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bstract. Support vector regression is applied to the problem of
stimating the chromaticity of the light illuminating a scene from a
olor histogram of an image of the scene. Illumination estimation is
undamental to white balancing digital color images and to under-
tanding human color constancy. Under controlled experimental
onditions, the support vector method is shown to perform well. Its
erformance is compared to other published methods including neu-
al network color constancy, color by correlation, and shades of
ray. © 2006 Society for Imaging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.�2006�50:4�341��

NTRODUCTION
ccurate estimation of the spectral properties of the light

lluminating an imaged scene by automatic means is an im-
ortant problem. It could help explain human color con-
tancy and it would be useful for automatic white balancing
n digital cameras. Here we will focus on machine based
olor constancy. A color imaging system will be considered
o be color constant to the degree to which it is able to
ccount for changes in the color of the scene illumination
nd thereby maintain a stable representation of object colors.

More precisely we can formulate color constancy as:
iven a digital image acquired under unknown illumination

onditions, predict what the image would have been if the
ame scene had been illuminated instead by some chosen
nown “canonical” illuminant. For example, the canonical

lluminant might be specified as equal energy white. Color
onstancy can be divided into two subproblems: (1) estimate
he color of the illumination and (2) adjust the image colors
ased on the difference between the estimated and canonical

lluminants. The second problem is often addressed by the
on Kries coefficient rule or an equivalent diagonal transfor-
ation model.1 Because it is very under constrained, the

rst problem, illumination estimation, is the more difficult
f the two. We propose a new method based on support
ector regression to solve it.

Many papers have been published on illumination esti-
ation. Some aim to recover the full spectrum of the

llumination,2,3 while others aim to recover either a two-
arameter (e.g., xy or rg) estimate of its chromaticity4,5 or a

Presented in part at the IS&T/SID 12th Color Imaging Conference,
cottsdale, AZ, November 2004.

eceived Feb. 1, 2005; accepted for publication Dec. 20, 2005.
062-3701/2006/50�4�/341/8/$20.00.
hree-parameter description of its color (e.g., XYZ or
GB).6,7 The method we propose here is similar to previous
ork by Funt et al.4,8 and Finlayson et al.5 in that it aims to

ecover the chromaticity of the scene illumination based on
he statistical properties of binarized color or chromaticity
istograms; however, the proposed method replaces the neu-
al networks and Bayesian statistics of these previous meth-
ds with support vector machine regression.

Vapnik’s9,10 support vector machine theory has been ap-
lied successfully to a wide variety of classification
roblems.11–14 Support vector machines have been extended
s well to regression problems including financial market
orecasts, travel time prediction, power consumption estima-
ion, and highway traffic flow prediction.15–17

Depending on the problem domain, support vector ma-
hine based regression (SVR) can be superior to traditional
tatistical methods in many ways. SVR enables inclusion of a

inimization criterion into the regression, training can be
asier, and it achieves a global rather than local optimum. It
lso facilitates explicit control of the tradeoff between regres-
ion complexity and error. We show how the illumination
stimation problem can be formulated in SVR terms and
nd that, overall, SVR performs well.

UPPORT VECTOR REGRESSION
VR estimates a continuous valued function that encodes
he fundamental interrelation between a given input and its
orresponding output in the training data. This function
hen can be used to predict outputs for given inputs that
ere not included in the training set. This is similar to a
eural network. However, a neural network’s solution is
ased on empirical risk minimization. In contrast, SVR in-
roduces structural risk minimization into the regression
nd thereby achieves a global optimization, while a neural
etwork achieves only a local minimum.18

Most classical regression algorithms require knowledge
f the expected probability distribution of the data. Unfor-
unately, in many cases, this distribution is not known accu-
ately. Furthermore, many problems involve uncertainties
uch that it is insufficient to base a decision on the event
robability alone. Consequently, it is important to take into
ccount the potential cost of errors in the approximation.
VR minimizes the risk without prior knowledge of the
robabilities.

