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Abstract. Probably, the most well-known vector filter is the vector
median filter (VMF) which is based on the theory of robust statistics
and performs good noise suppression in color images. However, the
VMF is designed to perform a fixed amount of smoothing. This may
lead to too much unnecessary substitutions in the input image and,
as a result, blurring and loss of image details. In order to avoid this
drawback when dealing with impulsive noise, the switching schemes
aim at selecting a set of pixels of the input image to be filtered
leaving the rest of the pixels unchanged. In this paper, two switching
filters which base the selection of the noisy pixels to be filtered on
statistical tests are proposed. The proposed filters present good
noise suppression while preserving fine image details appropriately.
Comparisons to classical and recently introduced impulsive noise
multichannel filters are provided. Moreover, the noisy pixel selection
techniques are computationally simple, and the filters significantly
reduce the computational complexity of the VMF. © 2006 Society
for Imaging Science and Technology.
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INTRODUCTION

A well-known nonlinear vector filtering method is based on
the ordering of vectors in a predefined sliding window." The
most commonly used and more adequate' ordering prin-
ciple between vectors is the reduced ordering principle,
which takes advantage of the theory of robust statistics.”’
When the vectors are ranked using the reduced ordering
principle by means of a suitable distance or similarity mea-
sure, the lowest ranked vectors are those which are close to
all the other vectors in the window according to the distance
or similarity measure used. On the other hand, atypical vec-
tors, susceptible to be considered as noisy or outliers, occupy
the highest ranks. The output of these filters is defined as the
lowest ranked vector as follows.'

Let F represent a multichannel image and let W be a
window of finite size N. The image vectors in the sliding
window W are denoted as Fj, j=1,...,N. let p denote an
appropriate distance measure such that the distance between
two vectors Fy, F; is denoted as p(Fy,F)). For each vector in
the filtering window, a global or accumulated distance to all
the other vectors in the window has to be calculated. The
scalar quantity Rk:EjN:Lj;E P (i F)), is the accumulated dis-
tance associated to the vector F;. The ordering of the Ry’s:
R(1))SR@p) <" <R(y), implies the same ordering of the vec-
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tors F's: Fj) < F <+ <Fy). Given this order, the output
of the filter is Fg).

The above concept is employed by the vector median
filter (VMF),* the basic vector directional filter,” and the
distance directional filter® which use the aggregated Euclid-
ean distance, the aggregated angular distance, and the aggre-
gated hybrid measure as the ordering criterion, respectively.
The interested reader can find extensive information in
Ref. 7 which is the most recent overview in the area of color
image filtering.

Since these filters produce a fixed amount of smoothing,
they usually remove fine details and blur structural informa-
tion in the image. Therefore, a number of detail-preserving
color image filters, such as those based on weighted
filtering,” "' fuzzy logic,""*'® and switching filtering
concepts’’ *"*** have been proposed recently.

It must be stressed that some weighted filters and fuzzy
logic strategies can be adapted for the suppression of noise
with different distributions whereas switching filters are
mainly aimed at filtering in an environment corrupted by
impulsive noise. In such cases, switching filters are widely
used due to their sufficient performance and proven com-
putational simplicity.

Within all this context, several switching mechanisms
have been proposed. In Ref. 22, an approximation of the
variance based on the minimum aggregated Euclidean dis-
tance or on the aggregated Euclidean distance to the multi-
channel sample mean is used to obtain a threshold to detect
noisy pixels. Privileging each pixel to substitute it only when
it is considered as a noisy pixel is proposed in Refs. 13, 17,
18, and 21. The use of cluster analysis to select the noisy
pixels is proposed in Ref. 19. A fuzzy noise detection tech-
nique is introduced in Ref. 16. In Ref. 14, a genetic algo-
rithm is used to decide the switching operation. The filters
in Refs. 20 and 23 use the standard deviation, the sample
mean and various distance measures to form the adaptive
switching rule. In the approaches introduced in Refs. 24 and
25, a neighborhood test is used to decide the switching
operation.

