may be distinguished

rom general model transfer methods by their goal, which is
o improve the generalization capability of an existing model
ased on a minimal recharacterization data set. It is also
oted that the methods developed in this study are non-
daptive; that is, the correction methods are applied at a
ingle point in time and do not adapt to changes in printer
haracteristics dynamically.

This study focuses on correcting an existing printer
odel in response to systematic changes in printer charac-

eristics. The following sections outline two general ap-
roaches, the use of corrective models of various forms, and

he recalculation of model parameters using a small number
f new characterization data. These methods are validated
xperimentally, with results favoring methods using rela-
ively simple corrective models.

ETHODS
printer model may be considered in terms of three func-

ions, FL�C ,M ,Y ,K�, Fa�C ,M ,Y ,K�, and Fb�C ,M ,Y ,K�,
hich predict the L*, a*, and b* values of printer output,

espectively, based on the colorant dot fractions C, M, Y, and
. The error between the predicted CIELAB output values

nd the true CIELAB output values can be broken into two
ategories, systematic error �Esystematic� and printer model er-
or �Eprinter model�. The systematic error is tied to underlying
hifts in the characteristics of the print device, while printer

odel error reflects shortcomings in the printer model func-
ions and the variability of output inherent in the physical
ystem. The relationship between true output, predicted out-
ut, systematic error, and printer model error may be ex-
ressed as

Ltrue
* = FLpredicted

+ ELsystematic
+ ELprinter model

,

atrue
* = Fapredicted

+ Easystematic
+ Eaprinter model

,

btrue
* = Fbpredicted

+ Ebsystematic
+ Ebprinter model

. �1�

n general, the functions FL, Fa, and Fb may be any nonlinear
rinter model functions that predict CIELAB output values
ased on CMYK dot fractions.

In the present study, the printer model is provided by

he software program NeuralColor, as described in the Ex- n

58
erimentation section. The NeuralColor system uses artifi-
ial neural networks (ANNs) to predict CIELAB output val-
es based on CMYK dot fractions. Furthermore,
euralColor contains optimization routines that allow for

he inversion of the printer model. In this way, the printer
odel is utilized for conversion from CIELAB to CMYK.
he experiments in this study were carried out by converting
igital images stored in CIELAB format to CMYK and mea-
uring the accuracy of the resulting prints.

Two strategies are applied in the current study to im-
rove the predictive capabilities of the printer model func-
ions FL, Fa, and Fb by correcting for systematic errors. The
rimary goal of these methods is to reduce the overall error
f the printer model using a sparse set of new characteriza-
ion data. An additional and equally important goal is to
void the introduction of new error in local regions of the
rinter gamut. A corrective approach that reduces average
rror but creates local artifacts in the output gamut is con-
idered ineffective. Furthermore, emphasis is placed on the
umber of required characterization measurements; a cor-
ective approach is useful only if it can be implemented at a
ignificantly reduced cost relative to a full device recharac-
erization.

The first approach for compensating for systematic er-
ors utilizes the corrective functions FL, Fa, and Fb, where

FL � − ELsystematic
,

Fa � − Easystematic
,

Fb � − Ebsystematic
. �2�

he corrective models are used in conjunction with the
rinter model functions, resulting in a more accurate pre-
iction of CIELAB output values

Lpredicted + FL � Ltrue
* − ELprinter model

,

apredicted + Fa � atrue
* − Eaprinter model

,

bpredicted + Fb � btrue
* − Ebprinter model

. �3�

his approach is successful if the use of the corrective func-
ions significantly improves the predictive capabilities of the
rinter model with less expense than a full device recharac-

erization.
The second approach involves updating the printer

odel functions FL, Fa, and Fb in response to systematic
hifts in device characteristics, resulting in an updated set of
unctions FL�, Fa�, and Fb�. Unlike the corrective model ap-
roach, this strategy requires the modification of the param-
ters that define the printer model functions FL, Fa, and Fb.
he approach of updating parameters in the printer model is
ffective if the accuracy of the printer model can be im-
roved based on the measurement of only a small number of

ew data values. The resulting system may be expressed as

J. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
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Lpredicted� � Ltrue
* − ELprinter model

,

apredicted� � atrue
* − Eaprinter model

,

bpredicted� � btrue
* − Ebprinter model

. �4�

orrective Models
our types of corrective models were applied to the Neural-
olor system. The forms of the corrective models were se-

ected to range from simple to more complex. Specifically,
he corrective models were constructed using each of the
ollowing forms: linear, partial quadratic, full quadratic, and
NN.