Smola and Schölkopf 9 provide an introduction to SVR.
341
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ome simple intuition about it can be gained by comparison
o least-squares regression in fitting a line in two dimen-
ions. Least-squares regression minimizes the sum of squares
istance between the data points and the line. SVR maxi-
izes the space containing the data points subject to mini-
ization of the distance of the points to the resulting line.
he width of the space is called the “margin.” Points within
n “insensitivity” region are ignored. The technique repre-
ents the region defined by the margin by a subset of the
nitial data points. These data points are called the support
ectors. SVR is extended to the fitting of a nonlinear func-
ion by employing the kernel trick,9 which allows the origi-
al nonlinear problem to be reformulated in terms of a ker-
el function. The reformulated problem is linear and can be
olved using linear SVR. We used the Chang and Lin19 SVR
mplementation.

An intuitive geometric interpretation of SVR in terms of
istances between the convex hulls of the training sets is
rovided by Bi and Bennett.20 Figure 1 shows the basic idea

or the simplest case of a linear fit with hard margins. Copies
f the original data are made and shifted vertically, one up,
ne down, by equal amounts. The two sets of data are then
onsidered to be two groups to be classified. The regression
ine is determined as the line that best separates the two
roups into two classes. The best separation is found by
onsidering the convex hulls of the two sets and the loca-
ions where the hulls come closest to one another. The per-
endicular bisector of the line between the two closest points
rovides the optimum separation between the classes, and
lso is the regression line to the original data.

VR FOR ILLUMINATION CHROMATICITY
STIMATION

n this section, we discuss how the SVR technique can be
pplied to analyze the relationship between the image of a
cene and the chromaticity of the illumination chromaticity
ncident upon it. As introduced in the neural network

ethod,8 we will first use binarized two-dimensional (2D)
hromaticity space histograms to represent the input image
ata. Later, we extend these histograms to three dimensional
3D) to include intensity as well as chromaticity. Chroma-
icity histograms have the potential advantage that they dis-

igure 1. Geometrical interpretation of SVR �after Figs. 1 and 2 of Bi and
ennett �see Ref. 20��. The left panel shows the input data �squares� as a

unction of the multidimensional feature vector v. The regression line is
ound by making two copies of the data and shifting them equal amounts
p and down relative to the original data. The regression �dotted� line is
ound as the bisector of the line �arrow� between the two closest points on
he convex hulls of the shifted data sets. The right panel shows the regres-
ion line from the middle panel superimposed on the original data.
ard intensity shading, which varies with the surface geom- c

42
try and viewing direction, but is most likely unrelated to
he illumination’s spectral properties.

The training set consists of histograms of many images
long with the measured rg chromaticities [r= / �R+G+B�
nd g=G / �R+G+B�] of the corresponding scene illumi-
ants. Each image’s binarized chromaticity histogram forms
SVR binary input vector in which each component corre-

ponds to a histogram bin. A “1” or “0” indicates that the
resence or absence of the corresponding chromaticity in the

nput image. Partitioning the chromaticity space equally
long each component into N equal parts yields N�N bins.
he resulting SVR binary input vector is of size N2. We
xperimented with various alternative choices for N and
ventually settled on N=50. Generally speaking, for N�50,
he bins are too large so the color space is quantized too
oarsely, with the result that the illumination estimation er-
or increases. For N�50, the training time increases, but
ithout a corresponding improvement in overall perfor-
ance. All the results reported below are based on N=50, so

he chromaticity step size is 0.02. With 0� r, g�1 only half
hese bins can ever be filled, so a sparse matrix representa-
ion was used. Support vector regression then finds the
unction mapping from image histograms to illuminant
hromaticities.

