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Abstract. High throughput screening has been used to rapidly
screen for chemical compounds in a biological assay. Until recently,
many of the biological assays utilized simple biochemical tech-
niques, the result of which could be interpreted in single or at most a
few numerical values. That made it easy to evaluate, without bias,
any unique chemical entities screened. However, with biological
cells or tissue images, the information was qualitative or at best
limited to simplified algorithms. Recently, it is now becoming pos-
sible to perform standardized assays and utilize complex image
data to derive reproducible information which could be utilized to
precisely quantify the efficacy of compounds. Much of this is pos-
sible due to the precise mathematical algorithms that are used to
compute image data to derive information. This review will discuss
some of the basic algorithms involving kernel operations that are
commonly used and how they can be applied for any image or pic-
ture data. © 2006 Society for Imaging Science and Technology.
�DOI: 10.2352/J.ImagingSci.Technol.�2006�50:3�233��

WHAT IS IMAGE PROCESSING AND WHY IS IT
USED IN BIOLOGY?
A lot of the raw data in biology is represented as images,
either as photographs of gels, autoradiograph patterns, or
cell and tissue pictures. Until recently, many of those pic-
tures were captured and stored as photographic film, but
with the advent of cheaper computers, disks, and digital
cameras, the trend is to capture and store pictures digitally.
Thus, instead of storing patterns of silver grains in a matrix,
pictures are stored as series of magnetically encoded bits on
a disk or tape.

The benefit of storing images digitally as a series of
numbers is that they can be easily used to extract quantita-
tive information, once the areas of interest are defined. The
information extracted can then be used to measure the den-
sity of spots in an image or bands on a gel. If such a spot in
an image can be discriminated as an area of interest from the
background, then it is possible to calculate the number of
spots such as nuclei or mitochondria.

When the image is represented as a series of numbers,
the identification and quantitation of objects is primarily a
series of mathematical operations. However, some image
processing operations are more easily accomplished than
others. For example, quantitation of spots in an image from
a gene chip experiment might be easier to accomplish be-
cause the area where the DNA has been spotted is defined

and all that is required is measurement of average/median
intensity of the spot. In contrast, determining the pattern of
staining in a PAP smear between normal and malignant tis-
sues might be more challenging.

The image processing algorithms that are applied in bi-
ology can be used on various types of images, thus, routines
to extract a spot from a gel may be similar to those used to
identify the nucleus in a histological preparation.1–5

One of the questions frequently asked is why would you
want to image process or alter the image? The reasons are
many, but here are three most common reasons. Image pro-
cessing is frequently used to quantify objects in an image
and so as a first step in identification of the image, a copy of
the image is enhanced or changed in some way which will
help in identifying objects. Once those object outlines are
identified and a mask created, many diverse measurements
can be done on the raw image. The second is image en-
hancement. Sometimes, lighting or camera conditions or
printing alter the color or image intensity in the image. To
correct such an effect and make a better representation of
the image that was observed, brightness, contrast, or hue/
saturation is altered. It must be noted that such “altered”
images cannot be used for quantitation and may be used for
illustrative purposes only. Third, modern professional cam-
eras can capture variations in intensity of incident light to
65,535 individual gray levels. Most printers or monitors can-
not represent this full gradation of intensity and, hence, dis-
play only a portion of the intensity. Thus, though the whole
gamut of intensity is available in the raw image, only a por-
tion of that is shown in the “best-fit” image or “contrast-
stretched” image on the screen/printer.

