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Abstract. Two distinct approaches for updating a CMYK printer
model in response to systematic changes in print device behavior
are presented. In the first method, a corrective model is constructed
from a sparse set of newly acquired characterization data and used
in addition to the initial printer model. A number of corrective models
are investigated, including linear, quadratic, and artificial neural net-
work models. The second method involves directly updating the pa-
rameters within the printer model. The updated model parameters
are obtained using both the original characterization data and a set
of newly acquired data. Both methods are evaluated in a set of
experiments in which either the paper stock or the cyan toner car-
tridge is changed. The corrective model approach is found to be the
most effective. The most successful corrective models removed be-
tween 76% and 100% of the systematic error. © 2006 Society for
Imaging Science and Technology.
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INTRODUCTION
In this study, we consider the accuracy of printer models that
link device-dependent CMYK values to device-independent
CIELAB values." The accuracy of a printer model is generally
highest directly following a thorough device characteriza-
tion, and is diminished due to subsequent changes in device
behavior. Calibration techniques are typically applied to a
printing system in an attempt to maintain device character-
istics at a consistent level. If a printer model becomes unac-
ceptably inaccurate, a full device recharacterization may be
performed to bring the system back to peak performance.
A wide variety of factors can affect the accuracy of a
printer model, resulting in both sudden changes in device
properties and changes that occur over a period of time. The
changing of consumables such as paper or colorants can
produce sudden changes in device performance. Changes in
environmental conditions, such as humidity or temperature,
typically alter the behavior of a print device over a period of
hours or days. Changes in the device itself, including elec-
trophotographic drum characteristics and print head perfor-
mance, also reduce the accuracy of a printer model, typically
over a longer period of time. Differences between two indi-
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vidual printers of the same make and model can also be
treated as a systematic shift. If a printer manufacturer has
developed a printer model to capture the average behavior of
a specific make and model of printer, the methods presented
in this study offer a way of fine tuning this generic printer
model for each individual device.

Building a complete printer model anew is relatively
complex and expensive, involving the printing and measur-
ing of a large set of color patches. The expense of building a
printer model motivates the use of calibration techniques.
For example, adjusting device settings with the goal of main-
taining the optical density of individual colorants may pro-
long the accuracy of a device model. This approach, how-
ever, does not take into account interactions between
colorants, and is not as accurate as rebuilding the printer
model. Methods designed to maintain device characteristics
are less expensive than building a new printer model, but
building a new printer model is more accurate. Methods that
are less complex also have the advantage of being more easily
facilitated by the end user, as opposed to the system vendor.

We present methods for updating a previously charac-
terized CMYK printer model using a sparse set of newly
acquired characterization data.” The goal is to capture sys-
tematic shifts in device behavior with one of two distinct
methods: the introduction of a corrective model used in
conjunction with the existing printer model, and the recal-
culation of printer model parameters using an augmented
characterization data set. These methods can be considered
viable if they improve printer model accuracy and offer con-
siderable savings in effort relative to a complete system re-
characterization.

For the purpose of this study, we consider systematic
error to be distinct from other errors in a printer model.
Systematic error is considered to be the result of underlying
changes in system behavior that occur some time after the
print device has been characterized. These changes may re-
sult from any number of sources, such as a change of con-
sumables or changes in environmental conditions that occur
over time, as mentioned above. Errors not considered to be
systematic include error in the original printer model, and
random errors that contribute to the lack of repeatability of
the printing system. It is a goal of this study to bring a



Litttewood and Subbarayan: Updating a CMYK printer model using a sparse data set

printer model back to its original level of accuracy following
a systematic shift in device behavior, in other words, to re-
move systematic errors.

Two sets of experiments were carried out to evaluate the
proposed methods for updating a printer model. In the first
set of experiments, the paper stock was changed following
the characterization of a printer model, resulting in a reduc-
tion in colorimetric accuracy. The methods for updating a
printer model were applied using a small set of data acquired
after the change of paper stock. The improvement in colo-
rimetric accuracy was then evaluated by comparing sets of
test patches printed before and after the application of cor-
rective methods. In the second set of experiments, a loss of
printer model accuracy was induced by changing the cyan
toner cartridge. The methods for updating a printer model
were then applied and evaluated as in the first set of experi-
ments. In the analysis of the proposed methods, particular
attention was paid to the possibility of introducing new, lo-
calized errors as a result of incorrectly capturing systematic
shifts in printer behavior.

PREVIOUS WORK

The subject of compensating for changes in print device
characteristics with efficient characterization and calibration
techniques is addressed by several studies in the literature.
These studies all strive for an improvement in colorimetric
accuracy, but differ in their balance of efficiency, accuracy,
and control. Several of the calibration studies present tech-
niques for on-line printer adjustment, and often restrict
themselves to optical density measurements for speed and
cost effectiveness. The approaches investigated in the present
study were performed off-line, and utilized spectrophotom-
eter data, which offer greater control and accuracy but are
generally more expensive than optical density measure-
ments. The present study focuses on the mathematics of
updating an existing printer model with a sparse set of re-
characterization data, as opposed to the development of an
on-line calibration system. It is quite feasible, however, that
the methods in the present study could be incorporated with
related methods in the literature.