Since some other illumination estimation methods7,21

gamut mapping and color by correlation) benefit from the
nclusion of intensity data, it is natural to consider it in the
VR case as well. The neural network method has thus far
ot been applied to 3D data (chromaticity plus intensity)
ecause the number of input nodes becomes too large and
he space too sparse for successful training, given the rela-
ively small size of the available training sets. Support vector
egression handles sparse data reasonably well, so we experi-

ented with 3D binarized histograms in the training set.
ntensity, defined as L=R+G+B, becomes the third histo-
ram dimension along with the r and g chromaticity. We
uantized L into 25 equal steps, so the 3D histograms consist
f 62 500 �25�50�50� bins.

ISTOGRAM CONSTRUCTION
o increase the reliability of the histograms, the images are
reprocessed to reduce the effects of noise and pixels strad-
ling color boundaries. We have chosen to follow the region-
rowing segmentation approach described by Barnard
t al.21 This also facilitates comparison of the SVR method
o the other color constancy methods Barnard et al. tested.
he region-growing method is good because the borders it
nds are perfectly thin and connected. Membership in a
egion is based on chromaticity and intensity. A region is
nly considered to be meaningful if it has a significant area.
or the sake of easy comparison, we used the same thresh-
lds as in Ref. 21, namely, to be in the same region, the r and
chromaticities at a pixel must not differ from their respec-

ive averages for the region containing the pixel by more
han 0.5%, or its intensity by 10%. Also, regions that result
n an area of fewer than five pixels are discarded. The RGBs
f all pixels within each separate region are then averaged,

onverted to L, r, g and histogrammed.

J. Imaging Sci. Technol. 50�4�/Jul.-Aug. 2006
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-FOLD CROSS VALIDATION FOR SVR PARAMETERS
he performance of SVR is known to depend on its insen-

itivity parameter �, regularization parameter C, the choice
f kernel function and associated parameters. Different ker-
el functions work better on some problem domains than
thers. Four of the commonly used kernel functions are

isted in Table I. From a practical and empirical standpoint,
he bigger the insensitivity parameter �, the fewer the sup-
ort vectors, and the higher the error in estimating the illu-
ination. After much experimentation with different � val-

es, we fixed it to be 0.0001.
In the case of SVR for illumination estimation, the best

hoice of kernel function and its parameters may depend on
he training set. We eliminated the Sigmoid kernel function
rom further consideration since it is known to be invalid for
ome values of the parameter r (Ref. 10) and focus instead
n the RBF and polynomial kernel functions. This leaves the
hoice of either the RBF or polynomial kernel functions and
or each of these kernels their parameters: penalty C and
idth � for the RBF kernel function; or penalty C and ex-
onential degree d for polynomial kernel function. The pa-
ameters � and d control the corresponding kernel func-
ion’s shape, while C determines the penalty cost of
stimation errors. The kernel choice and parameter settings
re made during the training phase by k-fold cross valida-
ion, which involves running the training using several dif-
erent parameter choices and then selecting the choice that
orks best for that particular training set. This is described

n more detail below.
For the RBF kernel function, we allow the penalty pa-

ameter to be chosen from four different values C
�0.01,0.1,1 ,10� and the width value from �
�0.025,0.05,0.1,0.2�. For the polynomial kernel function,

e used the same four penalty candidates and selected the
est degree d from the set �2 3 4 5�. Thus for each training
ata set, 32 test cases (two kernel choices with 16 pairs of
arameter settings each) are tested to find the best choice.

Among the algorithms generally used to find the best
arameters for support vector regression, we chose k-fold
ross validation because it does not depend on a priori
nowledge or user expertise and it handles the possibility of
utliers in the training data. The disadvantage of the k-fold
ethod is that it is computationally intensive.