In this paper, two fast methods based on statistical con-
fidence limits to detect the pixels in the image which are
likely to be noisy are introduced as the switching mecha-
nisms between the identity operation and the VMF opera-
tion. The VMF operation will be applied only for those
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pixels selected by the test. Thus, the uncorrupted image
structures will be better preserved and the filtering process
will be more computationally efficient than the classical
VME

NOISY PIXELS SELECTION AND FILTERING
In a multichannel image, each pixel is represented as a vector
x € X%, with d the number of channels of the image (for
RGB color images, d=3 and X={0,1,...,255}). Impulsive
noise contaminating an image pixel, which is mostly intro-
duced during the image transmission process through a
noisy channel, transforms one or more components of its
color vector into an extreme value. The classical impulsive
noise model' described as follows is used in this paper.

Let F={Fy,Fg,Fg} be the original pixel, let F* denote
the pixel corrupted by the noise process and suppose that p
is the probability of the noise appearance. The image pixels
are distorted according to the following scheme:

{d|,Fg, Fg} with probability pp,,
{Fg,d,,Fg} with probability pp,,
{Fg,F¢,d;} with probability pps,

{d,dy,ds}  with probability p(1 - > p),
(1)

where d,,d,,d; are independent and equal to 0 or 255 with
equal probability, and p;, i=1,2,3 determine the probability
of appearance of the noise in the image channels.

A noisy pixel may break the inner structure of a portion
of the image. Impulsive noisy pixel detection could be done
by modeling this structure and checking if the pixel in con-
sideration agrees with it or not. This detection is, neverthe-
less, a challenging task due to edges, corners and fine image
details. In this paper, the inner structure of an N-size sliding
window W={x;;i=1,2,...,N} (typically N=9 using a
3X3 window) is modeled by a probability distrib-
ution estimated from all neighbor pixels of the pixel into
consideration.

To estimate the probabilistic distribution of the pixels,
the neighbor pixels of the one into consideration, x,, are first
mean centered and scaled to unit variance. The sample mean
(2) and standard deviation (3) obtained are then used to
normalize the pixel into consideration (4):

1 N

x=—" 2 x; (2)
N—Tio1j%c !

)

(4)
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Figure 1. Performance in terms of NCD as a function of the impulsive
noise percentage and the confidence level for three test images; see Figs.
2(b)-2(d).

Two strategies for noisy pixels selection are presented in
this paper. The first one considers an independent ¢-student
distribution around the mean value for each one of the
channels. The second strategy is based on the assumption
that the sum of squares of the normalized values of the
channels for each pixel follows a squared t-student distribu-
tion. The corresponding test is performed on the normalized
pixel z. and if the value obtained exceeds a prespecified con-
fidence limit, the pixel is filtered. The common assumption
underlying both filters is that the values of the pixels are
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Figure 2. Test images: detail of arctic hare image (copyright photo courtesy of Robert E. Barber), defail of
baboon image, detail of lena image, and detail of peppers image. (Available in color as a Supplemental
Material for at least two years from date of publication af www.imaging.org.)

normally distributed around the vector mean of the window.
The philosophy of these methods is similar to those in Refs.
22 and 23. The main difference comes from the fact that
here a Student’s-t or squared Student’s-¢ distribution is as-
sumed for modeling the data.

The proposed selection strategies are used to switch be-
tween the identity operation and the VMF operation. Hence,
two switching vector filters called #-test vector median filter
(tT=VMF) and squared t-test vector median filter (StT
—VMF) are defined. Using the notation above, the output of
these vector filters is as follows:

YvmE if 3m e {1,2, ,d}/|Z£n| > tN—Z,a/Z

Yer-vmE= . )
X, otherwise

(5)
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Table I. Confidence levels calibrated without information about the percentage of
impulsive noise (calibration 1).

1T-VMF SHT-VMF
Lena 90 75
Baboon 92.5 715
Peppers 85 77.5

od
Yvmr if Em:l (2" > d(ty_y 00)%
Yser-vmE = ] (6)
X, otherwise

where z!" is the value of the mth channel of z,, ty_, o, is the
positive critical value of a Student’s-t distribution with N
—2 degrees of freedom at a certain confidence level a,”® and
yvmr denotes the output of the VMF operation.
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Table I1. Confidence levels calibrated using a vague information about the percentage of impulsive noise (calibration 2).