Compared to research present in the literature, the work
completed in this study is most closely related to that of
Balasubramanian and Maltz.’ Balasubramanian and Maltz
hypothesized that a local linear transform can adequately
capture the difference between actual printer behavior and a
printer model. They created local, matrix-based correction
models to capture printer model error, printer drift, and
look-up table (LUT) approximation error. The coefficients
for the correction matrices were determined by weighted
regression in such a way that they could vary considerably
over the printer color space. The corrective models in the
present study take a number of forms, and are constant over
the printer gamut. Balasubramanian and Maltz tested their
method by attempting to improve the accuracy of a LUT-
based color management system for a Xerox®5760 xero-
graphic printer. They were successful in reducing the average
model error from 4.85 AE,, to just over 2.62 AE,, for a set
of 500 test patches.
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Wu presented a method for calibration that combines
one-dimensional and three-dimensional approaches.* He
addressed differences in the output of two individual print-
ers of the same model, and of a single printer at two differ-
ent times. He differentiated between luminance changes,
which he addressed with a one-dimensional linearization
method, and chrominance changes, which he addressed by
updating specific regions in the three-dimensional LUT used
by the color management system. In relation to the present
study, the LUT update method employed by Wu is similar to
a full recharacterization of the print device, but is limited to
a carefully chosen section of the gamut. Wu focused on spe-
cific gamut regions, such as the neutral axis and skin tone
regions, and recharacterized the print device only in those
areas.

Bala et al. applied two-dimensional transforms for de-
vice calibration.” They sought to overcome the limitations
inherent in standard one-dimensional tone response correc-
tion methods with only a modest increase in computational
expense. Their method first computes two intermediate val-
ues using the device space values provided by the character-
ization. The intermediate values are then used to determine
the final device values from a two-dimensional LUT. In the
context of their work, the methods presented in this study
are full device-correction functions which offer greater con-
trol but are more computationally expensive than one-
dimensional or two-dimensional calibration approaches.

Chu et al. investigated a system for per-cartridge char-
acterization that has several themes in common with our
work.”” They were motivated by observed variations be-
tween individual ink cartridge characteristics and those pre-
dicted by vendor supplied profiles. Their method involves
taking a small number of measurements for individual car-
tridges at the manufacturing level and using these data to
update an ICC profile at the time the cartridge is installed by
the user. They sought an approach that does not require the
end user to make measurements, and therefore restricted
their updating characterization data to step wedges for indi-
vidual cartridges. While their study investigated the feasibil-
ity of per cartridge characterization and the associated work-
flow, the present study focuses specifically on computational
methods for updating a printer model with a sparse set of
recharacterization data. In addition to the difference in gen-
eral thrust of the work, an important difference lies in the
choice of recharacterization set; Chu et al. used single colo-
rant data, whereas the present study attempts to capture
colorant interactions.

The need for improvement of an existing printer model
is mentioned in other studies in the literature as well. Shiau
and Williams, for example, considered a combined scanner-
printer system.® They developed a method in which a cor-
rective matrix is applied to the RGB values output by a
scanner, prior to calculating the device independent values
sent to the printing system. The topic of efficient calibration
and characterization in general was studied by Haneishi et
al., who investigated the number of measurements required
for scanner characterization.” Emmel and Hersch mention
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the need to recharacterize quickly when the paper or ink
cartridge of a printer is changed; they relate this to rechar-
acterization by pointing out that a full system recharacter-
ization can be achieved more efficiently if a small number of
measurements are required to generate the full LUT."

The error correction methods developed in this study
may also be placed in the general context of model transfer.
Model transfer refers to a model developed for one task
being reused for related tasks.'" In relation to general model
transfer methods, the techniques developed in this study fall
in the category of representational transfer. Representational
transfer indicates that the adoption of the original model
occurs at some time after the initial model creation. Further-
more, the methods developed here may be distinguished
from general model transfer methods by their goal, which is
to improve the generalization capability of an existing model
based on a minimal recharacterization data set. It is also
noted that the methods developed in this study are non-
adaptive; that is, the correction methods are applied at a
single point in time and do not adapt to changes in printer
characteristics dynamically.

This study focuses on correcting an existing printer
model in response to systematic changes in printer charac-
teristics. The following sections outline two general ap-
proaches, the use of corrective models of various forms, and
the recalculation of model parameters using a small number
of new characterization data. These methods are validated
experimentally, with results favoring methods using rela-
tively simple corrective models.

METHODS

A printer model may be considered in terms of three func-
tions, F;(C,M,Y,K), F,(C,M,Y,K), and F,(C,M,Y,K),
which predict the L", a’, and b" values of printer output,
respectively, based on the colorant dot fractions C, M, Y, and
K. The error between the predicted CIELAB output values
and the true CIELAB output values can be broken into two
categories, systematic error (Eygemaic) and printer model er-
10T (Epsinter model)- The systematic error is tied to underlying
shifts in the characteristics of the print device, while printer
model error reflects shortcomings in the printer model func-
tions and the variability of output inherent in the physical
system. The relationship between true output, predicted out-
put, systematic error, and printer model error may be ex-
pressed as

*

true — FL

L

. + EL . L. bl
predicted systematic printer model

*
e =F,
true Dpredicted Tsystematic Dprinter model’

*

true — Fb

b (1)

) + Eb . b .
predicted systematic printer model

In general, the functions Fj, F,, and Fj, may be any nonlinear
printer model functions that predict CIELAB output values
based on CMYK dot fractions.

