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Abstract. Support vector regression is applied to the problem of
estimating the chromaticity of the light illuminating a scene from a
color histogram of an image of the scene. lllumination estimation is
fundamental to white balancing digital color images and to under-
standing human color constancy. Under controlled experimental
conditions, the support vector method is shown to perform well. Its
performance is compared to other published methods including neu-
ral network color constancy, color by correlation, and shades of
gray. © 2006 Society for Imaging Science and Technology.
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INTRODUCTION

Accurate estimation of the spectral properties of the light
illuminating an imaged scene by automatic means is an im-
portant problem. It could help explain human color con-
stancy and it would be useful for automatic white balancing
in digital cameras. Here we will focus on machine based
color constancy. A color imaging system will be considered
to be color constant to the degree to which it is able to
account for changes in the color of the scene illumination
and thereby maintain a stable representation of object colors.

More precisely we can formulate color constancy as:
Given a digital image acquired under unknown illumination
conditions, predict what the image would have been if the
same scene had been illuminated instead by some chosen
known “canonical” illuminant. For example, the canonical
illuminant might be specified as equal energy white. Color
constancy can be divided into two subproblems: (1) estimate
the color of the illumination and (2) adjust the image colors
based on the difference between the estimated and canonical
illuminants. The second problem is often addressed by the
von Kries coefficient rule or an equivalent diagonal transfor-
mation model." Because it is very under constrained, the
first problem, illumination estimation, is the more difficult
of the two. We propose a new method based on support
vector regression to solve it.

Many papers have been published on illumination esti-
mation. Some aim to recover the full spectrum of the
illumination,™ while others aim to recover either a two-
parameter (e.g., xy or rg) estimate of its chromaticity® or a
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three-parameter description of its color (e.g., XYZ or
RGB).*” The method we propose here is similar to previous
work by Funt et al.*® and Finlayson et al.” in that it aims to
recover the chromaticity of the scene illumination based on
the statistical properties of binarized color or chromaticity
histograms; however, the proposed method replaces the neu-
ral networks and Bayesian statistics of these previous meth-
ods with support vector machine regression.

Vapnik’s”'? support vector machine theory has been ap-
plied successfully to a wide variety of classification
problems."™ Support vector machines have been extended
as well to regression problems including financial market
forecasts, travel time prediction, power consumption estima-
tion, and highway traffic flow prediction."”™"

Depending on the problem domain, support vector ma-
chine based regression (SVR) can be superior to traditional
statistical methods in many ways. SVR enables inclusion of a
minimization criterion into the regression, training can be
easier, and it achieves a global rather than local optimum. It
also facilitates explicit control of the tradeoff between regres-
sion complexity and error. We show how the illumination
estimation problem can be formulated in SVR terms and
find that, overall, SVR performs well.

SUPPORT VECTOR REGRESSION
SVR estimates a continuous valued function that encodes
the fundamental interrelation between a given input and its
corresponding output in the training data. This function
then can be used to predict outputs for given inputs that
were not included in the training set. This is similar to a
neural network. However, a neural network’s solution is
based on empirical risk minimization. In contrast, SVR in-
troduces structural risk minimization into the regression
and thereby achieves a global optimization, while a neural
network achieves only a local minimum.'®

Most classical regression algorithms require knowledge
of the expected probability distribution of the data. Unfor-
tunately, in many cases, this distribution is not known accu-
rately. Furthermore, many problems involve uncertainties
such that it is insufficient to base a decision on the event
probability alone. Consequently, it is important to take into
account the potential cost of errors in the approximation.
SVR minimizes the risk without prior knowledge of the
probabilities.

Smola and Schélkopf” provide an introduction to SVR.
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Figure 1. Geometrical inferprefation of SVR [after Figs. 1 and 2 of Bi and
Bennett (see Ref. 20)]. The left panel shows the input data (squares) as a
function of the multidimensional feature vector v. The regression line is
found by making two copies of the data and shifting them equal amounts
up and down relative fo the original data. The regression (dotted) line is
found as the bisector of the line (arrow) between the two closest points on
the convex hulls of the shifted data sets. The right panel shows the regres-
sion line from the middle panel superimposed on the original data.