An asset of the corrective model approach is that it does
ot depend on the form of the original printer model. This
llows corrective models to be used with any type of color

Figure 1. One-hidden-layer ANN with one hidden neuron.

Figure 2. The recharacterization data sets. �Availab

www.imaging.org�

. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
anagement system, including regression models, models
ased on ink mixing, and models based on LUTs. Further-
ore, corrective models may be applied in situations where

he original printer model is not accessible to the user, which
ay be the case when proprietary systems are in use.

Regression techniques are required to determine the co-
fficients in each of the corrective schemes. Linear regression
an be used in the case of the linear, partial quadratic, and
ull quadratic corrective models. In the case of the ANN
orrective models, nonlinear regression techniques must be
pplied to determine the model parameters.

The linear corrective models applied in this study take
he following form:

FL�C,M,Y,K,FL,Fa,Fb� = c0
L + c1

LC + c2
LM + c3

LY + c4
LK + c5

LFL

+ c6
LFa + c7

LFb ,

Fa�C,M,Y,K,FL,Fa,Fb� = c0
a + c1

aC + c2
aM + c3

aY + c4
aK + c5

aFL

+ c6
aFa + c7

aFb ,

Fb�C,M,Y,K,FL,Fa,Fb� = c0
b + c1

bC + c2
bM + c3

bY + c4
bK + cb

LFL

+ c6
bFa + c7

bFb . �5�

ach of the corrective models is a function of the colorant
ot fractions C, M, Y, and K, as well as the CIELAB values
redicted by the original printer model (uncorrected
odel). This approach offers a great deal of generality and

llows the corrective models to make use of the predictive
apabilities of the original printer model.

Introducing the variable i to denote L, a, or b, Eqs. (5)
ay be written as a single expression

Fi�C,M,Y,K,FL,Fa,Fb� = c0
i + c1

i C + c2
i M + c3

i Y + c4
i K + c5

i FL

+ c6
i Fa + c7

i Fb . �6�

The coefficients in Eq. (6) can be determined using lin-
ar regression with a minimum of eight characterization
ata. (In general, a minimum of n data are required to de-

ermine the coefficients of an equation with n coefficients by
inear regression.)

lor as Supplemental Material on the IS&T website,
le in co
559
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The full quadratic corrective models are of the following
eneral form

Fi�C,M,Y,K,FL,Fa,Fb� = c0
i + c1

i C + c2
i M + c3

i Y + c4
i K + c5

i FL

+ c6
i Fa + c7

i Fb + c8
i C2 + c9

i M2

+ c10
i Y2 + c11

i K2 + c12
i FL

2 + c13
i Fa

2

+ c14
i Fb

2 + c15
i CM + c16

i CY + c17
i CK

+ c18
i CFL + c19

i CFa + c20
i CFb

+ c21
i MY + c22

i MK + c23
i MFL

+ c24
i MFa + c25

i MFb + c26
i YK

+ c27
i YFL + c28

i YFa + c29
i YFb

+ c30
i KFL + c31

i KFa + c32
i KFb

+ c33
i FLFa + c34

i FLFb + c35
i FaFb . �7�

he full quadratic model requires 36 newly acquired charac-
erization data for computation of the model parameters.

Simplified (reduced) quadratic models may be obtained
y dropping the mixed terms from Eq. (7). The resulting
odels have the general form

Fi�C,M,Y,K,FL,Fa,Fb� = c0
i + c1

i C + c2
i M + c3

i Y + c4
i K + c5

i FL

+ c6
i Fa + c7

i Fb + c8
i C2 + c9

i M2

+ c10
i Y2 + c11

i K2 + c12
i FL

2 + c13
i Fa

2

+ c14
i Fb

2. �8�

omputation of the model parameters in this case requires
5 data.

