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bstract. Probably, the most well-known vector filter is the vector
edian filter (VMF) which is based on the theory of robust statistics
nd performs good noise suppression in color images. However, the
MF is designed to perform a fixed amount of smoothing. This may

ead to too much unnecessary substitutions in the input image and,
s a result, blurring and loss of image details. In order to avoid this
rawback when dealing with impulsive noise, the switching schemes
im at selecting a set of pixels of the input image to be filtered

eaving the rest of the pixels unchanged. In this paper, two switching
lters which base the selection of the noisy pixels to be filtered on
tatistical tests are proposed. The proposed filters present good
oise suppression while preserving fine image details appropriately.
omparisons to classical and recently introduced impulsive noise
ultichannel filters are provided. Moreover, the noisy pixel selection

echniques are computationally simple, and the filters significantly
educe the computational complexity of the VMF. © 2006 Society
or Imaging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.�2006�50:5�427��

NTRODUCTION
well-known nonlinear vector filtering method is based on

he ordering of vectors in a predefined sliding window.1 The
ost commonly used and more adequate1 ordering prin-

iple between vectors is the reduced ordering principle,
hich takes advantage of the theory of robust statistics.2,3

hen the vectors are ranked using the reduced ordering
rinciple by means of a suitable distance or similarity mea-
ure, the lowest ranked vectors are those which are close to
ll the other vectors in the window according to the distance
r similarity measure used. On the other hand, atypical vec-
ors, susceptible to be considered as noisy or outliers, occupy
he highest ranks. The output of these filters is defined as the
owest ranked vector as follows.1

Let F represent a multichannel image and let W be a
indow of finite size N. The image vectors in the sliding
indow W are denoted as Fj, j=1, . . . ,N. Let � denote an

ppropriate distance measure such that the distance between
wo vectors Fk, Fj is denoted as ��Fk , Fj�. For each vector in
he filtering window, a global or accumulated distance to all
he other vectors in the window has to be calculated. The
calar quantity Rk =�j=1,j�k

N � �Fk , Fj�, is the accumulated dis-
ance associated to the vector Fk. The ordering of the Rk’s:

�1��R�2�� ¯ �R�N�, implies the same ordering of the vec-

eceived Aug. 1, 2005; accepted for publication Jan. 10, 2006.
t062-3701/2006/50�5�/427/10/$20.00.
ors Fk’s: F�1��F�2�� ¯ �F�N�. Given this order, the output
f the filter is F�0�.

The above concept is employed by the vector median
lter (VMF),4 the basic vector directional filter,5 and the
istance directional filter6 which use the aggregated Euclid-
an distance, the aggregated angular distance, and the aggre-
ated hybrid measure as the ordering criterion, respectively.
he interested reader can find extensive information in
ef. 7 which is the most recent overview in the area of color

mage filtering.
Since these filters produce a fixed amount of smoothing,

hey usually remove fine details and blur structural informa-
ion in the image. Therefore, a number of detail-preserving
olor image filters, such as those based on weighted
ltering,8–11 fuzzy logic,1,12–16 and switching filtering
oncepts17–21,24,25 have been proposed recently.

It must be stressed that some weighted filters and fuzzy
ogic strategies can be adapted for the suppression of noise
ith different distributions whereas switching filters are
ainly aimed at filtering in an environment corrupted by

mpulsive noise. In such cases, switching filters are widely
sed due to their sufficient performance and proven com-
utational simplicity.

Within all this context, several switching mechanisms
ave been proposed. In Ref. 22, an approximation of the
ariance based on the minimum aggregated Euclidean dis-
ance or on the aggregated Euclidean distance to the multi-
hannel sample mean is used to obtain a threshold to detect
oisy pixels. Privileging each pixel to substitute it only when

t is considered as a noisy pixel is proposed in Refs. 13, 17,
8, and 21. The use of cluster analysis to select the noisy
ixels is proposed in Ref. 19. A fuzzy noise detection tech-
ique is introduced in Ref. 16. In Ref. 14, a genetic algo-
ithm is used to decide the switching operation. The filters
n Refs. 20 and 23 use the standard deviation, the sample

ean and various distance measures to form the adaptive
witching rule. In the approaches introduced in Refs. 24 and
5, a neighborhood test is used to decide the switching
peration.