In k-fold cross validation, the whole training set is di-

Table I. Admissible kernel functions.

ame Definition Parameters

inear K�xi , xj�= �xi�Txj -

olynomial K�xi , xj�= ��xi�Txj + 1�d d

adial basis function �RBF� K�xi , xj�= e−�xi−xj
2 �

igmoida K�xi , xj�= tanh��xi�Txj + r� r

For some 	 values, the kernel function is invalid.
ided evenly into k distinct subsets. Every kernel function W

. Imaging Sci. Technol. 50�4�/Jul.-Aug. 2006
nd each of its related parameters forms a candidate param-
ter setting. For any candidate parameter setting, we conduct
he same process k times during which �k−1� of the subsets
re used to form a training set and the remaining subset is
aken as the test set. The root-mean-square (rms) chroma-
icity distance errors from k trials are averaged to represent
he error for that candidate parameter setting. The param-
ter setting leading to the minimum error is then chosen and
he final SVR training is done using the entire training set
ased on the chosen parameter setting.

XPERIMENTS
e tested the proposed SVR-based illumination estimation
ethod on both synthetic and real images. The implemen-

ation is based on the SVR implementation by Chang and
in.19 To this we added a MATLAB interface that reads data
les representing the image histograms and associated illu-
ination chromaticities. Each row in the training data file

epresents one training image and consists of two parts: the
rue illumination chromaticity followed by the bin number
or each nonzero histogram bin.

Barnard et al.21,22 reported tests of several illumination
stimation methods, including neural-network based and
olor by correlation. We have tried to follow their experi-
ental procedure as closely as possible and used the same

mage data so that SVR can be compared fairly to these
ther methods. In addition, we compare SVR to the new
shades of gray” (SoG) technique23 based on the Minkowski
amily of norms, Max RGB, and Grayworld.

RROR MEASURES
everal different error measures are used to evaluate perfor-
ance. The first is the distance between the actual �ra ,ga�

nd estimated chromaticity of the illuminant �re ,ge� as21–23

Ei−dist = ��ra − re�2 + �ga − ge�2. �1�

or the distance error, we also compute the rms, mean, and
edian errors over a set of N test images. It has been argued

hat the median is the most appropriate metric for evaluat-
ng color constancy.24 The standard rms is defined as

rmsdist =
1

N
��

i=1

N

Ei−dist
2 . �2�

The second error measure is the angular error between
he chromaticity three vectors when the b-chromaticity com-
onent is included. Given r and g , b=l− r−g. Thus, we can
iew the real illumination and estimated illumination as two
r ,g ,b� vectors in 3D chromaticity space and calculate the
ngle between them. The angular error represented in
egrees is

Ei−angular = COS−1	 �ra,ga,ba��re,ge,be�

�ra
2 + ga

2 + ba
2 � �re

2 + ge
2 + be

2
 �
2�

360
.

�3�
e also compute the rms, mean, and median angular error

343
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ver a set of images.
Even if the median angular error for one method is less

han for another, the difference may not be statistically sig-
ificant. To evaluate whether a difference is significant, we
se the Wilcoxon signed-rank test.24 In the following experi-
ents, the error rate for accepting or rejecting null hypoth-

sis is always set to 0.01.

YNTHETIC DATA TRAINING, REAL-DATA TESTING
he first tests are based on training with synthesized image
ata constructed using the 102 illuminant spectra and 1995
eflectances described by Barnard22 along with the sensor
ensitivity functions of the calibrated SONY DXC-930
CD.25 Testing is based on Barnard’s21 321 real images taken
ith the SONY DXC-930 of 30 scenes under 11 different

ight sources. These images are linear (a gamma of 1.0) with
espect to scene intensity. These data are available on-line
rom the Simon Fraser University Computational Vision
aboratory color image database.26

The number of distinct synthesized training “scenes”
as varied from 8 to 1024 in order to study the effect of

raining size on performance. Each synthetic scene was “lit”
y each of the 102 illuminants in turn to create 102 images
f each scene. The synthesized camera RGB values, their
orresponding chromaticities, and the illuminant chromatic-
ty are mapped to 2D and 3D binary vectors for input to
VR. Table II shows that the parameters vary with the train-
ng set as expected. Although the basis function type was
llowed to vary during the cross validation, the RBF was
ventually selected in all cases.