1T-VMF SHT-VMF
[0-10%1(%) [10-20%1(%) [20-30%1(%) [0-10%](%) [10-20%1(%) [20-30%]
Lena 95 90 82.5 925 71.5 65
Baboon 97.5 925 97.5 80 65
Peppers 95 90 82.5 90 80 65

COMPUTATIONAL ANALYSIS

Computationally efficient filters are of interest and have been
the object of several works.””*® In this section it is shown
that the proposed switching filters are fast and more com-
putationally efficient than the classical VME

In order to compare the computational efficiency of
VME, tT-VMF and StT-VMF the number of operations to
be computed for each image pixel for the VMF and for the
proposed filters will be analyzed considering a filtering win-
dow W of size N.

In the VME for each pixel into consideration,
(N?>-N)/2 distances have to be calculated first. If the L,
distance is used, three comparisons and five additions/
substractions are to be calculated for each distance. Thus,
computing the (N?*-N)/2 distances means computing
[5(N*~N)]/2 additions/substractions and [3(N*—N)]/2
comparisons. Second, the accumulated distance for each
pixel in the filtering window has to be calculated. This
means N”—2N further additions. Finally, the minimum ac-
cumulated distance has to be found to determine the filter
output. For this, N—1 further comparisons are necessary.
So, the VMF has to compute (3N>~N—2)/2 comparisons,
and (7N?—9N)/2 additions/substractions.

In the case of tT-VMEF, the noisy pixel selection has to
be calculated for each image pixel and only for those pixels
determined as noisy the VMF operation is performed. The
noisy pixel selection means to compute: 3(N—2) additions
and one division for calculating the mean value excluding
the pixel in consideration; 3N subtractions for subtracting
the mean to every pixel in the window; 3(N—1) products,
3(N-2) additions, one division, and one square root for
calculating the standard deviation; three divisions for divid-
ing the pixel into consideration by the standard deviation;
and finally, three comparisons for determining whether the
pixel is noisy or not.

Note that the confidence limit corresponding to a con-
fidence level is fixed for both distributions and it may be
precalculated. So, its computational cost is not considered in
this analysis.

Two different cases have to be considered: If the pixel is
determined as a non noisy pixel then only three compari-
sons, (IN—12) additions/substractions, 3(N—1) products,
five divisions, and one square root have to be calculated; On
the other hand, if the pixel is determined as noisy then, in
addition to the operations above, the VMF operation has to
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Table IIl. Image-independent confidence levels estimated as the mean of the values
obtained from calibration 1 and 2 using the calibration images for each of the merit
figures.

ITVMF
[0-30%]  [0-10%]  [11-20%]  [21-30%]
NCD 90 95 90 82.5
MAE 95 97.5 95 92.5
PSNR 92.5 95 92.5 85
SITAMF

[0-30%]1%) [0-10%1(%) [11-20%1%) [21-30%](%)

NCD 775 925 80 65
MAE 87.5 91.5 87.5 80
PSNR 775 95 775 65

be done. This involves a total of (3N>~N+4)/2 compari-
sons, (7N?+9N+24)/2 additions/substractions, 3(N—1)
products, five divisions, and one square root.

For the sake of simplicity, let us consider a 3 X3 filter-
ing window, so N=9 in this case. The VMF computes 116
comparisons and 243 additions/substractions for each image
pixel. In the tT-VMEF, for the pixels determined as non noisy
pixels three comparisons, 69 additions/substractions, 24
products, five divisions, and one square root have to be cal-
culated. For the pixels determined as noisy 119 comparisons,
312 additions/substractions, 24 products, five divisions, and
one square root have to be calculated. The following assign-
ment of computational cost units” (ccu) will be considered
for the final computational cost comparison: one
comparison=3 ccu; one addition/substraction=3 ccu; one
product=3 ccu; one division=7 ccu; and one square root
=10 ccu. Other possible assignments of ccu may be consid-
ered and the computational efficiency of the proposed ap-
proaches can easily be proof.