Some simple intuition about it can be gained by comparison
to least-squares regression in fitting a line in two dimen-
sions. Least-squares regression minimizes the sum of squares
distance between the data points and the line. SVR maxi-
mizes the space containing the data points subject to mini-
mization of the distance of the points to the resulting line.
The width of the space is called the “margin.” Points within
an “insensitivity” region are ignored. The technique repre-
sents the region defined by the margin by a subset of the
initial data points. These data points are called the support
vectors. SVR is extended to the fitting of a nonlinear func-
tion by employing the kernel trick,” which allows the origi-
nal nonlinear problem to be reformulated in terms of a ker-
nel function. The reformulated problem is linear and can be
solved using linear SVR. We used the Chang and Lin'’ SVR
implementation.

An intuitive geometric interpretation of SVR in terms of
distances between the convex hulls of the training sets is
provided by Bi and Bennett.”’ Figure 1 shows the basic idea
for the simplest case of a linear fit with hard margins. Copies
of the original data are made and shifted vertically, one up,
one down, by equal amounts. The two sets of data are then
considered to be two groups to be classified. The regression
line is determined as the line that best separates the two
groups into two classes. The best separation is found by
considering the convex hulls of the two sets and the loca-
tions where the hulls come closest to one another. The per-
pendicular bisector of the line between the two closest points
provides the optimum separation between the classes, and
also is the regression line to the original data.

SVR FOR ILLUMINATION CHROMATICITY
ESTIMATION

In this section, we discuss how the SVR technique can be
applied to analyze the relationship between the image of a
scene and the chromaticity of the illumination chromaticity
incident upon it. As introduced in the neural network
method,® we will first use binarized two-dimensional (2D)
chromaticity space histograms to represent the input image
data. Later, we extend these histograms to three dimensional
(3D) to include intensity as well as chromaticity. Chroma-
ticity histograms have the potential advantage that they dis-
card intensity shading, which varies with the surface geom-
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etry and viewing direction, but is most likely unrelated to
the illumination’s spectral properties.

The training set consists of histograms of many images
along with the measured rg chromaticities [r=/(R+G+B)
and ¢=G/(R+G+B)] of the corresponding scene illumi-
nants. Each image’s binarized chromaticity histogram forms
a SVR binary input vector in which each component corre-
sponds to a histogram bin. A “1” or “0” indicates that the
presence or absence of the corresponding chromaticity in the
input image. Partitioning the chromaticity space equally
along each component into N equal parts yields N X N bins.
The resulting SVR binary input vector is of size N>. We
experimented with various alternative choices for N and
eventually settled on N=50. Generally speaking, for N <50,
the bins are too large so the color space is quantized too
coarsely, with the result that the illumination estimation er-
ror increases. For N>50, the training time increases, but
without a corresponding improvement in overall perfor-
mance. All the results reported below are based on N=50, so
the chromaticity step size is 0.02. With 0=r, g=1 only half
these bins can ever be filled, so a sparse matrix representa-
tion was used. Support vector regression then finds the
function mapping from image histograms to illuminant
chromaticities.

Since some other illumination estimation methods
(gamut mapping and color by correlation) benefit from the
inclusion of intensity data, it is natural to consider it in the
SVR case as well. The neural network method has thus far
not been applied to 3D data (chromaticity plus intensity)
because the number of input nodes becomes too large and
the space too sparse for successful training, given the rela-
tively small size of the available training sets. Support vector
regression handles sparse data reasonably well, so we experi-
mented with 3D binarized histograms in the training set.
Intensity, defined as L=R+ G+ B, becomes the third histo-
gram dimension along with the r and g chromaticity. We
quantized L into 25 equal steps, so the 3D histograms consist
of 62500 (25X 50X 50) bins.

7,21

HISTOGRAM CONSTRUCTION

To increase the reliability of the histograms, the images are
preprocessed to reduce the effects of noise and pixels strad-
dling color boundaries. We have chosen to follow the region-
growing segmentation approach described by Barnard
et al.”! This also facilitates comparison of the SVR method
to the other color constancy methods Barnard et al. tested.
The region-growing method is good because the borders it
finds are perfectly thin and connected. Membership in a
region is based on chromaticity and intensity. A region is
only considered to be meaningful if it has a significant area.
For the sake of easy comparison, we used the same thresh-
olds as in Ref. 21, namely, to be in the same region, the r and
g chromaticities at a pixel must not differ from their respec-
tive averages for the region containing the pixel by more
than 0.5%, or its intensity by 10%. Also, regions that result
in an area of fewer than five pixels are discarded. The RGBs
of all pixels within each separate region are then averaged,
converted to L, r, ¢ and histogrammed.