To test on real data, Barnard’s calibrated 321 SONY im-
ges were first segmented and histogrammed according to
he “generic preprocessing” strategy.21 Illumination estima-
ion by SVR compares favorably to the methods Barnard
ested21 and Finlayson reported24 as shown in Table III. The
ms and median errors for Color By Correlation with Binary
istogram (CC01), Color By Correlation with Maximum

ikelihood (CCMAP), Color By Correlation with Mean
ikelihood (CCMMSE), Color By Correlation (CCMLM),

he Neural Network (NN), Database Grayworld (DB),
amut Mapping (GM) are from Table II (p. 992 of Ref. 21)

nd Table 2 of Ref. 24, respectively. Figure 2 shows how the
VR performance initially improves as the size of the syn-
hetic training set increases.

EAL IMAGE DATA TRAINING, REAL-DATA TESTING
raining on synthetic image data is convenient because large
raining sets can be calculated from existing databases of
lluminant and reflectance spectra. The disadvantage of syn-
hetic data is that it requires an accurate model of the cam-
ra and imaging process. On the other hand, creating a
raining set of real images is difficult because for each image
he scene illumination must be measured.

Our testing with real data is based on three image data
ets. To begin, we train and test on Barnard’s21 set of 321
ONY images and find that training with real data is in fact
etter than training with synthetic data. We continue with

4
ests on Cardei’s set of 900 images from assorted cameras.

44
inally, we train using the 11 346 image set that Ciurea
t al.27 built using a digital video camera. This very large,
eal-data training set improves overall performance.

XPERIMENTS WITH 321 SONY REAL IMAGES
he training images are preprocessed, segmented and histo-
rammed in the same way as described above for the test
mages. The SVR kernel and parameters were selected based
n the “1024” row of Table II; namely, for 3D, the radial
asis function kernel with shape parameter �=0.2 and pen-
lty value C=1, while in 2D, these two parameters are set to
.05 and 0.01, respectively.

Since it would be biased to train and test on the same
et of images, we evaluate the illumination error using leave-
ne-out cross-validation procedure.28 In the leave-one-out
rocedure, one image is selected for testing and the remain-

ng 320 images are used for training. This is repeated 321
imes, leaving a different image out of the training set each
ime, and the rms and median of the 321 resulting illumi-
ation estimation errors are calculated. The errors are sig-
ificantly lower than those obtained with synthetic training
ata. The results and their comparison to the SoG,23 Max
GB,29 and Grayworld (GW)30 are listed in Table IV. Table

tells us that 3D SVR has the best performance.

able II. Results of k-fold kernel and parameter selection as a function of the histo-
ram type and the number of training set images.

Training set
size/102 Histogram dimension Kernel selected C �

8 2D RBF 0.01 0.2

3D RBF 0.01 0.2

16 2D RBF 1 0.1

3D RBF 1 0.05

32 2D RBF 0.1 0.05

3D RBF 0.1 0.025

64 2D RBF 1 0.05

3D RBF 0.1 0.1

128 2D RBF 0.01 0.025

3D RBF 1 0.2

256 2D RBF 0.01 0.1

3D RBF 0.1 0.05

512 2D RBF 0.01 0.1

3D RBF 10 0.025

1024 2D RBF 0.01 0.05

3D RBF 1 0.2
J. Imaging Sci. Technol. 50�4�/Jul.-Aug. 2006
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lthough the median angular errors 2D SVR and SoG differ
lightly, the difference is not statistically significant.