In this paper, two fast methods based on statistical con-
dence limits to detect the pixels in the image which are

ikely to be noisy are introduced as the switching mecha-
isms between the identity operation and the VMF opera-
ion. The VMF operation will be applied only for those
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ixels selected by the test. Thus, the uncorrupted image
tructures will be better preserved and the filtering process
ill be more computationally efficient than the classical
MF.

OISY PIXELS SELECTION AND FILTERING
n a multichannel image, each pixel is represented as a vector
�Xd, with d the number of channels of the image (for
GB color images, d=3 and X= �0 ,1 , . . . , 255�). Impulsive
oise contaminating an image pixel, which is mostly intro-
uced during the image transmission process through a
oisy channel, transforms one or more components of its
olor vector into an extreme value. The classical impulsive
oise model1 described as follows is used in this paper.

Let F = �FR ,FG ,FB� be the original pixel, let F* denote
he pixel corrupted by the noise process and suppose that p
s the probability of the noise appearance. The image pixels
re distorted according to the following scheme:

F* =�
�d1,FG,FB� with probability pp1,

�FR,d2,FB� with probability pp2,

�FR,FG,d3� with probability pp3,

�d1,d2,d3� with probability p�1 − �i=1

3
pi� ,

�1�

here d1 ,d2 ,d3 are independent and equal to 0 or 255 with
qual probability, and pi , i=1,2 ,3 determine the probability
f appearance of the noise in the image channels.

A noisy pixel may break the inner structure of a portion
f the image. Impulsive noisy pixel detection could be done
y modeling this structure and checking if the pixel in con-
ideration agrees with it or not. This detection is, neverthe-
ess, a challenging task due to edges, corners and fine image
etails. In this paper, the inner structure of an N-size sliding
indow W = �xi ; i=1,2 , . . . ,N� (typically N=9 using a
�3 window) is modeled by a probability distrib-
tion estimated from all neighbor pixels of the pixel into
onsideration.

To estimate the probabilistic distribution of the pixels,
he neighbor pixels of the one into consideration, xc, are first

ean centered and scaled to unit variance. The sample mean
2) and standard deviation (3) obtained are then used to
ormalize the pixel into consideration (4):

x̄ =
1

N − 1
�

j=1,j�c

N

xj , �2�

� =
� �

j=1,j�c

N

�xj − x̄�2

N − 2
, �3�

zc =
xc − x̄

. �4�

� u

28
Two strategies for noisy pixels selection are presented in
his paper. The first one considers an independent t-student
istribution around the mean value for each one of the
hannels. The second strategy is based on the assumption
hat the sum of squares of the normalized values of the
hannels for each pixel follows a squared t-student distribu-
ion. The corresponding test is performed on the normalized
ixel zc and if the value obtained exceeds a prespecified con-
dence limit, the pixel is filtered. The common assumption

igure 1. Performance in terms of NCD as a function of the impulsive
oise percentage and the confidence level for three test images; see Figs.
�b�–2�d�.
nderlying both filters is that the values of the pixels are

J. Imaging Sci. Technol. 50�5�/Sep.-Oct. 2006
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ormally distributed around the vector mean of the window.
he philosophy of these methods is similar to those in Refs.
2 and 23. The main difference comes from the fact that
ere a Student’s-t or squared Student’s-t distribution is as-
umed for modeling the data.

The proposed selection strategies are used to switch be-
ween the identity operation and the VMF operation. Hence,
wo switching vector filters called t-test vector median filter
tT−VMF� and squared t-test vector median filter �StT
VMF� are defined. Using the notation above, the output of

hese vector filters is as follows:

ytT-VMF = �yVMF if ∃ m � �1,2, . . . ,d�/	zc
m	 � tN−2,�/2

xc otherwise
,

�5�

Figure 2. Test images: detail of arctic hare image
baboon image, detail of Lena image, and detail o
Material for at least two years from date of publica
y

. Imaging Sci. Technol. 50�5�/Sep.-Oct. 2006
yStT-VMF =�yVMF if �m=1

d
�zc

m�2 � d�tN−2,�/2�2,

xc otherwise
�6�

here zc
m is the value of the mth channel of zc, tN−2,�/2 is the

ositive critical value of a Student’s-t distribution with N
2 degrees of freedom at a certain confidence level �,26 and

able I. Confidence levels calibrated without information about the percentage of
mpulsive noise �calibration 1�.

tT-VMF StT-VMF

ena 90 75

aboon 92.5 77.5

eppers 85 77.5

ight photo courtesy of Robert E. Barber�, detail of
ers image. �Available in color as a Supplemental
www.imaging.org.�
�copyr
f pepp
tion at
VMF denotes the output of the VMF operation.
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OMPUTATIONAL ANALYSIS
omputationally efficient filters are of interest and have been

he object of several works.27,28 In this section it is shown
hat the proposed switching filters are fast and more com-
utationally efficient than the classical VMF.