J. Imaging Sci. Technol. 50(4)/Jul.-Aug. 2006
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Table 1. Admissible kernel functions.

Nome Definition Parameters
Linear K(xi, %) = (x)x;

Polynomial K(xi, x) =[(x) i+ 17¢ d
Radial basis function (RBF) K(x;, %)= g Hxilt Y
Sigmoid® K(x;, x;) = tanh[ (x) x;+ r] r

°For some 7 values, the kernel function is invalid.

k-FOLD CROSS VALIDATION FOR SVR PARAMETERS
The performance of SVR is known to depend on its insen-
sitivity parameter €, regularization parameter C, the choice
of kernel function and associated parameters. Different ker-
nel functions work better on some problem domains than
others. Four of the commonly used kernel functions are
listed in Table I. From a practical and empirical standpoint,
the bigger the insensitivity parameter &, the fewer the sup-
port vectors, and the higher the error in estimating the illu-
mination. After much experimentation with different € val-
ues, we fixed it to be 0.0001.

In the case of SVR for illumination estimation, the best
choice of kernel function and its parameters may depend on
the training set. We eliminated the Sigmoid kernel function
from further consideration since it is known to be invalid for
some values of the parameter r (Ref. 10) and focus instead
on the RBF and polynomial kernel functions. This leaves the
choice of either the RBF or polynomial kernel functions and
for each of these kernels their parameters: penalty C and
width 7 for the RBF kernel function; or penalty C and ex-
ponential degree d for polynomial kernel function. The pa-
rameters 7y and d control the corresponding kernel func-
tion’s shape, while C determines the penalty cost of
estimation errors. The kernel choice and parameter settings
are made during the training phase by k-fold cross valida-
tion, which involves running the training using several dif-
ferent parameter choices and then selecting the choice that
works best for that particular training set. This is described
in more detail below.

For the RBF kernel function, we allow the penalty pa-
rameter to be chosen from four different values C
€{0.01,0.1,1,10} and the width value from vy
€{0.025,0.05,0.1,0.2}. For the polynomial kernel function,
we used the same four penalty candidates and selected the
best degree d from the set {2 3 4 5}. Thus for each training
data set, 32 test cases (two kernel choices with 16 pairs of
parameter settings each) are tested to find the best choice.

Among the algorithms generally used to find the best
parameters for support vector regression, we chose k-fold
cross validation because it does not depend on a priori
knowledge or user expertise and it handles the possibility of
outliers in the training data. The disadvantage of the k-fold
method is that it is computationally intensive.

In k-fold cross validation, the whole training set is di-
vided evenly into k distinct subsets. Every kernel function
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and each of its related parameters forms a candidate param-
eter setting. For any candidate parameter setting, we conduct
the same process k times during which (k—1) of the subsets
are used to form a training set and the remaining subset is
taken as the test set. The root-mean-square (rms) chroma-
ticity distance errors from k trials are averaged to represent
the error for that candidate parameter setting. The param-
eter setting leading to the minimum error is then chosen and
the final SVR training is done using the entire training set
based on the chosen parameter setting.

EXPERIMENTS

We tested the proposed SVR-based illumination estimation
method on both synthetic and real images. The implemen-
tation is based on the SVR implementation by Chang and
Lin."” To this we added a MATLAB interface that reads data
files representing the image histograms and associated illu-
mination chromaticities. Each row in the training data file
represents one training image and consists of two parts: the
true illumination chromaticity followed by the bin number
for each nonzero histogram bin.

Barnard et al.”"** reported tests of several illumination
estimation methods, including neural-network based and
color by correlation. We have tried to follow their experi-
mental procedure as closely as possible and used the same
image data so that SVR can be compared fairly to these
other methods. In addition, we compare SVR to the new
“shades of gray” (SoG) technique™ based on the Minkowski
family of norms, Max RGB, and Grayworld.