In the present study, the printer model is provided by
the software program NeuralColor, as described in the Ex-
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perimentation section. The NeuralColor system uses artifi-
cial neural networks (ANNs) to predict CIELAB output val-
ues based on CMYK dot fractions. Furthermore,
NeuralColor contains optimization routines that allow for
the inversion of the printer model. In this way, the printer
model is utilized for conversion from CIELAB to CMYK.
The experiments in this study were carried out by converting
digital images stored in CIELAB format to CMYK and mea-
suring the accuracy of the resulting prints.

Two strategies are applied in the current study to im-
prove the predictive capabilities of the printer model func-
tions F;, F,, and F, by correcting for systematic errors. The
primary goal of these methods is to reduce the overall error
of the printer model using a sparse set of new characteriza-
tion data. An additional and equally important goal is to
avoid the introduction of new error in local regions of the
printer gamut. A corrective approach that reduces average
error but creates local artifacts in the output gamut is con-
sidered ineffective. Furthermore, emphasis is placed on the
number of required characterization measurements; a cor-
rective approach is useful only if it can be implemented at a
significantly reduced cost relative to a full device recharac-
terization.

The first approach for compensating for systematic er-
rors utilizes the corrective functions F;, F,, and F;, where

sz—E

L systematic >
~-E
:Fu asystematic >
Fy~-E : 2
b bsystematic ( )

The corrective models are used in conjunction with the

printer model functions, resulting in a more accurate pre-

diction of CIELAB output values
Lpredicted + ‘7:L = Ltrue —E

. b
printer model

*
apredicted + fa = Qirge — E

. >
printer model

(3)

bpredicted + fb = b:rue - Ebprinter model”
This approach is successful if the use of the corrective func-
tions significantly improves the predictive capabilities of the
printer model with less expense than a full device recharac-
terization.

The second approach involves updating the printer
model functions F;, F,, and F; in response to systematic
shifts in device characteristics, resulting in an updated set of
functions F;, F., and F;. Unlike the corrective model ap-
proach, this strategy requires the modification of the param-
eters that define the printer model functions F;, F,, and F,,
The approach of updating parameters in the printer model is
effective if the accuracy of the printer model can be im-
proved based on the measurement of only a small number of
new data values. The resulting system may be expressed as
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Figure 1. Onehiddendayer ANN with one hidden neuron.
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Corrective Models
Four types of corrective models were applied to the Neural-
Color system. The forms of the corrective models were se-
lected to range from simple to more complex. Specifically,
the corrective models were constructed using each of the
following forms: linear, partial quadratic, full quadratic, and
ANN.

An asset of the corrective model approach is that it does
not depend on the form of the original printer model. This
allows corrective models to be used with any type of color

management system, including regression models, models
based on ink mixing, and models based on LUTs. Further-
more, corrective models may be applied in situations where
the original printer model is not accessible to the user, which
may be the case when proprietary systems are in use.

Regression techniques are required to determine the co-
efficients in each of the corrective schemes. Linear regression
can be used in the case of the linear, partial quadratic, and
full quadratic corrective models. In the case of the ANN
corrective models, nonlinear regression techniques must be
applied to determine the model parameters.

The linear corrective models applied in this study take
the following form:

Fi(CM,Y,K,F},F,,F,) = cb + c-C+ EM + &Y + cEK + ¢EF,

L L
+ cgF, + c;Fy,

FAC,M,Y,K,F;,F,,F) = cg+ ¢{C+ M + &5Y + ¢4K + c2F;

+ c¢F, + C3F,,

Fo(CM,Y,K,Fp,F F) = b+ C+ M + &Y + K + cbF,
+cPF, + cl7’Fb. (5)

Each of the corrective models is a function of the colorant
dot fractions C, M, Y, and K, as well as the CIELAB values
predicted by the original printer model (uncorrected
model). This approach offers a great deal of generality and
allows the corrective models to make use of the predictive
capabilities of the original printer model.

Introducing the variable i to denote L, a, or b, Egs. (5)
may be written as a single expression

FAC,M,Y,K,F},F,F,) = ¢+ . C+ M + Y + K + chF;
+F,+ ¢ F,. (6)

The coefficients in Eq. (6) can be determined using lin-
ear regression with a minimum of eight characterization
data. (In general, a minimum of » data are required to de-
termine the coefficients of an equation with n coefficients by
linear regression.)

(a) Colors in the 18-color set.

(b) Additional colors in the 36-color set.

Figure 2. The recharacterization dafa sefs. (Available in color as Supplemental Material on the IS&T website,

www.imaging.org)
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Table 1. Recharacterization data sets. C(MYK dot fractions for the
18-color set are presented in the left column. The additional CMYK
combinations used in the 36 color set are given in the right column.