In order to compare the computational efficiency of
MF, tT-VMF and StT-VMF the number of operations to
e computed for each image pixel for the VMF and for the
roposed filters will be analyzed considering a filtering win-
ow W of size N.

In the VMF, for each pixel into consideration,
N2 −N� /2 distances have to be calculated first. If the L1

istance is used, three comparisons and five additions/
ubstractions are to be calculated for each distance. Thus,
omputing the �N2 −N� /2 distances means computing
5�N2 −N�� /2 additions/substractions and 
3�N2 −N�� /2
omparisons. Second, the accumulated distance for each
ixel in the filtering window has to be calculated. This
eans N2 −2N further additions. Finally, the minimum ac-

umulated distance has to be found to determine the filter
utput. For this, N−1 further comparisons are necessary.
o, the VMF has to compute �3N2 −N−2� /2 comparisons,
nd �7N2 −9N� /2 additions/substractions.

In the case of tT-VMF, the noisy pixel selection has to
e calculated for each image pixel and only for those pixels
etermined as noisy the VMF operation is performed. The
oisy pixel selection means to compute: 3�N−2� additions
nd one division for calculating the mean value excluding
he pixel in consideration; 3N subtractions for subtracting
he mean to every pixel in the window; 3�N−1� products,
�N−2� additions, one division, and one square root for
alculating the standard deviation; three divisions for divid-
ng the pixel into consideration by the standard deviation;
nd finally, three comparisons for determining whether the
ixel is noisy or not.

Note that the confidence limit corresponding to a con-
dence level is fixed for both distributions and it may be
recalculated. So, its computational cost is not considered in

his analysis.
Two different cases have to be considered: If the pixel is

etermined as a non noisy pixel then only three compari-
ons, �9N−12� additions/substractions, 3�N−1� products,
ve divisions, and one square root have to be calculated; On

he other hand, if the pixel is determined as noisy then, in

Table II. Confidence levels calibrated using a vague inf

tT-VMF


0 – 10% ��%� 
10– 20% ��%� 
20–

ena 95 90

aboon 97.5 92.5

eppers 95 90
ddition to the operations above, the VMF operation has to 1

30
e done. This involves a total of �3N2 −N+4� /2 compari-
ons, �7N2 +9N+24� /2 additions/substractions, 3�N−1�
roducts, five divisions, and one square root.

For the sake of simplicity, let us consider a 3�3 filter-
ng window, so N=9 in this case. The VMF computes 116
omparisons and 243 additions/substractions for each image
ixel. In the tT-VMF, for the pixels determined as non noisy
ixels three comparisons, 69 additions/substractions, 24
roducts, five divisions, and one square root have to be cal-
ulated. For the pixels determined as noisy 119 comparisons,
12 additions/substractions, 24 products, five divisions, and
ne square root have to be calculated. The following assign-
ent of computational cost units29 (ccu) will be considered

or the final computational cost comparison: one
omparison=3 ccu; one addition/substraction=3 ccu; one
roduct=3 ccu; one division=7 ccu; and one square root
10 ccu. Other possible assignments of ccu may be consid-

red and the computational efficiency of the proposed ap-
roaches can easily be proof.

Then, the total cost of the VMF operation would be

about the percentage of impulsive noise �calibration 2�.

StT-VMF


0 – 10% ��%� 
10– 20% ��%� 
20– 30% �

92.5 77.5 65

97.5 80 65

90 80 65

able III. Image-independent confidence levels estimated as the mean of the values
btained from calibration 1 and 2 using the calibration images for each of the merit
igures.

tT-VMF


0 – 30% � 
0 – 10% � 
11– 20% � 
21– 30% �

CD 90 95 90 82.5

AE 95 97.5 95 92.5

SNR 92.5 95 92.5 85

StT-VMF


0 – 30% ��%� 
0 – 10% ��%� 
11– 20% ��%� 
21– 30% ��%�

CD 77.5 92.5 80 65

AE 87.5 97.5 87.5 80

SNR 77.5 95 77.5 65
ormation

30% ��%�

82.5

85

82.5
077 ccu. In the tT-VMF approach, the non-noisy pixels

J. Imaging Sci. Technol. 50�5�/Sep.-Oct. 2006
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ost would be 333 ccu and the noisy pixel cost would be
410 ccu. So the tT-VMF would be computationally simpler
han the VMF unless at least roughly the 69% of the pixels
ere determined as noisy.