The final form of corrective model investigated in the

Table I. Recharacterization data sets. CMYK dot fractions for the
18-color set are presented in the left column. The additional CMYK
combinations used in the 36 color set are given in the right column.
resent study is ANN. ANN corrective models have a greater s

60
bility to capture more complex systematic errors than the
olynomial-based models given by Eqs. (6)–(8). They are
lso, however, more susceptible to overfitting, and may ex-
ibit less predictable behavior, possibly introducing new er-
or into local regions of the gamut.

ANN corrective models utilized in this study are feed-
orward networks with one hidden layer and one neuron in
he hidden layer. They utilize hyperbolic tangent as the
ransfer function. The form of the ANN models is illustrated
n Fig. 1.

Each of the seven inputs is multiplied by a weight w1j1

nd summed with a bias b1j. For example, the value that is
assed from the cyan input neuron to the hidden-layer neu-
on is w111C+b11. The values passed from the input nodes
re summed and passed into the hyperbolic tangent function
n the hidden-layer neuron. The output from the hidden
euron is then multiplied by a weight w211 and summed
ith a bias b21. This value is passed to the hyperbolic tangent

unction in the output layer; the resulting value is the ANN’s
utput.

The model parameters for the system illustrated in
ig. 1 are the weights and biases of the ANN. The minimum
umber of data required to determine these parameters by
egression is equal to the number of weights plus the num-
er of biases. The number of weights in the feed-forward,
ne-hidden-layer ANNs used in this study is

neurons�Ninputs+Noutputs�, and the number of biases is
Nneurons+Noutputs�. Since ANN outputs are nonlinear func-
ions of the weights and biases, nonlinear regression is re-
uired to solve for the model parameters.

ecalculating Regression Model Parameters
number of types of printer models may be altered directly

y updating the printer model parameters using a revised set
f characterization data. This approach differs significantly

rom the corrective model schemes, in which the original
rinter model remains unaltered.

In the present study, the parameters of a regression
ased printer model are recomputed using an augmented
ata set. The augmented data set is comprised of the original
haracterization data plus a set of newly acquired character-
zation data. A weighting scheme is applied to the newly
cquired data to control their influence relative to the origi-
al characterization data. Conceptually, it is hoped that the
pdated printer model will capture the underlying behavior
f the system, as captured by the original characterization
ata, as well as the systematic shifts in device behavior, as
aptured by the newly acquired characterization data.

The color management system used in the present
tudy, NeuralColor, utilizes ANNs as transfer functions from
, M, Y, and K dot fractions to CIELAB values. This printer
odel is inverted using an optimization routine, allowing

or conversion from CIELAB to CMYK. ANNs are a type of
egression model, and are well suited for the approach of
ecomputing model parameters with an augmented data set.
o apply this scheme, the weights and biases of ANN trans-
er functions are recomputed by nonlinear regression using a

et of characterization data that includes both the original

J. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
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ata set and the (weighted) set of new characterization data.
xamples of other color management systems that are well
uited for the approach of recalculating model parameters
sing an augmented data set include any regression based
rinter model, such as the those using polynomials.12,13 With

he addition of several computational steps, this approach
ay be applied to a number of other types of color man-

gement systems. For example, in the case of LUT-based
ystems, a set of regression models could be derived from
xisting LUTs, updated using an augmented data set (possi-
ly comprised of data in the LUTs as well as newly acquired
ata), and then used to build a set of updated LUTs.

There are several important issues to consider when ap-
lying weighting factors to the newly acquired data. If the
ew data are not weighted heavily enough, they will have

ittle or no influence, resulting in updated printer models
hat are essentially unchanged from their original form. If a
eavy weighting is applied, there is a danger that the updated
rinter models will not accurately capture the underlying
ehavior of the system (as captured by the original charac-
erization data). There is also a danger of introducing new
ocal error to the printer model. The presence of a small
umber of heavily weighted data points in the augmented
ata set has the potential to produce unwanted local charac-

Figure 3. The 149 color characterization
eristics in the resulting printer model functions.

. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
XPERIMENTATION
wo sets of experiments were carried out to evaluate the
ethods described in the preceding section. In each case,

ystematic error was introduced into the printing system,
educing the accuracy of the printer model. In the first set of
xperiments, a systematic shift in printer characteristics was
ntroduced by changing the paper stock. In the second set of
xperiments, systematic error was introduced by changing
he cyan toner cartridge. In both cases, the methods for
pdating the printer model using a sparse data set were ap-
lied in an attempt to eliminate the systematic error. All
xperiments were carried out using a Tektronix®Phaser®740
rinter. Colorimetric measurements were made with a
-Rite® Digital Swatchbook® spectrophotometer with D65

lluminant and 2 deg. standard observer. The standard de-
iation of measured printer output was determined to be
.145 �Eab

* for this system.14

NeuralColor, a software package developed previously
y the authors, was used as the color management system in
his study.14–17 NeuralColor utilizes ANNs for printer model
unctions. Three distinct ANNs that predict L*, a*, and b*,
espectively, based on CMYK dot fractions, were trained us-
ng a set of characterization data and embedded in the Neu-
alColor software. NeuralColor makes use of optimization

fore and after the change of paper stock.
561
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outines to compute CMYK dot fractions for a given set of
IELAB values. CMYK values may be calculated in accor-
ance with a variety of printing objectives, including optimal
olorimetric accuracy, reduced ink usage, and specific levels
f gray component replacement. For the purpose of the
resent study, however, NeuralColor may be viewed simply
s a printer model based on regression models. NeuralColor
s suitable for application of both strategies for updating a
rinter model presented in the current work: the use of cor-
ective models in conjunction with the original printer

odel, and the recalculation of printer model parameters
ased on a sparse set of new colorimetric measurements.

Each of the three ANNs used by the NeuralColor system
s a feed-forward ANN with one hidden layer. Hyperbolic
angent is used as the transfer function. The ANNs used by
euralColor are structurally equivalent to the corrective
odel ANNs used in this study, and differ only by the num-

er of neurons in the hidden layer. The corrective model
NNs are relatively simple, containing a single neuron in the
idden layer. The ANNs used in NeuralColor to predict L*,
*, and b*, have five, six, and seven neurons in the hidden

ayer, respectively. The initial calibration of NeuralColor was
arried out using a set of 149 characterization data. The data

Figure 4. The 149 color characterization set
ere obtained by printing six copies of the characterization s

62
et and averaging the results. Printing six copies of the char-
cterization set correlates to a 95% confidence interval of
0.77�Eab

* .14 The CMYK values that make up the 149 color
haracterization set are listed Table IV.

Systematic error was introduced into the printing sys-
em in both sets of experiments carried out in this study. In
he first set of experiments, this was achieved by changing
he paper stock. A standard white Nekoosa®Bond by
eorgia-Pacific® was used as the original paper stock, and
as replaced with a multipurpose Xerox® paper that is light
ray in color. In the second set of experiments, the cyan
oner cartridge that was in use during the initial system
haracterization was replaced with an older cyan cartridge.
oth the change of paper stock and the change of toner
artridge resulted in significant colorimetric error, and the
orrective schemes were then applied in an attempt to re-
uce or eliminate this error. The corrective model approach
nd the approach of updating model parameters using a
parse data set were applied in separate experiments for both
he change of paper stock and the change of cyan toner
artridge.

Seven distinct corrective models were applied in each set
f experiments: (1) a linear corrective model (Eq. (6)) con-

and after the change of cyan toner cartridge.
tructed using an 18 color recharacterization data set, (2) a

J. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
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inear corrective model constructed using a 36 color rechar-
cterization data set, (3) an abridged quadratic model (Eq.
8)) constructed using an 18 color recharacterization data
et, (4) an abridged quadratic model constructed using a 36
olor recharacterization data set, (5) a full quadratic model
Eq. (7)) constructed using a 36 color recharacterization
ata set, (6) a one hidden neuron ANN model constructed
sing an 18 color recharacterization data set, and (7) a one
idden neuron ANN model constructed using a 36 color
echaracterization data set. The 18 and 36 color recharacter-
zation data sets are described in detail below.