Most biological laboratories capture images in single
steps with the user of the camera actively involved in image
capture. This allows for a lot of flexibility during capture,
thus, if the light is not uniform, the user can adjust the light
to capture a visually pleasing image. However, recent trend
in biotechnology is to capture thousands of images from a
multiwell plate or tissue arrays and analyze the image to give
quantitative data. This has led to an explosion in the number
of images that are acquired and the techniques that are used
to analyze the images. Cellomics Inc. was the first to coin the
term “high content screening” which implied high resolu-
tion image analysis of thousands of individual biological
samples treated with unique chemical entities. The tech-
niques mentioned in this review were originally designed for
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image processing of any picture data and have now been
adapted for high content screening.6

HIGH CONTENT SCREENING INVOLVES THREE
BASIC STEPS

(1) Biological processing to generate the plates or im-
ages that will be analyzed: This would entail all the
staining and preparation steps for cells in Multiwell
plates and is absolutely assay dependent.

(2) Acquisition and storage of images: This step is im-
portant for data quality and depends on the micro-
scope or instrument that is used to acquire the im-
ages. This part is not assay dependent and
somewhat irrespective of what is being analyzed as-
suming that the machine is capable of acquiring the
object/region of interest of varying intensity.

(3) Image analysis and data generation: This is the
most crucial step since without the judicious analy-
sis the image is just a pretty picture. It is not assay
dependent but rather method dependent. For ex-
ample, it does not matter which protein is being
measured in the nucleus but it does matter that the
nuclear signal is being measured as opposed to the
cytoplasmic intensity.

This review will primarily address the third step of high
content screening involving image analysis and data genera-
tion which is done in two fundamental stages:

(a) Image segmentation: Separation and/or marking
of cell regions or any regions of interest from the
rest of the image such that they can be specifi-
cally selected. This is the most crucial step and
much of image processing techniques target this
step. This could as simple as separating bright
cells from the background or very complicated
determination of cellular patterns in histological
preparations.

(b) Measurement: Once the region of interest has
been identified, the objects or its intensities are
measured, the objects in the image counted and
numerical data generated. This stage would also
involve any secondary computation as in object
parameters such as roundness, length of its axis
and background subtraction. One can then gen-
erate a table of results and make graphical plots
of different parameters for subsequent
comparison.

Since both of the steps involve image processing, they
will be discussed in the context of image processing, starting
from the basics of image representation to data extraction.

HOW IS THE IMAGE REPRESENTED IN A
COMPUTER?
Cameras are made up of many individual detectors arrayed
in a matrix. In the simplest case of the black and white
camera, the number of individual detectors along the hori-

zontal and vertical axis determines the resolution of the
camera. Thus 640�480 implies 640 individual detectors in
horizontal axis along with 480 detectors along the vertical
axis for a total of 307 200 total detectors. These individual
detectors are called pixels and each of the detectors can con-
vert the photons into electrons. The intensity of light at each
pixel can be expressed as number of gray levels. A consumer
grade camera can distinguish 255 different intensities of light
or 255 gray levels. Microscopy or professional grade cameras
can distinguish up to 65 535 levels of gray. The number of
grays that a camera can distinguish determines the variation
in intensity of light that the camera can see in the same field.
Thus, the professional camera will be able to visualize the
brightest object and the faintest object in a field at the same
time. When a picture is taken, each of the detectors in a
camera sends a number representing the intensity or the
photon count to the computer. In a black and white camera
each number is represented as 1 or 2 bytes for a professional
camera. The intensity level in each pixel is represented as a
series of numbers and stored in a computer file to represent
the image. When we display or print this image, each of
these numbers are represented as intensity values on the
screen in the same horizontal�vertical format as the detec-
tor. To keep this article simple we will mention only the gray
scale image processing. One of the important gray scale
cameras used for scientific work is called a charge coupled
device (CCD) because of its linear sensitivity to light and
relatively low noise. In case of color pictures there are three
individual values for the detector array for each of red,
green, and blue and they can be processed together or inde-
pendently of each other.7