In the case of the StT-VMF, three products and two
dditions more than in the tT-VMF are necessary, but only
ne comparison is done to determine if the pixel is noisy.
hen, the non-noisy pixels cost would be 342 ccu and the
oisy pixel cost would be 1419 ccu. This approach would be
omputationally simpler than the VMF unless at least
oughly the 68% of the pixels were determined as noisy.

As it could be expected, the computational complexity
f the proposed filters depends on the percentage of con-
aminated pixels. The lower the percentage of contaminated
ixels is, the lower the computational complexity.

ALIBRATION OF THE CONFIDENCE LEVEL
he performance of any filtering strategy is assessed using a

eries of objective quality measures. In this paper, the nor-
alized color difference (NCD), the peak signal-to-noise ra-

io (PSNR), and the mean absolute error (MAE) are used.
hese metrics are defined as follows:1

MAE =

�
i=1

N

�
j=1

M

�
q=1

Q

	Fq�i, j� − F̂q�i, j�	

, �7�

able IV. Mean values obtained from 1% to 30% of impulsive noise and several images. The
erformance, calibration 1 and 2 are presented. Calibration �above� involves the details of the b

tT-VMF

NCD MAE

C

ptimum 0.0176 2.1840

alibration 1 0.0205 2.3422

�+16.5% � �+7.2% �

alibration 2 0.0186 2.1840

�+5.6% � �+2.4% �

ptimum 0.0044 1.0862

alibration 1 0.0058 1.1272

�+31.8% � �+3.8% �

alibration 2 0.0048 1.1262

�+9.1% � �+3.7% �
NMQ t

. Imaging Sci. Technol. 50�5�/Sep.-Oct. 2006
PSNR = 20 log�
255

� 1

NMQ
�
i=1

N

�
j=1

M

�
q=1

Q


Fq�i, j� − F̂q�i, j��2� ,

�8�

here M, N are the image dimensions, Q is the number of
hannels of the image (Q=3 for a RGB color image), and
q�i , j� and F̂q�i , j� denote the qth component of the original

mage vector and the filtered image, at pixel position �i , j�,
espectively, and

NCDLab =
�i=1

N �j=1

M
�ELab

�i=1

N �j=1

M
ELab

*
, �9�

here �ELab = 
��L*�2 + ��a*�2 + ��b*�2�1/2 denotes the per-
eptual color error and ELab

* = 
�L*�2 + �a*�2 + �b*�2�1/2 is the
orm or magnitude of the original image color vector in the
*a*b* color space.

The quality measure taken into account in a specific
pplication depends on the nature of that application. When
mages are filtered previous to human inspection, the NCD

easure may be used due to it approaches the human per-
eption. When images are going to be the input of an auto-
atic (in any degree) system (e.g., an image retrieval sys-

r NCD, MAE, and PSNR and the filters tT-VMF and StT-VMF with confidence levels for optimum
na, and peppers images. Test �below� includes the details of the arctic hare image.

StT-VMF

NCD MAE PSNR

0.0217 2.5795 29.0024

0.0259 3.4424 27.4284

�+19.4% � �+33.5% � �−5.4% �

0.0225 2.8087 28.4851

�+3.7% � �+8.9% � �−1.8% �

0.0058 1.3503 32.6349

0.0072 2.0663 30.7119

�+24.1% � �+53% � �−5.9% �

0.0065 1.4789 31.3007

�+12.1% � �+9.5% � �−4.1% �
values fo
aboon, le

PSNR

alibration

30.4478

29.2495

�−3.9% �

30.0128

�−1.4% �

Test

33.9629

32.1541

�−5.3% �

33.1961

�−2.3% �
em), the PSNR or MAE measures may be appropriate.
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Figure 3. Representation of NCD, MAE, and PSNR figures for the arctic hare, baboon, Lena, and peppers
images. The filters used in the comparative are the VMF �dotted lines�, the FIVF �lines with squares� �see Refs.
13�, the SAMF �lines with circles� �see Refs. 24 and 25�, the AVMF �lines with triangles� �see Ref. 22�,
MAVMF �lines with inverted triangles� �see Ref. 22�, and the two filtering strategies proposed in this paper,
tT-VMF �lines with stars� and StT-VMF �lines with pluses�. �Available in color as a Supplemental Material for at

least two years from date of publication at www.imaging.org.�

32 J. Imaging Sci. Technol. 50�5�/Sep.-Oct. 2006
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hen, it is reasonable to adjust any filtering strategy by op-
imizing a specific quality measure.