The approach of updating printer model parameters us-
ng a sparse data set was applied using two different rechar-
cterization data sets and two different weighting schemes.
he two recharacterization data sets, described below, con-

ain 18 and 36 colorimetric measurements, respectively. The
ewly acquired characterization measurements were com-
ined with the original characterization data, forming an

Table II. Results for experiments in which the paper stock was changed.

aseline measurements
Overall
�Eab

*
MacBeth chart

�Eab
*

27 color test
�Eab

*
Max.
�Eab

*
Number

improved

Orig. characterization,
orig. paper

5.0 6.7 3.4 16.1 N/A

Orig. characterization,
new paper

10.0 11.9 8.4 21.2 N/A

Corrective model

Linear model �18 pt.� 5.6 8.3 3.3 21.3 47

Linear model �36 pt.� 5.6 8.0 3.4 20.5 47

Abridged quadratic
model �18 pt.�

6.3 9.0 3.9 21.6 46

Abridged quadratic
model �36 pt.�

5.5 7.9 3.3 21.1 48

Full quadratic
model �36 pt.�

39.6 42.6 36.9 87.9 3

ANN model �18 pt.� 8.0 8.9 7.2 29.6 43

ANN model �36 pt.� 5.9 8.4 3.6 20.9 48

Updated printer
model parameters

18 color set included
5 times

7.2 10.3 4.5 20.9 43

18 color set included
20 times

7.4 10.0 5.1 21.2 43

36 color set included
5 times

6.6 9.4 4.1 22.1 45

36 color set included
20 times

6.6 8.9 4.6 22.5 39
ugmented data set. A weighting scheme was used to in- d

. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
rease the influence of the newly acquired data relative to the
riginal data. Weighting was achieved by including multiple
ntries of the newly acquired data in the augmented data set.
reliminary experiments showed that including five entries

or each of the recharacterization data was sufficient to pro-
uce a change in the printer model parameters, and that

ncluding 20 entries for the newly acquired data produced a
ubstantial change. In accordance with these initial findings,
xperiments were carried out using each of these weighting
chemes and each of the recharacterization data sets, for a
otal of four cases.

echaracterization Data Set
he methods outlined above for updating a printer model in

esponse to systematic changes in the printing system re-
uire the measurement of a small recharacterization data set.
or maximum efficiency, a minimal recharacterization set is
esired. A minimal set is defined as the smallest set of new
easurements with which a significant reduction in printer
odel error can be achieved.

The choice of the recharacterization data set is influ-
nced by a number of objectives. To capture global shifts in
rinter characteristics, the data set should span the entire
rinter gamut as much as possible. If information is avail-
ble regarding the nature of the systematic changes in
rinter behavior, importance may be placed on the specific
egion of the gamut most affected by the change in printer
haracteristics. Additionally, the type of corrective method
pplied to the printing system influences the choice of re-
haracterization data. Corrective models with a small num-
er of model parameters, for example, require fewer rechar-
cterization data than more complex corrective models.

Two different sets of recharacterization data were used
n the evaluation of the proposed methods for updating a
rinter model. The first set contains 18 colors, and the sec-
nd set contains 36 colors. Both data sets were designed to
apture systematic changes throughout the entire printer
amut. The 18 color set is comprised of the eight chromatic
rimaries and secondaries of four color printing, overprints
f the three subtractive primaries, overprints of all four colo-
ants, and mixtures of the three chromatic colorants with
lack at 50% dot fraction. The 36 color recharacterization
et contains the 18 color set, plus a number of additional
MYK combinations. The additional CMYK combinations

re 30% and 70% dot fraction prints of the eight chromatic
rimaries and secondaries, the three subtractive primaries,
nd overprints of all four colorants. The recharacterization
ets are shown in Fig. 2, and a listing of the CMYK dot
ractions for each color in the two data sets is given in Table
.

est Problem
he MacBeth ColorChecker Chart®, combined with a set of
7 additional colors, was used as the test print for this study.
he test print contains a total of 51 patches: 24 patches from

he MacBeth chart, and 27 additional in-gamut colors. The
acBeth chart is commonly used for evaluating color repro-
uction. The MacBeth chart, however, contains a number of