C M Y K C M Y K
10 0.0 0.0 0.0 03 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 03 0.0 0.0
0.0 0.0 10 0.0 0.0 00 03 0.0
0.0 0.0 00 10 0.0 00 0.0 03
0.0 1.0 1.0 0.0 0.0 03 03 0.0
10 00 10 0.0 03 00 03 0.0
1.0 10 00 00 03 03 0.0 00
1.0 1.0 1.0 0.0 03 03 0.3 0.0
1.0 1.0 1.0 1.0 03 03 03 03
0.0 0.0 00 0.0 07 0.0 0.0 0.0
05 0.0 0.0 05 0.0 07 0.0 0.0
00 0.5 0.0 05 00 0.0 07 0.0
0.0 0.0 05 05 00 00 0.0 0.7
0.0 05 05 05 0.0 07 0.7 0.0
0.5 0.0 05 05 07 00 0.7 0.0
0.5 05 0.0 05 07 0.7 0.0 0.0
0.5 0.5 0s 0.0 0.7 0.7 0.7 0.0
0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7

The full quadratic corrective models are of the following
general form
FACM,Y,K,F,F, F,) = ch+ ¢, C+ &AM + LY + ¢, K + ciFy
+ céFa + C;Fb + céC2 + chz
+ c’iOY2 + c’ilK2 + cilei + CliaFi
+ chFﬁ + c’iSCM+ c§6CY+ c’ﬁCK
+ c’igCFL + c’bCFa + C;OCFh
+ ¢ MY + ch,MK + ¢, MF,
+ b, MF, + chsMF, + ch YK
+ b YFy + chgYF, + cho YF,
+ ¢4 KFy + ¢5,KF, + ¢;,KF,

+ CQSFLFa + Cg4FLFb + CésFan- (7)

The full quadratic model requires 36 newly acquired charac-
terization data for computation of the model parameters.

Simplified (reduced) quadratic models may be obtained
by dropping the mixed terms from Eq. (7). The resulting
models have the general form

FACM,Y,K,F,F, Fy) = ch+ ¢, C+ GM + b Y + ¢,K + ciFy
+ ch,, + C;Fb + c;C2 + c;M2
+ c’le2 + Cille + Cilei + c’isFi
i 2
+ C114Fh. (8)
Computation of the model parameters in this case requires
15 data.

The final form of corrective model investigated in the
present study is ANN. ANN corrective models have a greater
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ability to capture more complex systematic errors than the
polynomial-based models given by Egs. (6)—(8). They are
also, however, more susceptible to overfitting, and may ex-
hibit less predictable behavior, possibly introducing new er-
ror into local regions of the gamut.

ANN corrective models utilized in this study are feed-
forward networks with one hidden layer and one neuron in
the hidden layer. They utilize hyperbolic tangent as the
transfer function. The form of the ANN models is illustrated
in Fig. 1.

Each of the seven inputs is multiplied by a weight w,;
and summed with a bias b,;. For example, the value that is
passed from the cyan input neuron to the hidden-layer neu-
ron is w;;C+by;. The values passed from the input nodes
are summed and passed into the hyperbolic tangent function
in the hidden-layer neuron. The output from the hidden
neuron is then multiplied by a weight w,;; and summed
with a bias b,,. This value is passed to the hyperbolic tangent
function in the output layer; the resulting value is the ANN’s
output.

The model parameters for the system illustrated in
Fig. 1 are the weights and biases of the ANN. The minimum
number of data required to determine these parameters by
regression is equal to the number of weights plus the num-
ber of biases. The number of weights in the feed-forward,
one-hidden-layer ANNs used in this study is
NheuronsNinputs T Noutpuss)s and the number of biases is
(Nheurons T Nouputs)- Since ANN outputs are nonlinear func-
tions of the weights and biases, nonlinear regression is re-
quired to solve for the model parameters.

Recalculating Regression Model Parameters

A number of types of printer models may be altered directly
by updating the printer model parameters using a revised set
of characterization data. This approach differs significantly
from the corrective model schemes, in which the original
printer model remains unaltered.

In the present study, the parameters of a regression
based printer model are recomputed using an augmented
data set. The augmented data set is comprised of the original
characterization data plus a set of newly acquired character-
ization data. A weighting scheme is applied to the newly
acquired data to control their influence relative to the origi-
nal characterization data. Conceptually, it is hoped that the
updated printer model will capture the underlying behavior
of the system, as captured by the original characterization
data, as well as the systematic shifts in device behavior, as
captured by the newly acquired characterization data.

The color management system used in the present
study, NeuralColor, utilizes ANNs as transfer functions from
C, M, Y, and K dot fractions to CIELAB values. This printer
model is inverted using an optimization routine, allowing
for conversion from CIELAB to CMYK. ANNs are a type of
regression model, and are well suited for the approach of
recomputing model parameters with an augmented data set.
To apply this scheme, the weights and biases of ANN trans-
fer functions are recomputed by nonlinear regression using a
set of characterization data that includes both the original
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Figure 3. The 149 color characterization set before and after the change of paper stock.

data set and the (weighted) set of new characterization data.
Examples of other color management systems that are well
suited for the approach of recalculating model parameters
using an augmented data set include any regression based
printer model, such as the those using polynomials.'*"* With
the addition of several computational steps, this approach
may be applied to a number of other types of color man-
agement systems. For example, in the case of LUT-based
systems, a set of regression models could be derived from
existing LUTs, updated using an augmented data set (possi-
bly comprised of data in the LUTs as well as newly acquired
data), and then used to build a set of updated LUTs.