Then, the total cost of the VMF operation would be
1077 ccu. In the tT-VMF approach, the non-noisy pixels

J. Imaging Sci. Technol. 50(5)/Sep.-Oct. 2006
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Table IV. Mean values obtained from 1% to 30% of impulsive noise and several images. The values for NCD, MAE, and PSNR and the filters fT-VMF and StT-VMF with confidence levels for optimum
performance, calibration 1 and 2 are presented. Calibration (above) involves the details of the baboon, lena, and peppers images. Test (below) includes the details of the arctic hare image.

fT-VMF StT-AMF
NCD MAE NCD MAE PSNR
Calibration
Optimum 0.0176 2.1840 30.4478 0.0217 2.5795 29.0024
Calibration 1 0.0205 2.3422 29.2495 0.0259 3.4424 27.4284
(+16.5%) (+7.2%) (=3.9%) (+19.4%) (+33.5%) (-5.4%)
Calibration 2 0.0186 2.1840 30.0128 0.0225 2.8087 28.4851
(+5.6%) (+2.4%) (-1.4%) (+3.7%) (+8.9%) (-1.8%)
Optimum 0.0044 1.0862 33.9629 0.0058 1.3503 32.6349
Calibration 1 0.0058 11272 0.0072 2.0663 307119
(+31.8%) (+3.8%) (-5.3%) (+24.1%) (+53%) (-5.9%)
Calibration 2 0.0048 1.1262 0.0065 1.4789 31.3007
(+9.1%) (+3.7%) (-2.3%) (+12.1%) (+9.5%) (-4.1%)
cost would be 333 ccu and the noisy pixel cost would be 255
han the VME atlss a et roughly the 90 of the pnts o [ 1 S8 /
:Neare determined as noisy. o F Mz ]:21 gl [Fi(i,j) — F(i,j) |*

In the case of the StT-VMF, three products and two
additions more than in the tT-VMF are necessary, but only
one comparison is done to determine if the pixel is noisy.
Then, the non-noisy pixels cost would be 342 ccu and the
noisy pixel cost would be 1419 ccu. This approach would be
computationally simpler than the VMF unless at least
roughly the 68% of the pixels were determined as noisy.

As it could be expected, the computational complexity
of the proposed filters depends on the percentage of con-
taminated pixels. The lower the percentage of contaminated
pixels is, the lower the computational complexity.

CALIBRATION OF THE CONFIDENCE LEVEL

The performance of any filtering strategy is assessed using a
series of objective quality measures. In this paper, the nor-
malized color difference (NCD), the peak signal-to-noise ra-
tio (PSNR), and the mean absolute error (MAE) are used.
These metrics are defined as follows:"

N M Q

2 2 2 |F(hj) - F(hj)|
MAE = — , (7)
NMQ
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(8)

where M, N are the image dimensions, Q is the number of
channels of the image (Q=3 for a RGB color image), and

Fi(i,j) and F4(i,j) denote the gth component of the original
image vector and the filtered image, at pixel position (i,j),
respectively, and

N M
2i=1 Ejzl AELab
N M _x ’
Eiil 2]‘:1 ELab

where AE;,;,=[(AL")?*+(Aa")*+(Ab")?]"? denotes the per-
ceptual color error and E; ,,=[(L)?+(a")>+(b")?]"? is the
norm or magnitude of the original image color vector in the
L'a’b" color space.

The quality measure taken into account in a specific
application depends on the nature of that application. When
images are filtered previous to human inspection, the NCD
measure may be used due to it approaches the human per-
ception. When images are going to be the input of an auto-
matic (in any degree) system (e.g., an image retrieval sys-
tem), the PSNR or MAE measures may be appropriate.

NCD; ;= 9)
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Figure 3. Representation of NCD, MAE, and PSNR figures for the arctic hare, baboon, lena, and peppers
images. The filters used in the comparative are the VMF (dotted lines), the FIVF (lines with squares) (see Refs.
13), the SAMF (lines with circles) (see Refs. 24 and 25), the AVMF (lines with triangles) (see Ref. 22),
MAVMF (lines with inverted triangles) (see Ref. 22), and the two filtering strategies proposed in this paper,
IVMF (lines with stars) and STVMF (lines with pluses). (Available in color as a Supplemental Material for at
least two years from date of publication at www.imaging.org.)
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Then, it is reasonable to adjust any filtering strategy by op-

timizing a specific quality measure.