ERROR MEASURES

Several different error measures are used to evaluate perfor-
mance. The first is the distance between the actual (r,,g,)
and estimated chromaticity of the illuminant (r,,g,) as” >

Ei—dist = \/(ra - re)z + (ga - ge)z- (1)

For the distance error, we also compute the rms, mean, and
median errors over a set of N test images. It has been argued
that the median is the most appropriate metric for evaluat-
ing color constancy.”* The standard rms is defined as

1 N
Imsg;s = XI E E?—dist' (2)
i=1

The second error measure is the angular error between
the chromaticity three vectors when the b-chromaticity com-
ponent is included. Given r and g, b=1-r—g. Thus, we can
view the real illumination and estimated illumination as two
(r,g,b) vectors in 3D chromaticity space and calculate the
angle between them. The angular error represented in
degrees is

. cos ! (108002 (rogerbe) " 2m

i- lar = o

e P+ @+ X P +g+b2 | 360
3)

We also compute the rms, mean, and median angular error
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over a set of images.

Even if the median angular error for one method is less
than for another, the difference may not be statistically sig-
nificant. To evaluate whether a difference is significant, we
use the Wilcoxon signed-rank test.** In the following experi-
ments, the error rate for accepting or rejecting null hypoth-
esis is always set to 0.01.

SYNTHETIC DATA TRAINING, REAL-DATA TESTING
The first tests are based on training with synthesized image
data constructed using the 102 illuminant spectra and 1995
reflectances described by Barnard® along with the sensor
sensitivity functions of the calibrated SONY DXC-930
CCD.” Testing is based on Barnard’s®' 321 real images taken
with the SONY DXC-930 of 30 scenes under 11 different
light sources. These images are linear (a gamma of 1.0) with
respect to scene intensity. These data are available on-line
from the Simon Fraser University Computational Vision
Laboratory color image database.”

The number of distinct synthesized training “scenes”
was varied from 8 to 1024 in order to study the effect of
training size on performance. Each synthetic scene was “lit”
by each of the 102 illuminants in turn to create 102 images
of each scene. The synthesized camera RGB values, their
corresponding chromaticities, and the illuminant chromatic-
ity are mapped to 2D and 3D binary vectors for input to
SVR. Table II shows that the parameters vary with the train-
ing set as expected. Although the basis function type was
allowed to vary during the cross validation, the RBF was
eventually selected in all cases.

To test on real data, Barnard’s calibrated 321 SONY im-
ages were first segmented and histogrammed according to
the “generic preprocessing” strategy.” Illumination estima-
tion by SVR compares favorably to the methods Barnard
tested”’ and Finlayson reported* as shown in Table III. The
rms and median errors for Color By Correlation with Binary
Histogram (CCO01), Color By Correlation with Maximum
Likelihood (CCMAP), Color By Correlation with Mean
Likelihood (CCMMSE), Color By Correlation (CCMLM),
the Neural Network (NN), Database Grayworld (DB),
Gamut Mapping (GM) are from Table II (p. 992 of Ref. 21)
and Table 2 of Ref. 24, respectively. Figure 2 shows how the
SVR performance initially improves as the size of the syn-
thetic training set increases.

REAL IMAGE DATA TRAINING, REAL-DATA TESTING
Training on synthetic image data is convenient because large
training sets can be calculated from existing databases of
illuminant and reflectance spectra. The disadvantage of syn-
thetic data is that it requires an accurate model of the cam-
era and imaging process. On the other hand, creating a
training set of real images is difficult because for each image
the scene illumination must be measured.

Our testing with real data is based on three image data
sets. To begin, we train and test on Barnard’s’ set of 321
SONY images and find that training with real data is in fact
better than training with synthetic data. We continue with
tests on Cardei’s’ set of 900 images from assorted cameras.
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Table 1. Results of k-fold kernel and parameter selection as a function of the histo-
gram type and the number of training set images.

Training set
size/102 Histogram dimension ~ Kernel selected ( v
8 0 RBF 001 02
3D RBF 001 02
16 0 RBF 1 0.1
3D RBF 1 0.05
32 0 RBF 0.1 0.05
3D RBF 0.1 0.025
64 0 RBF 1 0.05
3D RBF 0.1 0.1
128 0 RBF 0.01  0.025
3D RBF 1 0.2
256 0 RBF 001 01
3D RBF 0.1 0.05
512 0 RBF 001 01
3D RBF 10 0.025
1024 0 RBF 001 005
3D RBF 1 0.2

Finally, we train using the 11346 image set that Ciurea
et al.”’ built using a digital video camera. This very large,
real-data training set improves overall performance.