563



c
s
m
p
a
n
−
w

s
�
C
t
w
p
w
p

I
S
f
t
f
c
f
p
c
t

w
c
r

r
e
p
t
7

R
C
R
c
t
a
w
t
e

t
t
n
t
�
b
i

O

Littlewood and Subbarayan: Updating a CMYK printer model using a sparse data set

5

olors that are outside the gamut of the printer used in this
tudy. These colors cannot be reproduced with zero colori-

etric error. The additional 27 colors are made up of nine
atches at a lightness level of 20 with a* and b* values set to
ll combinations of −10, 0, and 10, nine patches at a light-
ess level of 50 with a* and b* set to all combinations of
20, 0, and 20, and nine patches at a lightness level of 80
ith a* and b* set to all combinations of −10, 0, and 10.

A number of metrics were used to evaluate the test re-
ults. In all cases, colorimetric error was calculated as the
Eab

* between the CIELAB input values and the measured
IELAB output values. Overall error, error for the patches in

he MacBeth chart, and error for the additional 27 patches
ere tabulated separately. The largest error across all 51
atches was also listed, as well as the number of patches for
hich colorimetric accuracy was improved. Individual ex-
eriments were averaged over three trials.

ntroducing Systematic Error
ignificant changes in printing system behavior resulted
rom both the change of paper stock and the change of cyan
oner cartridge. The change in system behavior that resulted
rom the change in paper is illustrated in Fig. 3. Figure 3 was
reated by reprinting and measuring the 149 color set used
or the original system characterization. The change of paper
roduced a general shift toward the neutral axis and a de-
rease of lightness for colors in the high-lightness portion of

Table III. Results for experiments in

Baseline measurements
Overall
�Eab

*

MacBeth
chart
�Eab

*

Orig. characterization, orig. cartridges 5.0 6.7

rig. characterization, new cyan cartridge 7.6 9.2

Corrective model

Linear model �18 pt.� 5.6 7.1

Linear model �36 pt.� 5.2 6.9

Abridged quadratic model �18 pt.� 8.9 10.8

Abridged quadratic model �36 pt.� 4.6 6.8

Full quadratic model �36 pt.� 33.9 42.5

ANN model �18 pt.� 5.4 7.0

ANN model �36 pt.� 5.3 7.1

Updated printer model parameters

18 color set included 5 times 7.5 11.5

18 color set included 20 times 5.9 8.2

36 color set included 5 times 6.0 7.6

36 color set included 20 times 8.8 10.2
he gamut. This type of shift was expected due to the darker

64
hite point of the replacement paper stock. The average
olorimetric error increased from 5.0 �Eab

* to 10.0 �Eab
* as a

esult of the change of paper.
Figure 4 illustrates the change in printer behavior that

esulted from the change of cyan toner cartridge. The gen-
ral shift in this case was toward the cyan portion of the
rinter gamut. In the case of the change of toner cartridge,

he average colorimetric error increased from 5.0 �Eab
* to

.6 �Eab
* .

ESULTS
hange of Paper Experiments
esults for the experiments in which the paper stock was
hanged are presented in Table II. In most cases, the correc-
ive models gave excellent results. The full quadratic model
nd the ANN model based on 18 new characterization data
ere not successful. With the exception of these two cases,

he corrective models removed between 80% and 90% of the
rror introduced by the change of paper stock.

The unsuccessful corrective models were both suscep-
ible to overfitting. In the case of the full quadratic model,
he number of characterization data was exactly equal to the
umber of parameters in the model. As a result of overfit-

ing, the full quadratic model had a maximum error of 87.9
Eab

* , and improved only three patches. The ANN model
ased on 18 colors also exhibited behavior that is character-

stic of overfitting. In this case, the corrective model im-

e cyan toner cartridge was changed.

color
st
Eab

*
C�0.5
�Eab

*
C�0.5
�Eab

*
Max.
�Eab

*
Number

improved

.4 5.6 4.6 16.1 N/A

.2 10.5 6.0 18.5 N/A

.3 6.7 5.0 18.0 40

.6 5.8 4.9 17.1 40

.2 6.6 10.2 30.0 27

.5 4.6 4.5 18.6 40

.3 31.2 35.4 104.5 3

.0 5.5 5.4 18.1 35

.6 5.8 5.0 18.2 36

.9 6.6 7.9 45.7 39

.8 5.3 6.2 23.6 35

.5 8.3 4.7 17.6 38

.6 8.1 9.2 35.0 31
which th

27
te

�

3

6

4

3

7

2

26

4

3

3

3

4

7
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roved 43 out of 51 test colors, but introduced error in
ertain local regions of the gamut as can be seen by the
ncrease in maximum error.