XPERIMENTS WITH UNCALIBRATED 900 REAL
MAGES

e next consider Cardei’s4 set of 900 uncalibrated images
aken using a variety of different digital cameras from
odak, Olympus, HP, Fuji Polaroid, PDC, Canon, Ricoh,
nd Toshiba. A gray card was placed in each scene and its
GB value is used as the measure of the scene illumination.
he SVR was based on a polynomial kernel function of de-
ree 3 and 0.1 penalty. Its performance is also compared to
he performance reported by Cardei4 for Color by Correla-
ion, the Neural Network, Shades of Grey, Max RGB, and

able III. Comparison of competing illumination estimation methods. All methods are
rained on synthetic images constructed from the same reflectance and illuminant spec-
ra and then tested on the same SONY DXC930 �Ref. 21� camera images with identical
reprocessing. Data marked by “*” are extracted from Ref. 21 �Table II, p. 992� while
he data marked by “**” are extracted from Ref. 24 �Table 2, p. 79�.

Method RMS distance RMS angle Median angle

2D SVR 0.080 10.1 4.86

3D SVR 0.067 8.1 3.17

CC01 0.081 10. 9* -

CCMAP 0.071 9 . 9* 2 . 93**

CCMMSE 0.072 9 . 9* -

CCMLM 0.072 9 . 9* -

Neural network 0.070 9 . 5* -

DB - 12 . 25** 6 . 58**

GM - 5 . 46** 2 . 92**

igure 2. Median angular error in illumination chromaticity as a function
f increasing training set size.
rayworld.

. Imaging Sci. Technol. 50�4�/Jul.-Aug. 2006
Since a training set of 900 histograms is not very large,
e used the histogram resampling strategy proposed by
ardei4 in the context of neural network training to increase

he training set size. Cardei et al. observed that each a his-
ogram in the original training set could be used to generate

any new training histograms by random sampling of its
onzero bins. Each sampling yields a new histogram of an
image” with the same illuminant chromaticity as the origi-
al. The number of possible sub-samplings is large, thereby
aking it possible to build a large training set based on real

ata extracted from a smaller number of images.
As before, we conduct leave-one-out tests. Hence, when

e select an image for testing, we create a training set of
0 788 histograms from the remaining 899 real images and
hen measure the error in the SVR illuminant estimate for
hat one image. This process is repeated 900 times. The rms
nd median of the 900 errors is tabulated in Table VI. Table
II summarizes the Wilcoxon test among several of the al-
orithms. It also shows that on this training and test set,
esampling the training set does not significantly change 3D
VRs performance; however, on the dataset discussed below,
esampling does make a difference.

able IV. Comparison of 2D and 3D SVR performance to SoG, Max RGB, Grayworld
erformance. The results involve real-data training and testing on the 321 SONY im-
ges. Errors are based on leave-one-out cross-validation evaluation and are reported in
erms of both the rms angular chromaticity and distance error measures.

ethod

SVR
dimension/
norm power

Maximum
angle

rms
angle

Median
angle

Maximum
Distance
��102�

rms
distance
��102�

Media
distanc
��10

VR 2D 22.99 10.06 4.65 16.41 7.5 3.41

3D 24.66 8.069 2.17 16.03 6.3 3.07

oG 6 28.70 9.027 3.97 19.77 6.21 2.83

ax RGB 36.24 12.28 6.44 25.01 8.25 4.46

W 37.31 13.58 7.04 35.38 11.12 5.68

able V. Comparison of the different algorithms via the Wilcoxon signed-rank test. A
+” means the algorithm listed in the corresponding the row is better than the one in
orresponding column; “−” indicates the opposite; an “=” indicates that the perfor-
ance of the respective algorithms is statistically equivalent.

2D SVR 3D SVR SoG �norm power= 6� Max RGB GW

D SVR − = + +

D SVR + + + +

oG �norm power= 6� = − + +

ax RGB − − − −

W − − − +
345
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XPERIMENTS WITH LARGE REAL IMAGE SET
ur final test with real data is based on the 11 346 real

mages extracted from over 2 h of digital video acquired
ith a SONY VX-2000. Ciurea et al.27 built the database by
artially automating the measurement of the illumination’s
GB. Their setup consisted of a matte gray ball connected by
rod attached to the camera. In this way, the gray ball was
ade to appear at a fixed location at the edge of each video

rame. The ball’s pixels were thus easy to locate in each
rame, and hence the chromaticity of the dominant illumi-
ation hitting the ball was easily measured as the average
hromaticity of the pixels located in the ball’s brightest re-
ion. The images include a wide variety of indoor and out-
oor scenes including many with people in them.