EXPERIMENTS WITH 321 SONY REAL IMAGES

The training images are preprocessed, segmented and histo-
grammed in the same way as described above for the test
images. The SVR kernel and parameters were selected based
on the “1024” row of Table II; namely, for 3D, the radial
basis function kernel with shape parameter y=0.2 and pen-
alty value C=1, while in 2D, these two parameters are set to
0.05 and 0.01, respectively.

Since it would be biased to train and test on the same
set of images, we evaluate the illumination error using leave-
one-out cross-validation procedure.®® In the leave-one-out
procedure, one image is selected for testing and the remain-
ing 320 images are used for training. This is repeated 321
times, leaving a different image out of the training set each
time, and the rms and median of the 321 resulting illumi-
nation estimation errors are calculated. The errors are sig-
nificantly lower than those obtained with synthetic training
data. The results and their comparison to the SoG,” Max
RGB,” and Grayworld (GW)” are listed in Table IV. Table
V tells us that 3D SVR has the best performance.

J. Imaging Sci. Technol. 50(4)/Jul.-Aug. 2006
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Table 111 Comparison of competing illumination estimation methods. All methods are
trained on synthetic images constructed from the same reflectance and illuminant spec-
tra and then tested on the sume SONY DX(930 (Ref. 21) camera images with identical
preprocessing. Data marked by “*” are extracted from Ref. 21 (Table II, p. 992) while
the data marked by “**" are extracted from Ref. 24 (Table 2, p. 79).

Method RMS  distance ~ RMS  angle  Medion  angle
2D SVR 0.080 10.1 4.86
3D SVR 0.067 8.1 3.17
(co1 0.081 10.9°
(CMAP 0.071 9.9 2.93”
(CMMSE 0.072 9.9’
(CMLM 0.072 9.9’
Neural network 0.070 9.5
DB - 12.25" 6.58"
GM - 5.46” 2.927
5 : : : ; ; —
e

Median Angular Error

3 4 5
Log, of (Training Data Size / 102)

Figure 2. Median angular error in illumination chromaticity as a function
of increasing fraining sef size.

Although the median angular errors 2D SVR and SoG differ
slightly, the difference is not statistically significant.

EXPERIMENTS WITH UNCALIBRATED 900 REAL
IMAGES

We next consider Cardei’s* set of 900 uncalibrated images
taken using a variety of different digital cameras from
Kodak, Olympus, HP, Fuji Polaroid, PDC, Canon, Ricoh,
and Toshiba. A gray card was placed in each scene and its
RGB value is used as the measure of the scene illumination.
The SVR was based on a polynomial kernel function of de-
gree 3 and 0.1 penalty. Its performance is also compared to
the performance reported by Cardei* for Color by Correla-
tion, the Neural Network, Shades of Grey, Max RGB, and
Grayworld.
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Table IV. Comparison of 2D and 3D SVR performance to SoG, Max RGB, Grayworld
performance. The results involve real-data training and testing on the 321 SONY im-
ages. Errors are based on leave-one-out cross-validation evaluation and are reported in
terms of both the rms angular chromaticity and distance error measures.

SVR Maximum  rms  Median
dimension/ Maximum rms  Median Distance distance distance
Method norm power angle  angle angle (x10%) (x103) (x102)

SVR 0 2299 1006 465 1641 15 341
3D 2466  8.069 217  16.03 6.3 3.07

So6 6 2870 9.027 397 19.77 621 283
Max RGB 3624 1228 644 2501 825 446
GW 3731 1358 7.04 3538 1112 5.68

Table V. Comparison of the different algorithms via the Wilcoxon signed-rank test. A
“+" means the algorithm listed in the corresponding the row is better than the one in
corresponding column; “~" indicates the opposite; an “=" indicates that the perfor-

mance of the respective algorithms is statistically equivalent.