The performance of the tT-VMF in terms of NCD is
hown in Fig. 1 for three test images (see Figs. 2(b)–2(d) as

Figure 3
function of the percentage of impulsive noise from 1% to a

. Imaging Sci. Technol. 50�5�/Sep.-Oct. 2006
0% and the confidence level from 60% to 97.5% (a similar
gure could be obtained for the StT-VMF). The figure
hows that the performance of the filter depends both on the
ercentage of noise and the confidence level used. The shape

tinued�.
. �Con
nd range of the three surfaces are similar and so a confi-
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ence level valid for an image may be used to filter another
mage and a similar performance could be expected.

In order to obtain an appropriate confidence level for
ny percentage of noise and image, the following two cali-
ration strategies have been considered.

The calibration of the confidence level will be obtained
rom the details of the baboon, Lena, and peppers images
see Figs. 2(b)–2(d)). These three images have in common
hat their filtering is complex because of the amount of de-
ail, edges, and rich color set. It has been assumed that the
onfidence levels obtained may have good performance for
ther images, even images of different nature. In order to
ssess the validity of this assumption, the detail of the arctic
are image (Fig. 2(a)) is filtered with the confidence levels
btained in calibration. This image is very different to all the
ther considered images (with little detail and reduced color
et).

igure 4. �a� Lena image corrupted with 20% impulsive noise. �b� Num-
er of replaced pixels �in yellow� made by tT-VMF. �c� Number of re-
laced pixels �in yellow� made by StT-VMF. �d� Image filtered using the
MF. �e� Image filtered using tT-VMF. �f� Image filtered using StT-VMF.
he percentage of replaced pixels in �b� is 31.46%, whereas it is
8.96% in �c�. �Available in color as a Supplemental Material for at least

wo years from date of publication at www.imaging.org.�
As a first step, let us assume there is no information of p

34
he percentage of impulsive noise and that we want to opti-
ize the NCD merit figure (the same procedure will be

pplied for the MAE and PSNR). In this case, the NCD
alues for all noise percentages are summed for each confi-
ence level and image. Let NCDp

l �I� denote the NCD value
or the output of the filter when filtering the image I con-
aminated with p% of impulsive noise using l% as the con-
dence level. Then, the values Sl =�p=0

30 NCDp
l �I� , for l

�60,62.5,65, . . . , 97.5� are calculated for the different cali-
ration images (it has been observed that values of the con-
dence level lower than 60% do not present a good perfor-
ance). A global appropriate confidence level, L, will be that

or which L=arg minl Sl. Thus, the appropriate value mini-
izes the sum of NCD values for all the considered percent-

ges of impulsive noise. The selected confidence levels for
ach image are listed in Table I. From now on this calibra-
ion strategy along with no noise percentage information
ill be denoted as calibration 1.

On the other hand, the percentage of impulsive noise of
n image can be estimated, for instance, using the techniques
roposed in Refs. 18, 24, and 25. Nonetheless, it may make
o sense to suppose a perfect estimation of the noise per-
entage. A more realistic approach is to assume the noise
ercentage is within a certain interval, which can be the case
hen an estimator is available or when the noise distribution

s bounded. Let us now assume the percentage of impulsive
oise can be estimated to be in one of the next intervals:
0%−10% �, 
10% –20% �, and 
20% –30% �. The confi-
ence levels for every image and interval may be obtained as
xplained above; (results are shown in Table II). It can be
een the confidence level is inversely proportional to the per-
entage of noise. From now on this calibration strategy
long with the noise estimation mentioned will be denoted
s calibration 2.

With any of these assumptions, an image-independent
alibration of the confidence level is represented by the mean
f the values obtained for the different images. Since the
onfidence levels included in the experimentation are taken
n 2.5% steps, the one nearest to the mean is used. The
elected confidence levels appear in Table III. In this table,
he values obtained following the same calibration proce-
ure, for MAE and PSNR, are also included.