Based on some initial experimentation, the RBF kernel
unction was chosen with 0.1 as the penalty parameter and
.025 as the width parameter. All subsequent tests of SVR on
he Ciurea database are based on these settings.

Table VII. Comparison of the performance based on

2D
SVR

3D
SVR �

D SVR −

D SVR +

D SVR �with resampling� + =

oG �norm power= 6� − −

AX RGB − −

ilcoxon signed-rank GW − −

able VI. Comparison of the performance of SVR to that of Color by Correlation, the Neural Netw
ncalibrated images. The entries for C-by-C and the NN are from Ref. 4 �Table 7, p. 2385�.

ethod
Dimension/norm

power
Maximum

angle
rms

angle

SVR �no
resampling�

2D 20.43 4.47

3D 17.46 3.94

SVR �with
resampling�

3D 10.57 3.91

C-by-C 2D - -

NN 2D - -

SoG 6 19.71 4.99

Max RGB 27.16 6.39

GW 31.44 6.65
46
The size of the database means that leave-one-out vali-
ation is not feasible, although leave-N-out for a reasonable
hoice of N would be possible. In any case, it would not
ecessarily be a fair test because of the inherent regularities

n the database. Since the database was constructed from a
hree-frame-per-second sampling of video clips, neighboring
mages in the database tend to be related. Hence, to ensure
hat SVR that the training and testing sets would be truly
istinct, we partitioned the database into two sets in two
ifferent ways.

The first partitioning is based on geographical location.
e take as the test set the 541 indoor and outdoor images

aken exclusively in Scottsdale, Arizona. The training set be-
omes the 10 805 images in the remainder of the database,
one of which is from Scottsdale. We call these datasets
Scottsdale” and “All-but-Scottsdale.” The estimation errors
re listed in Table VIII. The Wilcoxon signed-rank results are
iven in Table IX.

xon signed-rank test. Labeling +, −, = as in Table V.

VR
mpling�

SoG
�norm power= 6�

MAX
RGB GW

+ + +

+ + +

+ + +

= +

= +

− −

Max RGB, Grayworld. The tests are based on leave-one-out cross-validation on a database of 900

an
le

Maximum
distance
��102�

Mean
distance
��102�

rms
distance
��102�

Median
distance
��102�

0 18.40 2.40 3.27 1.74

2 15.42 2.09 2.94 1.40

7 6.42 2.03 2.72 1.55

- 2.92 3.89 -

- 2.26 2.76 -

2 15.96 2.96 3.80 2.19

6 22.79 3.36 4.75 2.17

4 29.99 4.12 5.26 3.17
the Wilco

3D S
with resa

−

=

−

−

−

ork, SoG,

Medi
ang

2.4

2.0

2.0

-

-

3.0

2.9

4.3
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J

The second partitioning divides the entire database into
wo parts of similar size. Subset A includes 5343 images, and
ubset B includes 6003. Subset A contains images from

able VIII. SVR �3D� illumination estimation errors for different training and test sets
ith comparisons to the SoG with norm power 6, Max RGB, and Grayworld methods.