2D SVR 3D SVR  SoG (norm power=6) Max RGB GW

2D S\R - = + +
3D SVR + + + +
SoG (norm power=6) = - n n
Max RGB - - - _
GW - - - +

Since a training set of 900 histograms is not very large,
we used the histogram resampling strategy proposed by
Cardei® in the context of neural network training to increase
the training set size. Cardei et al. observed that each a his-
togram in the original training set could be used to generate
many new training histograms by random sampling of its
nonzero bins. Each sampling yields a new histogram of an
“image” with the same illuminant chromaticity as the origi-
nal. The number of possible sub-samplings is large, thereby
making it possible to build a large training set based on real
data extracted from a smaller number of images.

As before, we conduct leave-one-out tests. Hence, when
we select an image for testing, we create a training set of
10 788 histograms from the remaining 899 real images and
then measure the error in the SVR illuminant estimate for
that one image. This process is repeated 900 times. The rms
and median of the 900 errors is tabulated in Table VI. Table
VII summarizes the Wilcoxon test among several of the al-
gorithms. It also shows that on this training and test set,
resampling the training set does not significantly change 3D
SVRs performance; however, on the dataset discussed below,
resampling does make a difference.
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Table VI. Comparison of the performance of SVR to that of Color by Correlation, the Neural Network, SoG, Max RGB, Grayworld. The tests are based on leave-one-out cross-validation on a database of 900

uncalibrated images. The entries for C-by-C and the NN are from Ref. 4 (Table 7, p. 2385).

Maximum Mean ms Median
Dimension/norm Maximum rms Median distance distance distance distance
Method power angle angle angle (X109 (X103 (X109 (X103
SVR (no 2 20.43 4.47 240 18.40 240 327 1.74
resampling)
3D 17.46 3.94 2.02 15.42 2.09 2.94 1.40
SVR (with 3D 10.57 391 2.07 6.42 2.03 272 1.55
resampling)
Cby-C 0 292 389
NN Y1) 2.26 2.76
So6 6 19.71 499 3.02 15.96 2.96 3.80 219
Max RGB 27.16 6.39 2.96 22.79 3.36 475 217
6W 31.44 6.65 4.34 29.99 412 5.26 317

EXPERIMENTS WITH LARGE REAL IMAGE SET

Our final test with real data is based on the 11 346 real
images extracted from over 2 h of digital video acquired
with a SONY VX-2000. Ciurea et al.”’ built the database by
partially automating the measurement of the illumination’s
RGB. Their setup consisted of a matte gray ball connected by
a rod attached to the camera. In this way, the gray ball was
made to appear at a fixed location at the edge of each video
frame. The ball’s pixels were thus easy to locate in each
frame, and hence the chromaticity of the dominant illumi-
nation hitting the ball was easily measured as the average
chromaticity of the pixels located in the ball’s brightest re-
gion. The images include a wide variety of indoor and out-
door scenes including many with people in them.

Based on some initial experimentation, the RBF kernel
function was chosen with 0.1 as the penalty parameter and
0.025 as the width parameter. All subsequent tests of SVR on
the Ciurea database are based on these settings.

The size of the database means that leave-one-out vali-
dation is not feasible, although leave-N-out for a reasonable
choice of N would be possible. In any case, it would not
necessarily be a fair test because of the inherent regularities
in the database. Since the database was constructed from a
three-frame-per-second sampling of video clips, neighboring
images in the database tend to be related. Hence, to ensure
that SVR that the training and testing sets would be truly
distinct, we partitioned the database into two sets in two
different ways.

The first partitioning is based on geographical location.
We take as the test set the 541 indoor and outdoor images
taken exclusively in Scottsdale, Arizona. The training set be-
comes the 10 805 images in the remainder of the database,
none of which is from Scottsdale. We call these datasets
“Scottsdale” and “All-but-Scottsdale.” The estimation errors
are listed in Table VIII. The Wilcoxon signed-rank results are
given in Table IX.

Table VII. Comparison of the performance based on the Wilcoxon signed-rank test. Labeling +, -, = as in Table V.

2 3D 3D SR So6 MAX

SVR SVR (with resampling) (norm power=6) RGB 6w
D SR ; ] . . .
3D SR ; . . . N
3D SVR (with resampling) + = + + +
SoG (norm power =6) - - - = ¥
MAX RGB . . _ _ N

Wilcoxon signed-rank GW - -
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Table VIIL. SVR (3D) illumination estimation errors for different training and test sets
with comparisons to the SoG with norm power 6, Max RGB, and Grayworld methods.