The performance of the tT-VMEF in terms of NCD is
shown in Fig. 1 for three test images (see Figs. 2(b)-2(d) as
a function of the percentage of impulsive noise from 1% to
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shows that the performance of the filter depends both on the
percentage of noise and the confidence level used. The shape

and ra

nge of the three surfaces are similar and so a confi-
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@ (d)

®

Figure 4. (a) lena image corrupted with 20% impulsive noise. (b) Num-
ber of replaced pixels (in yellow) made by VMF. (c) Number of re-
placed pixels (in yellow) made by SITVMF. (d) Image filtered using the
VME. (e) Image fillered using FVMF. (f) Image fillered using SITVMF.
The percentage of replaced pixels in (b) is 31.46%, whereas if is
38.96% in (c). (Available in color as a Supplemental Material for af least
two years from date of publication at www.imaging.org.)

dence level valid for an image may be used to filter another
image and a similar performance could be expected.

In order to obtain an appropriate confidence level for
any percentage of noise and image, the following two cali-
bration strategies have been considered.

The calibration of the confidence level will be obtained
from the details of the baboon, Lena, and peppers images
(see Figs. 2(b)-2(d)). These three images have in common
that their filtering is complex because of the amount of de-
tail, edges, and rich color set. It has been assumed that the
confidence levels obtained may have good performance for
other images, even images of different nature. In order to
assess the validity of this assumption, the detail of the arctic
hare image (Fig. 2(a)) is filtered with the confidence levels
obtained in calibration. This image is very different to all the
other considered images (with little detail and reduced color
set).

As a first step, let us assume there is no information of
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the percentage of impulsive noise and that we want to opti-
mize the NCD merit figure (the same procedure will be
applied for the MAE and PSNR). In this case, the NCD
values for all noise percentages are summed for each confi-
dence level and image. Let NCDIIJ(I) denote the NCD value
for the output of the filter when filtering the image I con-
taminated with p% of impulsive noise using [% as the con-
fidence level. Then, the values S,:E;gONCDIl,(I), forl
€{60,62.5,65,...,97.5} are calculated for the different cali-
bration images (it has been observed that values of the con-
fidence level lower than 60% do not present a good perfor-
mance). A global appropriate confidence level, L, will be that
for which L=arg min; S;. Thus, the appropriate value mini-
mizes the sum of NCD values for all the considered percent-
ages of impulsive noise. The selected confidence levels for
each image are listed in Table 1. From now on this calibra-
tion strategy along with no noise percentage information
will be denoted as calibration 1.

On the other hand, the percentage of impulsive noise of
an image can be estimated, for instance, using the techniques
proposed in Refs. 18, 24, and 25. Nonetheless, it may make
no sense to suppose a perfect estimation of the noise per-
centage. A more realistic approach is to assume the noise
percentage is within a certain interval, which can be the case
when an estimator is available or when the noise distribution
is bounded. Let us now assume the percentage of impulsive
noise can be estimated to be in one of the next intervals:
[0%—-10%], [10% —20%], and [20% —30% ]. The confi-
dence levels for every image and interval may be obtained as
explained above; (results are shown in Table II). It can be
seen the confidence level is inversely proportional to the per-
centage of noise. From now on this calibration strategy
along with the noise estimation mentioned will be denoted
as calibration 2.

With any of these assumptions, an image-independent
calibration of the confidence level is represented by the mean
of the values obtained for the different images. Since the
confidence levels included in the experimentation are taken
in 2.5% steps, the one nearest to the mean is used. The
selected confidence levels appear in Table III. In this table,
the values obtained following the same calibration proce-
dure, for MAE and PSNR, are also included.