There are several important issues to consider when ap-
plying weighting factors to the newly acquired data. If the
new data are not weighted heavily enough, they will have
little or no influence, resulting in updated printer models
that are essentially unchanged from their original form. If a
heavy weighting is applied, there is a danger that the updated
printer models will not accurately capture the underlying
behavior of the system (as captured by the original charac-
terization data). There is also a danger of introducing new
local error to the printer model. The presence of a small
number of heavily weighted data points in the augmented
data set has the potential to produce unwanted local charac-
teristics in the resulting printer model functions.

J. Imaging Sci. Technol. 50(6)/Nov.-Dec. 2006

EXPERIMENTATION

Two sets of experiments were carried out to evaluate the
methods described in the preceding section. In each case,
systematic error was introduced into the printing system,
reducing the accuracy of the printer model. In the first set of
experiments, a systematic shift in printer characteristics was
introduced by changing the paper stock. In the second set of
experiments, systematic error was introduced by changing
the cyan toner cartridge. In both cases, the methods for
updating the printer model using a sparse data set were ap-
plied in an attempt to eliminate the systematic error. All
experiments were carried out using a Tektronix®Phaser®740
printer. Colorimetric measurements were made with a
X-Rite® Digital Swatchbook® spectrophotometer with D65
illuminant and 2 deg. standard observer. The standard de-
viation of measured printer output was determined to be
1.145 AE,, for this system."*

NeuralColor, a software package developed previously
by the authors, was used as the color management system in
this study."*"” NeuralColor utilizes ANNs for printer model
functions. Three distinct ANNs that predict L', a’, and b,
respectively, based on CMYK dot fractions, were trained us-
ing a set of characterization data and embedded in the Neu-
ralColor software. NeuralColor makes use of optimization
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Figure 4. The 149 color characterization set before and after the change of cyan foner cartridge.

routines to compute CMYK dot fractions for a given set of
CIELAB values. CMYK values may be calculated in accor-
dance with a variety of printing objectives, including optimal
colorimetric accuracy, reduced ink usage, and specific levels
of gray component replacement. For the purpose of the
present study, however, NeuralColor may be viewed simply
as a printer model based on regression models. NeuralColor
is suitable for application of both strategies for updating a
printer model presented in the current work: the use of cor-
rective. models in conjunction with the original printer
model, and the recalculation of printer model parameters
based on a sparse set of new colorimetric measurements.
Each of the three ANNs used by the NeuralColor system
is a feed-forward ANN with one hidden layer. Hyperbolic
tangent is used as the transfer function. The ANNs used by
NeuralColor are structurally equivalent to the corrective
model ANNs used in this study, and differ only by the num-
ber of neurons in the hidden layer. The corrective model
ANNeSs are relatively simple, containing a single neuron in the
hidden layer. The ANNs used in NeuralColor to predict L',
a’, and b, have five, six, and seven neurons in the hidden
layer, respectively. The initial calibration of NeuralColor was
carried out using a set of 149 characterization data. The data
were obtained by printing six copies of the characterization
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set and averaging the results. Printing six copies of the char-
acterization set correlates to a 95% confidence interval of
+0.77AE,,."* The CMYK values that make up the 149 color
characterization set are listed Table IV.

Systematic error was introduced into the printing sys-
tem in both sets of experiments carried out in this study. In
the first set of experiments, this was achieved by changing
the paper stock. A standard white Nekoosa®Bond by
Georgia-Pacific® was used as the original paper stock, and
was replaced with a multipurpose Xerox® paper that is light
gray in color. In the second set of experiments, the cyan
toner cartridge that was in use during the initial system
characterization was replaced with an older cyan cartridge.
Both the change of paper stock and the change of toner
cartridge resulted in significant colorimetric error, and the
corrective schemes were then applied in an attempt to re-
duce or eliminate this error. The corrective model approach
and the approach of updating model parameters using a
sparse data set were applied in separate experiments for both
the change of paper stock and the change of cyan toner
cartridge.

Seven distinct corrective models were applied in each set
of experiments: (1) a linear corrective model (Eq. (6)) con-
structed using an 18 color recharacterization data set, (2) a
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Table 1. Results for experiments in which the paper stock was changed.

Overall MacBeth chart 27 color test  Max.  Number

Baseline measurements  AE,, AE, AE,  AE, improved

Orig. characterization, 5.0 6.7 34 161 N/A
orig. paper

Orig. characterization,  10.0 11.9 8.4 212 N/A
new paper

Corrective model

Linear model (18 pt.) 5.6 8.3 33 2.3 47
Linear model (36 pt.) 5.6 8.0 34 20.5 47
Abridged quadratic 6.3 9.0 39 216 46
model (18 pt.)
Abridged quadratic 55 79 33 211 48
model (36 pt.)
Full quadratic 39.6 42.6 36.9 87.9 3
model (36 pt.)
ANN model (18 pt.) 8.0 8.9 1.2 29.6 43
ANN model (36 pt.) 59 84 3.6 20.9 48
Updated printer
model parameters
18 color set induded 7.2 10.3 45 209 43
5 times
18 color sef induded 7.4 10.0 51 21.2 43
20 times
36 color set included 6.6 94 41 221 45
5 times
36 color set included 6.6 8.9 4.6 225 39
20 times

linear corrective model constructed using a 36 color rechar-
acterization data set, (3) an abridged quadratic model (Eq.
(8)) constructed using an 18 color recharacterization data
set, (4) an abridged quadratic model constructed using a 36
color recharacterization data set, (5) a full quadratic model
(Eq. (7)) constructed using a 36 color recharacterization
data set, (6) a one hidden neuron ANN model constructed
using an 18 color recharacterization data set, and (7) a one
hidden neuron ANN model constructed using a 36 color
recharacterization data set. The 18 and 36 color recharacter-
ization data sets are described in detail below.