COMMON IMAGE ENHANCEMENT/PROCESSING
METHODS
Before trying to understand image processing methods, it is
important to know how the pixel intensity values of any
image are represented. In our examples we will use 0 as the
minimum value and 255 as the brightest value. As a note, in
a 2 byte/pixel image, the brightest value is 65 535 but oth-
erwise the operations are similar. Thus, an important way
that any image can be represented is to plot its brightness
histogram which plots the distribution of intensities of pixels
in that image. For example, Fig. 1(b) is a grayscale image of
the original image in Fig. 1(a) and Fig. 1(e) is the brightness
histogram. In some fluorescent images, e.g., Fig. 2(a), when
the fluorescent image of the cell is bright against a dark
background it is possible to distinguish two peaks in the
brightness histogram. One corresponds to the background
as dark pixels and the other corresponds to the cells. This is
the basis of one common method of selecting objects of
interest by using the brightness histogram to do threshold-
ing. This is the ability to identify objects by selecting pixels
above certain threshold intensity and thus identifying bright
cells, Fig. 2(b).

Brightness and Contrast
These are the two most commonly used methods in image
enhancement. They were the most common image process-
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ing tool used, including the first black and white TV sets,
and can be intuitively understood so are a good starting
point to understand image processing routines. One way to

change how the image appears is to change the way in which
the pixel intensities are increased or decreased relative to the
whole image. What brightness does is to increase the inten-
sity of all the pixels in an image and so the image looks
brighter. The simplest way to conceptualize this is as a
simple addition in a 1 byte/pixel image. A predetermined
number is added individually to all the pixel intensity values
and anything which adds up to above 255 is given a value of
255 or “clipped” to 255. However, in a computer, it is imple-
mented by using a lookup table (LUT). This is a table which
has the starting intensity values of pixels from 1 to 255 along
one axis versus the final values of pixels on the other axis
[Figs. 1(c) and 1(f)]. The reason to use these LUT tables is
speed. So instead of adding values for thousands of pixels in
an image, one pixel at a time, all that a LUT requires is a
simple substitution. So in our example of brightness, Fig.
1(f) shows the LUT graphically. It tells us that all the inten-
sities of pixels have been increased. Therefore, brightness
processing tends to make all values increase towards the
highest pixel value. Similarly, contrast enhancement in-
creases the observed difference in the middle ranges while it
pushes the darker pixels to zero and the brighter ones to 255
as shown in Figs. 1(d) and 1(f).

Basic Image Operations
Since images in computer are represented as numbers, it is
possible to do arithmetic operations on images. Thus, as we
saw earlier, it is possible to add numbers to image intensity
values. Correspondingly since two images are a series of

Figure 1. The color image in �a� was converted to the grayscale image
�b� and its intensity histogram plotted �e�. Using the look up table �LUT�
shown in �f� the brightness of the image was increased �c� or the contrast
increased �d�.

Figure 2. Picture of cell nuclei stained with Hoescht 33342 �a�. Since
the intensity of nuclear staining was above the background they were
selected �b� based on their higher intensity values. Once separated that
way, it’s also possible to select only the very high intensity of staining �c�
vs. the low intensity values �d�.
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numbers, it is possible to subtract one image from the other,
pixel by pixel, assuming they are of similar dimensions. This
could be useful while trying to determine if anything is
changed between two images. In regions that nothing has
changed the resulting image would appear black whereas in
other regions it would be some other value besides zero.
This method is very useful in trying to spot temporal
changes in images. Similarly, dividing one image by the
other quickly highlights the differences between the two im-
ages. These methods are often used in object detection.

Object Detection or Image Segmentation
In fluorescent images, such as those which have bright cells/
objects against a relatively dark background, it is possible to
select the cells/objects of interest using mathematical meth-
ods. As a first step, we can convert the standard grayscale
image to a binary image which is the same dimensions of the
grayscale image but instead of intensity values, each pixel is
represented as either black (zero) or white (one). For ex-
ample, in Fig. 2(b), to select bright fluorescent cells against
the duller cells in a dark background one would select a
specific pixel intensity value. This intensity is selected to be
above the pixel intensity of duller cells. This is called the
threshold value. Any pixel above this intensity is made white
and the rest black. This helps us identify any bright cells that
are marked as shown in Fig. 2(b). Once the cells are identi-
fied against the background it is possible to select on the
basis of intensity for only the brightest cells in a population
as shown in Fig. 2(c) or the dullest in Fig. 2(d). Again,

practically, in a computer, this is accomplished by using a
LUT which has a list of values that can be substituted de-
pendent on the input value. However, this simple method of
object identification works only in the simplest cases and
more complicated kernel operations may be required to
identify and quantitate objects.