The approach of updating model parameters using an
ugmented data set resulted in an overall reduction of error
n all cases. In addition, the updated printer models did not
ignificantly increase the maximum error. The printer mod-
ls updated with 36 colors outperformed the printer models

Table IV. The 149 color characterization data set.
pdated with 18 colors. The weighting of the newly acquired c

. Imaging Sci. Technol. 50�6�/Nov.-Dec. 2006
haracterization data did not have a significant impact on
erformance.

hange of Toner Cartridge Experiments
esults obtained for the experiments in which the cyan toner
artridge was switched are presented in Table III. Because of
he obvious correlation between the cyan toner cartridge and
he printer’s behavior in the cyan portion of the gamut,
able III includes separate listings of the error for patches
ith a cyan dot fraction less than 0.5 and for patches with a

yan dot fraction of greater than 0.5. These separate listings
solate the corrective methods’ effect on local portions of the
amut.

The corrective models were generally successful in re-
oving the error introduced by changing the cyan toner

artridge. The linear corrective models and the ANN correc-
ive models reduced the overall error by between 76% and
3% and did not increase the maximum error. The abridged
uadratic model trained with 36 new data yielded results
hat were an improvement over the original printer model
nder the original conditions, indicating that 100% of the
ystematic error was removed. The full quadratic corrective

odel failed to improved colorimetric accuracy, and in fact
reatly increased the error. As in the change of paper experi-
ents, the full quadratic corrective model was highly sus-

eptible to overfitting.
The approach of updating the printer model parameters

sing an augmented data set was, in general, not successful
n removing the error introduced by the change of cyan
oner cartridge. The case of including the 36 color recharac-
erization set five times reduced the error across all catego-
ies and did not increase the maximum error. The other
chemes, however, did not significantly improve the average
rror and dramatically increased the maximum error.

ONCLUSIONS
he methods for updating a printer model using a sparse
ata set were generally successful in removing systematic er-
or. The corrective model approach was the most successful.
n particular, the linear, abridged quadratic, and ANN cor-
ective models performed well by reducing overall colori-

etric error without increasing the maximum error across
he printer gamut.

A primary source of concern was the tendency of cer-
ain corrective models to exhibit overfitting. This behavior
as apparent in the increase in maximum error in the ex-
erimental results. Overfitting appeared only in cases where

he number of parameters in the corrective model was ap-
roximately equal to the number of newly acquired charac-

erization data. In cases where the shift in printer character-
stics is local in nature, the more complex corrective models
ave the potential to produce the best results. However, cor-
ective models that can create localized artifacts are also sus-
eptible to overfitting and to the introduction of new error
n localized regions of the gamut. This result is undesirable,
nd therefore it is recommended that corrective models that
reate changes of a more global nature be applied. If more

omplex corrective models are utilized, a large number of
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echaracterization data relative to the number of parameters
n the corrective model should be acquired.

The method of recalculating the parameters in a printer
odel using an augmented data set gave inconsistent results.
his approach was often successful in reducing the overall
rror, but also exhibited a tendency to increase the maxi-
um error across the printer gamut. This method was

hown to have merit, but it was not as successful, in general,
s the corrective model approach.

There are a number of possibilities for future work
temming from this study. The most successful of the meth-
ds, namely the linear and abridged quadratic corrective
odels, are a good choice for application in an industrial

etting. Furthermore, an investigation of the qualitative ef-
ects of these methods on image reproduction is a natural
xtension of this work. This project focused on quantitative
valuation of colorimetric data across the printer gamut. A
tudy of the qualitative effects of the corrective techniques
n pictorial images, as determined by a group of observers,
ould offer more insight into the effectiveness of these
ethods.
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