The approach of updating printer model parameters us-
ing a sparse data set was applied using two different rechar-
acterization data sets and two different weighting schemes.
The two recharacterization data sets, described below, con-
tain 18 and 36 colorimetric measurements, respectively. The
newly acquired characterization measurements were com-
bined with the original characterization data, forming an
augmented data set. A weighting scheme was used to in-
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crease the influence of the newly acquired data relative to the
original data. Weighting was achieved by including multiple
entries of the newly acquired data in the augmented data set.
Preliminary experiments showed that including five entries
for each of the recharacterization data was sufficient to pro-
duce a change in the printer model parameters, and that
including 20 entries for the newly acquired data produced a
substantial change. In accordance with these initial findings,
experiments were carried out using each of these weighting
schemes and each of the recharacterization data sets, for a
total of four cases.

Recharacterization Data Set

The methods outlined above for updating a printer model in
response to systematic changes in the printing system re-
quire the measurement of a small recharacterization data set.
For maximum efficiency, a minimal recharacterization set is
desired. A minimal set is defined as the smallest set of new
measurements with which a significant reduction in printer
model error can be achieved.

The choice of the recharacterization data set is influ-
enced by a number of objectives. To capture global shifts in
printer characteristics, the data set should span the entire
printer gamut as much as possible. If information is avail-
able regarding the nature of the systematic changes in
printer behavior, importance may be placed on the specific
region of the gamut most affected by the change in printer
characteristics. Additionally, the type of corrective method
applied to the printing system influences the choice of re-
characterization data. Corrective models with a small num-
ber of model parameters, for example, require fewer rechar-
acterization data than more complex corrective models.

Two different sets of recharacterization data were used
in the evaluation of the proposed methods for updating a
printer model. The first set contains 18 colors, and the sec-
ond set contains 36 colors. Both data sets were designed to
capture systematic changes throughout the entire printer
gamut. The 18 color set is comprised of the eight chromatic
primaries and secondaries of four color printing, overprints
of the three subtractive primaries, overprints of all four colo-
rants, and mixtures of the three chromatic colorants with
black at 50% dot fraction. The 36 color recharacterization
set contains the 18 color set, plus a number of additional
CMYK combinations. The additional CMYK combinations
are 30% and 70% dot fraction prints of the eight chromatic
primaries and secondaries, the three subtractive primaries,
and overprints of all four colorants. The recharacterization
sets are shown in Fig. 2, and a listing of the CMYK dot
fractions for each color in the two data sets is given in Table
L.

Test Problem

The MacBeth ColorChecker Chart®, combined with a set of
27 additional colors, was used as the test print for this study.
The test print contains a total of 51 patches: 24 patches from
the MacBeth chart, and 27 additional in-gamut colors. The
MacBeth chart is commonly used for evaluating color repro-
duction. The MacBeth chart, however, contains a number of
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Table H1I. Results for experiments in which the cyan toner cartridge was changed.

MacBeth 27 color
Overall chart test (>05 (<05 Max. Number
Baseline measurements AE, AE, AE, AE, AE, AE, improved
Orig. characterization, orig. cartridges 5.0 6.7 34 5.6 46 16.1 N/A
Orig. characterization, new cyan cartridge 7.6 9.2 6.2 10.5 6.0 18.5 N/A
Corrective model
Linear model (18 pt.) 5.6 7. 43 6.7 50 18.0 40
Linear model (36 pt.) 5.2 6.9 36 58 49 17.1 40
Abridged quadratic model (18 pt.) 8.9 10.8 7.2 6.6 10.2 300 277
Abridged quadratic model (36 pt.) 46 6.8 25 46 45 18.6 40
Full quadratic model (36 pt.) 339 425 26.3 31.2 354 1045 3
ANN model (18 pt.) 54 7.0 4.0 55 54 18.1 35
ANN model (36 pt.) 53 1.1 3.6 58 50 18.2 36
Updated printer model parameters
18 color set included 5 times 15 1.5 39 6.6 19 457 39
18 color set included 20 fimes 59 8.2 38 53 6.2 236 35
36 color set included 5 times 6.0 16 45 8.3 47 17.6 38
36 color set included 20 fimes 8.8 10.2 7.6 8.1 9.2 35.0 3l

colors that are outside the gamut of the printer used in this
study. These colors cannot be reproduced with zero colori-
metric error. The additional 27 colors are made up of nine
patches at a lightness level of 20 with a" and b" values set to
all combinations of —10, 0, and 10, nine patches at a light-
ness level of 50 with a" and b" set to all combinations of
—20, 0, and 20, and nine patches at a lightness level of 80
with a” and b set to all combinations of —10, 0, and 10.

A number of metrics were used to evaluate the test re-
sults. In all cases, colorimetric error was calculated as the
AE;b between the CIELAB input values and the measured
CIELAB output values. Overall error, error for the patches in
the MacBeth chart, and error for the additional 27 patches
were tabulated separately. The largest error across all 51
patches was also listed, as well as the number of patches for
which colorimetric accuracy was improved. Individual ex-
periments were averaged over three trials.