Table X. Comparison of the algorithms based on the Wilcoxon signed-rank test on
angular error. SVR fraining set is subset A. Test set for all methods is subset B. Labeling
+, -, =asin Table V.

Training
and test 3D SVR Max
Method sets Angular degrees Distance (< 10%) Test set = Subset B~ 3D SVR  resampling SoG (norm power = 6) RGB GW
3D SR _ :
Maximum  rms  Medion Maximum rms  Median ot
W o N6 343 249 705 226 17 D SWRresmelng o + £
ook U ag 7 a3 33 1m0 ops SO Compower=6) - - b=
resampling coftsdale
Max - - - _
S06 1831 425 275 1308 304 192 RGB
MoxRGB  ( °F 1177 489 335 806 298 209 oW - - = +
Scottsdale
oW M6 678 447 205 500 326 Table XI. Comparison of the algorithms based on the Wilcoxon signed-rank test on
3D SR 14.9 37 132 1224 263 097 angular error. SVR fraining set is subset B. Test set for all methods is subset A. Labeling
Train: +, -, =asin Table V.

3D SVRwith subsetB  16.01 240 059 1070 1.65 045
resampling

506 3587 782 489 2799 570 344

Max RGB st 740 1063 641 N2 765 448
subset A

oW 4384 877 508 3969 689 38

3D SVR 168 36 287 1500 261 206
Train:

3D SVRwith ~ subsetA 117 141 1.2 844 1.03 0.08
resampling

$06 2697 833 671 27468 614 485

Max RGB Test 9076 947 536 55 701 390
subset B

oW 3302 924 762 3241 728 548

Table IX. Comparison of the algorithms based on the Wilcoxon signed-rank test on
angular error. SVR training set is All-but-Scottsdale. Test set for all methods is Scottsdale
dataset. Labeling +, -, = as in Table V.

3D SVR Max

Method 3D SVR resampling  SoG (norm power=6) RGB GW
3D SR _ _ . 4
3D SVR resampling + + + 4+
SoG (norm power=6) = - o+
Max - - - n
RGB

6w - - - _

The second partitioning divides the entire database into
two parts of similar size. Subset A includes 5343 images, and
subset B includes 6003. Subset A contains images from
Apache Trail, Burnaby Mountain, Camelback Mountain,
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3D SVR Max
Method 3D SVR resampling  SoG (norm power=6) RGB GW
3D SWR - + + o+
3D SVR resampling + + + o+
SoG (norm power=6) - - -t
Max - - + +
RGB
6w - - - -

CIC 2002 and Deer Lake. Subset B contains images from
different locations: False Creek, Granville Island Market, Ma-
rine, Metrotown shopping center, Scottsdale, Simon Fraser
University, and Whiteclyff Park. We then used A for training
and B testing and vice versa. The results are again listed in
Table VIII. Tables X gives the Wilcoxon sign results for this
case.

The histogram resampling strategy is also use here to
expand the training dataset. The dataset excluding the
Scottsdale images was increased to 162 075 histograms,
dataset A to 154 462 and dataset B to 162 081. The corre-
sponding test results are listed in Table VIII. Table XI in-
cludes the assessment through the Wilcoxon test. All of these
Wilcoxon tests show that resampling strategy helps to im-
prove the overall performance on this dataset.

CONCLUSION

Many previous methods of estimating the chromaticity of
the scene illumination have been based in one way or an-
other on statistics of the RGB colors arising in an image,
independent of their spatial location or frequency of occur-
rence in the image. Support vector regression is a relatively
new tool developed primarily for machine learning that can
be applied in a similar way. We have tried it here, with good
results, to the problem of learning the association between
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color histograms and illumination chromaticity. Under al-
most the same experimentation conditions as those used by
Barnard,”™* tests of the Shades-of-Gray, Neural-Network,
Color-By-Correlation, Max RGB, and Grayworld methods,
show that SVR performance generally is comparable to or
better than these other methods. Using Ciurea’s” large im-
age database, SVR performance is shown, furthermore, to
improve as the training set size is increased.
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