ethod

Training
and test

sets Angular degrees Distance ��102�

Maximum rms Median Maximum rms Median

D SVR Train:
all-but-

Scottsdale

11.6 3.43 2.49 7.05 2.26 1.67

D SVR with
esampling

4.8 1.74 1.32 3.36 1.24 0.85

oG

Test:
Scottsdale

18.31 4.25 2.75 13.08 3.04 1.92

ax RGB 11.77 4.89 3.35 8.06 2.98 2.09

W 24.96 6.78 4.47 25.05 5.10 3.26

D SVR
Train:

subset B

14.9 3.7 1.32 12.24 2.63 0.97

D SVR with
esampling

16.01 2.40 0.59 10.70 1.65 0.45

oG

Test:
subset A

35.87 7.82 4.89 27.99 5.70 3.44

ax RGB 27.42 10.63 6.41 21.72 7.65 4.48

W 43.84 8.77 5.08 39.69 6.89 3.81

D SVR
Train:

subset A

16.8 3.6 2.87 15.00 2.61 2.06

D SVR with
esampling

11.7 1.41 1.22 8.44 1.03 0.08

oG

Test:
subset B

26.97 8.33 6.71 27.68 6.14 4.85

ax RGB 26.76 9.47 5.36 21.55 7.01 3.90

W 33.12 9.24 7.62 32.41 7.28 5.68

able IX. Comparison of the algorithms based on the Wilcoxon signed-rank test on
ngular error. SVR training set is All-but-Scottsdale. Test set for all methods is Scottsdale
ataset. Labeling +, −, = as in Table V.

ethod 3D SVR
3D SVR

resampling SoG �norm power= 6�
Max
RGB GW

D SVR − = + +

D SVR resampling + + + +

oG �norm power= 6� = − + +

ax
GB

− − − +

W − − − −
pache Trail, Burnaby Mountain, Camelback Mountain, r

. Imaging Sci. Technol. 50�4�/Jul.-Aug. 2006
IC 2002 and Deer Lake. Subset B contains images from
ifferent locations: False Creek, Granville Island Market, Ma-
ine, Metrotown shopping center, Scottsdale, Simon Fraser
niversity, and Whiteclyff Park. We then used A for training

nd B testing and vice versa. The results are again listed in
able VIII. Tables X gives the Wilcoxon sign results for this
ase.

The histogram resampling strategy is also use here to
xpand the training dataset. The dataset excluding the
cottsdale images was increased to 162 075 histograms,
ataset A to 154 462 and dataset B to 162 081. The corre-
ponding test results are listed in Table VIII. Table XI in-
ludes the assessment through the Wilcoxon test. All of these

ilcoxon tests show that resampling strategy helps to im-
rove the overall performance on this dataset.

ONCLUSION
any previous methods of estimating the chromaticity of

he scene illumination have been based in one way or an-
ther on statistics of the RGB colors arising in an image,

ndependent of their spatial location or frequency of occur-
ence in the image. Support vector regression is a relatively
ew tool developed primarily for machine learning that can
e applied in a similar way. We have tried it here, with good

able XI. Comparison of the algorithms based on the Wilcoxon signed-rank test on
ngular error. SVR training set is subset B. Test set for all methods is subset A. Labeling
, −, = as in Table V.

ethod 3D SVR
3D SVR

resampling SoG �norm power= 6�
Max
RGB GW

D SVR − + + +

D SVR resampling + + + +

oG �norm power= 6� − − − +

ax
GB

− − + +

W − − − −

able X. Comparison of the algorithms based on the Wilcoxon signed-rank test on
ngular error. SVR training set is subset A. Test set for all methods is subset B. Labeling
, −, = as in Table V.

est set = Subset B 3D SVR
3D SVR

resampling SoG �norm power = 6�
Max
RGB GW

D SVR − = + +

D SVR resampling + + + +

oG �norm power= 6� − − + =

ax
GB

− − − −

W − − = +
esults, to the problem of learning the association between
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olor histograms and illumination chromaticity. Under al-
ost the same experimentation conditions as those used by

arnard,21,22 tests of the Shades-of-Gray, Neural-Network,
olor-By-Correlation, Max RGB, and Grayworld methods,

how that SVR performance generally is comparable to or
etter than these other methods. Using Ciurea’s27 large im-
ge database, SVR performance is shown, furthermore, to
mprove as the training set size is increased.
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