The quality of both calibrations (without knowledge of
the percentage of impulsive noise and with vague approxi-
mation of the contaminating impulsive noise) can be as-
sessed in front of the optimum performance of the ¢7T-
VMF and StT-VMF. In Table IV, mean values of the NCD,
MAE, and PSNR of tT-VMF and StT-VMF, for every image
and percentage of noise, are shown. The values between pa-
renthesis are the percentage of worsening of the calibration
respect to the optimum performance.

A series of conclusions can be extracted from Table IV.
First, reducing the interval of uncertainty of the noise per-
centage, i.e., improving the estimate of the noise, improves
the performance of the calibration. The outcomes of calibra-
tion 2 are approximately three times nearer to the optimum
performance than those of calibration 1. Second, tT-VMF

J. Imaging Sci. Technol. 50(5)/Sep.-Oct. 2006
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presents a better performance than StT-VME. Also the cali-
bration for the StT-VMF seems to work worse, specially in
terms of the MAE. Finally, the confidence levels obtained in
the calibration showed a good performance for the test
image, giving support to the assumption of image
independency.

EXPERIMENTAL RESULTS AND DISCUSSION

The Lena, baboon, peppers, and arctic hare images were cor-
rupted with impulsive noise from 1% to 30% and filtered
with the VME, fast impulsive vector filter (FIVF),13 switching
arithmetic mean filter (SAMF),**® adaptive vector median
filter (AVMF),* modified adaptive vector median filter
(MAVMEF),” and the two filtering strategies proposed in this
paper, tT-VMF and StT-VMF. Figure 3 displays the results
of each approach.

As it can be seen in Fig. 3, tT-VMF and StT-VMF
outperforms VME. This shows the good performance of the
approaches, above all the tT-VMF, even when filtering im-
ages of very different nature to those used in the calibration
of the confidence levels.

Besides, it can be seen that the tT-VMF outperforms in
general terms all the other filters in the case of the arctic hare
image. When using the rest of the images (baboon, peppers,
and lena, see Fig. 3) the tT-VMF outperforms the rest in
terms of PSNR, remaining competitive for the rest of the
merit figures.

In Fig. 4(a), a Lena image corrupted with impulsive
noise at 20% is presented. The image result of applying
VMEF (Fig. 4(d)), and the results of the application of the
tT-VMF (Fig. 4(e)) and StT-VMF (Fig. 4(f)) are also pre-
sented. The images corresponding to the pixels that have
been changed by (T-VMF (Fig. 4(b)) and StT-VMF
(Fig. 4(c)) are shown as well. For tT-VMF, only 31.46% of
the pixels are replaced, whereas this amount increases for
StT-VMF up to 38.96%. As it was commented in the Com-
putational Analysis section, t7-VMF and StT-VMF are
faster than the classical vector median filter if the amount of
replaced pixels is lower than 69% and 68% respectively (see
the Computational Analysis section).

On the other hand, as it can also be seen in Figs.
4(d)—4(f), the details are better preserved by t7T-VMF and
StT-VMF comparing them with the VMF filter. For ex-
ample, the left eye, the lower part of the nose and some of
the hat feathers are better preserved in Figs. 4(e) and 4(f) in
comparison to Fig. 4(d).

CONCLUSIONS

In this paper, two strategies to detect impulsive noisy pixels
in color images based on statistical confidence limits have
been introduced. These strategies have been used to define
two switching filters, t7-VMF and StT-VMF, that switch
between the VMF and the identity operations.

A strategy to calibrate the confidence level used by the
proposed filters has been presented. Results show that this
calibration is improved with the estimation of the noise level
of a corrupted image. The validity of this calibration method
has been tested using an image which is different to those
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used in the calibration process, showing that the value of the
confidence levels chosen are appropriate.

Furthermore, the performance presented by the ¢T-
VMF and the StT-VMF is better than the classical VME,
since they are able to better preserve the uncorrupted image
structures. Both proposed filters have been compared with
recently introduced techniques for impulsive noise removal
and the experiments show (Fig. 3) that the tT-VMF pro-
vides, in general, the best results.

Also, it has been investigated that, in most of the cases,
the tT-VMF and the StT-VMF are faster than the classical
VMEF since the strategies to detect impulsive noisy pixels are
fast and the VMF operation is only applied for those pixels
selected by the tests.
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