Introducing Systematic Error

Significant changes in printing system behavior resulted
from both the change of paper stock and the change of cyan
toner cartridge. The change in system behavior that resulted
from the change in paper is illustrated in Fig. 3. Figure 3 was
created by reprinting and measuring the 149 color set used
for the original system characterization. The change of paper
produced a general shift toward the neutral axis and a de-
crease of lightness for colors in the high-lightness portion of
the gamut. This type of shift was expected due to the darker
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white point of the replacement paper stock. The average
colorimetric error increased from 5.0 AE,, to 10.0 AE,, as a
result of the change of paper.

Figure 4 illustrates the change in printer behavior that
resulted from the change of cyan toner cartridge. The gen-
eral shift in this case was toward the cyan portion of the
printer gamut. In the case of the change of toner cartridge,
the average colorimetric error increased from 5.0 AE,, to
7.6 AE,,

RESULTS

Change of Paper Experiments

Results for the experiments in which the paper stock was
changed are presented in Table II. In most cases, the correc-
tive models gave excellent results. The full quadratic model
and the ANN model based on 18 new characterization data
were not successful. With the exception of these two cases,
the corrective models removed between 80% and 90% of the
error introduced by the change of paper stock.

The unsuccessful corrective models were both suscep-
tible to overfitting. In the case of the full quadratic model,
the number of characterization data was exactly equal to the
number of parameters in the model. As a result of overfit-
ting, the full quadratic model had a maximum error of 87.9
AE,,, and improved only three patches. The ANN model
based on 18 colors also exhibited behavior that is character-
istic of overfitting. In this case, the corrective model im-
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Table IV. The 149 color characterization data set.

No C M Y K No. C M Y K
1 1.0 0.0 a0 00 76 1.0 1.0 0.0 o7
2 0.0 1.0 0.0 00 77 1.0 0.0 10 0.7
3 0.0 0.0 1.0 0.0 78 0.0 1.0 1.0 07
4 1.0 10 00 0.0 79 0.2 0.0 0.0 07
5 10 0.0 1.0 00 80 0.0 0.2 0.0 07
6 0.0 10 1.0 0.0 81 0.0 0.0 02 07
7 02 0.0 00 0.0 82 02 0.2 0.0 07
8 0.0 02 00 0.0 83 02 00 02 07
9 0.0 00 02 0.0 2 0.0 0.2 02 07
10 02 02 00 0.0 85 0.4 0.0 0.0 0.7
11 02 0.0 02 00 86 0.0 04 00 07
12 0.0 02 02 00 87 0.0 0.0 04 07
13 0.4 00 00 0.0 88 04 0.4 0.0 07
14 0.0 0.4 00 00 89 04 0.0 04 07
15 00 0.0 04 0.0 %0 0.0 04 04 07
16 04 04 0.0 00 91 0.7 0.0 00 07
17 04 0.0 04 0.0 92 0.0 07 0.0 07
18 0.0 04 04 0.0 93 0.0 0.0 0.7 07
19 0.7 0.0 0.0 00 o4 0.7 0.7 00 07

20 0.0 0.7 0.0 0.0 95 0.7 0.0 07 07
21 0.0 0.0 07 0.0 96 0.0 0.7 07 07
22 0.7 07 0.0 0.0 97 0.0 0.0 00 0.0
23 0.7 0.0 0.7 0.0 98 0.0 0.0 0.0 02
24 00 07 0.7 0.0 99 0.0 0.0 0.0 04
25 1.0 0.0 0.0 02 100 0.0 0.0 0.0 0.7
26 0.0 1.0 0.0 02 101 0.0 0.0 0.0 10
27 0.0 0.0 10 02 102 0.5 0.5 05 00
28 1.0 10 0.0 02 103 1.0 05 05 0.0
29 1.0 00 10 02 104 0.5 05 10 00
30 0.0 1.0 1.0 02 105 05 1.0 05 0.0
31 02 0.0 0.0 02 106 1.0 05 0.0 0.0
32 0.0 02 0.0 0.2 107 10 0.0 0.5 00
33 0.0 0.0 02 02 108 0.5 0.6 10 0.0