The quality of both calibrations (without knowledge of
he percentage of impulsive noise and with vague approxi-

ation of the contaminating impulsive noise) can be as-
essed in front of the optimum performance of the tT-
MF and StT-VMF. In Table IV, mean values of the NCD,
AE, and PSNR of tT-VMF and StT-VMF, for every image

nd percentage of noise, are shown. The values between pa-
enthesis are the percentage of worsening of the calibration
espect to the optimum performance.

A series of conclusions can be extracted from Table IV.
irst, reducing the interval of uncertainty of the noise per-
entage, i.e., improving the estimate of the noise, improves
he performance of the calibration. The outcomes of calibra-
ion 2 are approximately three times nearer to the optimum

erformance than those of calibration 1. Second, tT-VMF

J. Imaging Sci. Technol. 50�5�/Sep.-Oct. 2006
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resents a better performance than StT-VMF. Also the cali-
ration for the StT-VMF seems to work worse, specially in
erms of the MAE. Finally, the confidence levels obtained in
he calibration showed a good performance for the test
mage, giving support to the assumption of image
ndependency.

XPERIMENTAL RESULTS AND DISCUSSION
he Lena, baboon, peppers, and arctic hare images were cor-

upted with impulsive noise from 1% to 30% and filtered
ith the VMF, fast impulsive vector filter (FIVF),13 switching

rithmetic mean filter (SAMF),24,25 adaptive vector median
lter (AVMF),22 modified adaptive vector median filter
MAVMF),22 and the two filtering strategies proposed in this
aper, tT-VMF and StT-VMF. Figure 3 displays the results
f each approach.

As it can be seen in Fig. 3, tT-VMF and StT-VMF
utperforms VMF. This shows the good performance of the
pproaches, above all the tT-VMF, even when filtering im-
ges of very different nature to those used in the calibration
f the confidence levels.

Besides, it can be seen that the tT-VMF outperforms in
eneral terms all the other filters in the case of the arctic hare
mage. When using the rest of the images (baboon, peppers,
nd lena, see Fig. 3) the tT-VMF outperforms the rest in
erms of PSNR, remaining competitive for the rest of the

erit figures.
In Fig. 4(a), a Lena image corrupted with impulsive

oise at 20% is presented. The image result of applying
MF (Fig. 4(d)), and the results of the application of the

T-VMF (Fig. 4(e)) and StT-VMF (Fig. 4(f)) are also pre-
ented. The images corresponding to the pixels that have
een changed by tT-VMF (Fig. 4(b)) and StT-VMF
Fig. 4(c)) are shown as well. For tT-VMF, only 31.46% of
he pixels are replaced, whereas this amount increases for
tT-VMF up to 38.96%. As it was commented in the Com-
utational Analysis section, tT-VMF and StT-VMF are

aster than the classical vector median filter if the amount of
eplaced pixels is lower than 69% and 68% respectively (see
he Computational Analysis section).

On the other hand, as it can also be seen in Figs.
(d)–4(f), the details are better preserved by tT-VMF and
tT-VMF comparing them with the VMF filter. For ex-
mple, the left eye, the lower part of the nose and some of
he hat feathers are better preserved in Figs. 4(e) and 4(f) in
omparison to Fig. 4(d).

ONCLUSIONS
n this paper, two strategies to detect impulsive noisy pixels
n color images based on statistical confidence limits have
een introduced. These strategies have been used to define
wo switching filters, tT-VMF and StT-VMF, that switch
etween the VMF and the identity operations.

A strategy to calibrate the confidence level used by the
roposed filters has been presented. Results show that this
alibration is improved with the estimation of the noise level
f a corrupted image. The validity of this calibration method

as been tested using an image which is different to those

. Imaging Sci. Technol. 50�5�/Sep.-Oct. 2006
sed in the calibration process, showing that the value of the
onfidence levels chosen are appropriate.

Furthermore, the performance presented by the tT-
MF and the StT-VMF is better than the classical VMF,

ince they are able to better preserve the uncorrupted image
tructures. Both proposed filters have been compared with
ecently introduced techniques for impulsive noise removal
nd the experiments show (Fig. 3) that the tT-VMF pro-
ides, in general, the best results.

Also, it has been investigated that, in most of the cases,
he tT-VMF and the StT-VMF are faster than the classical
MF since the strategies to detect impulsive noisy pixels are

ast and the VMF operation is only applied for those pixels
elected by the tests.
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