34 0.2 02 00 02 109 0.0 0.5 10 0.0

35 02 0.0 02 02 110 0.0 1.0 05 00

36 0.0 02 02 02 111 0.5 1.0 00 0.0

37 04 00 0.0 02 112 0.5 0.5 05 03

38 0.0 04 0.0 02 113 1.0 0.5 05 03

39 0.0 0.0 04 02 1i4 05 0.5 1.0 03

40 04 04 00 02 115 05 1.0 0.5 03

41 04 0.0 04 02 116 1.0 0.5 0.0 03

42 00 04 04 02 17 1.0 0.0 0.5 63

43 07 00 00 02 118 0.5 0.0 1.0 03

a4 0.0 0.7 00 02 119 0.0 G5 10 03

45 00 0.0 07 02 120 0.0 1.0 05 03

46 07 0.7 0.0 02 121 05 1.0 00 03

47 0.7 0.0 0.7 02 122 0.5 0.5 05 0.7

48 0.0 0.7 07 02 123 1.0 05 05 0.7

49 1.0 0.0 0.0 04 124 0.5 0.5 10 07

50 0.0 10 0.0 04 125 05 10 05 07

51 0.0 00 10 04 126 1.0 05 00 07

52 1.0 10 0.0 04 127 1.0 00 05 0.7

53 1.0 00 10 04 128 0.5 0.0 10 0.7

54 00 1.0 10 04 129 0.0 0.5 1.0 07

55 02 0.0 00 04 130 0.0 1.0 05 07

56 0.0 02 00 04 131 05 1.0 0.0 07

57 0.0 00 02 04 132 03 0.7 0.0 00

58 02 02 00 04 133 0.7 03 0.0 00

59 02 00 02 04 134 03 0.0 0.7 0.0
60 0.0 02 02 04 135 0.7 0.0 03 0.0
61 04 0.0 00 04 136 0.0 03 0.7 00
62 0.0 04 00 04 137 0.0 0.7 03 0.0
63 0.0 00 04 04 138 0.3 0.7 0.0 05

64 04 04 00 04 139 07 03 0.0 05

65 04 0.0 04 04 140 03 0.0 0.7 05

66 0.0 04 04 04 141 0.7 0.0 03 05

67 07 0.0 00 04 142 0.0 03 07 05

68 00 07 00 04 143 0.0 0.7 03 05

69 0.0 00 0.7 04 144 03 0.7 02 00

70 07 07 00 04 145 07 03 02 00

71 0.7 0.0 07 04 146 03 02 0.7 0.0

72 0.0 07 07 04 147 0.7 02 03 0.0

73 1.0 0.0 0.0 0.7 148 0.2 03 07 0.0

74 0.0 10 00 07 149 0.2 07 03 0.0

75 0.0 0.0 10 07

proved 43 out of 51 test colors, but introduced error in
certain local regions of the gamut as can be seen by the
increase in maximum error.

The approach of updating model parameters using an
augmented data set resulted in an overall reduction of error
in all cases. In addition, the updated printer models did not
significantly increase the maximum error. The printer mod-
els updated with 36 colors outperformed the printer models
updated with 18 colors. The weighting of the newly acquired
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characterization data did not have a significant impact on
performance.

Change of Toner Cartridge Experiments

Results obtained for the experiments in which the cyan toner
cartridge was switched are presented in Table III. Because of
the obvious correlation between the cyan toner cartridge and
the printer’s behavior in the cyan portion of the gamut,
Table IIT includes separate listings of the error for patches
with a cyan dot fraction less than 0.5 and for patches with a
cyan dot fraction of greater than 0.5. These separate listings
isolate the corrective methods’ effect on local portions of the
gamut.

The corrective models were generally successful in re-
moving the error introduced by changing the cyan toner
cartridge. The linear corrective models and the ANN correc-
tive models reduced the overall error by between 76% and
93% and did not increase the maximum error. The abridged
quadratic model trained with 36 new data yielded results
that were an improvement over the original printer model
under the original conditions, indicating that 100% of the
systematic error was removed. The full quadratic corrective
model failed to improved colorimetric accuracy, and in fact
greatly increased the error. As in the change of paper experi-
ments, the full quadratic corrective model was highly sus-
ceptible to overfitting.

The approach of updating the printer model parameters
using an augmented data set was, in general, not successful
in removing the error introduced by the change of cyan
toner cartridge. The case of including the 36 color recharac-
terization set five times reduced the error across all catego-
ries and did not increase the maximum error. The other
schemes, however, did not significantly improve the average
error and dramatically increased the maximum error.

CONCLUSIONS

The methods for updating a printer model using a sparse
data set were generally successful in removing systematic er-
ror. The corrective model approach was the most successful.
In particular, the linear, abridged quadratic, and ANN cor-
rective models performed well by reducing overall colori-
metric error without increasing the maximum error across
the printer gamut.

A primary source of concern was the tendency of cer-
tain corrective models to exhibit overfitting. This behavior
was apparent in the increase in maximum error in the ex-
perimental results. Overfitting appeared only in cases where
the number of parameters in the corrective model was ap-
proximately equal to the number of newly acquired charac-
terization data. In cases where the shift in printer character-
istics is local in nature, the more complex corrective models
have the potential to produce the best results. However, cor-
rective models that can create localized artifacts are also sus-
ceptible to overfitting and to the introduction of new error
in localized regions of the gamut. This result is undesirable,
and therefore it is recommended that corrective models that
create changes of a more global nature be applied. If more
complex corrective models are utilized, a large number of
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recharacterization data relative to the number of parameters
in the corrective model should be acquired.

The method of recalculating the parameters in a printer
model using an augmented data set gave inconsistent results.
This approach was often successful in reducing the overall
error, but also exhibited a tendency to increase the maxi-
mum error across the printer gamut. This method was
shown to have merit, but it was not as successful, in general,
as the corrective model approach.

There are a number of possibilities for future work
stemming from this study. The most successful of the meth-
ods, namely the linear and abridged quadratic corrective
models, are a good choice for application in an industrial
setting. Furthermore, an investigation of the qualitative ef-
fects of these methods on image reproduction is a natural
extension of this work. This project focused on quantitative
evaluation of colorimetric data across the printer gamut. A
study of the qualitative effects of the corrective techniques
on pictorial images, as determined by a group of observers,
would offer more insight into the effectiveness of these
methods.
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