KERNEL OPERATIONS OR MORPHOLOGICAL
PROCESSES
In much of the image manipulation operations mentioned
earlier all the pixel values of an entire image are compared
to, or used to compute, the values in another image. How-
ever, many times it is important to process the individual
pixels dependent on the neighboring pixels within the same
image, which is important in object identification or noise
reduction. In this method, the resulting output image is de-
rived from a single input image. The pixels in the output
image are calculated using a series of operations on pixel
groups in the input image. As shown in Fig. 3, each pixel in
the output image is calculated from the source image. Each
pixel value of the output image, at every location, is com-
puted from the surrounding pixels in the source image using
a weighted matrix, also called a kernel. The numbers or
values that constitute the kernel determine the action of this
mathematical operation. In the example in Fig. 3, the La-
placian kernel will enhance the edges in an image. This is
useful in quickly highlighting objects in an image. This pro-
cessing is done with each pixel and its neighbor and moves

Figure 3. The Laplacian kernel enhances the edges of objects as shown in the resulting image at the bottom.
This is implemented using the 3�3 kernel matrix as shown and requires 9 multiplications and 8 additions per
pixel processed. The color coding signifies which locations in the kernel and the image are multiplied together.
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across all the pixels in the image. The weights and dimension
of matrix/kernel determine the strength and effect.

In the early days of image processing, the kernel opera-
tions were done mainly on binary images—an image which
has only two values for each pixel, dark (0) or white (1)
images. This image is derived from a prior thresholding op-
eration in which the features had been roughly detected by a
process in which any pixel above a threshold value is made 1
and all the others pixels have the value 0. As a second step,
these kernel operations help in refining the selected object. It
takes millions of mathematical calculations to do a single
image. A binary image can be easily calculated using the
quick boolean and operation but using these on grayscale
images involves multiple mathematical multiplication and
addition operations on each pixel and can take lot of com-
putation time. With the advent of cheaper and faster com-
puters, it is feasible to do these operations on grayscale im-
ages as some form of image improvement or image
augmentation to facilitate better object segmentation, Fig. 3.
It should be pointed out that in many cases the results of
kernel operations for any particular pixel result in values
which may be below 0 or above 255 (65 535 for a
2 byte/pixel image). In those cases the values are clipped to
0 or 255.

There are many types of kernel operations and this re-
view will address only some of the most useful and common
ones. Though the binary image and grayscale image opera-
tors are different, the operations can be discussed in general
except for the open and close operations which are more
powerful for binary images. All kernels will be represented in
the simpler 3�3 matrix for grayscale processing as shown in
Table I.

Local Equalization or Low Pass Filter
This is the simplest operator to understand. The center pixel
in the resulting image is an average of the nine pixels—the
center pixel and the eight surrounding pixels. In this filter all
the nine pixels in a 3�3 matrix are multiplied by 1 and the
result divided by nine. Thus, each of the nine pixel values
have equal weight. Using this filter removes any sudden
variations in pixel intensity. Thus, any noise in the form of
very high or very low pixel intensity is averaged out though
the resulting image may look fuzzier. When expressed in
frequency terms, images with rapid changes in intensity
across different pixels are said to have a higher frequency.
This filter therefore lowers the rapid change in frequency
and can be thought of as a low-pass filter, i.e., it allows lower
frequency variations to pass through. Where this filter might
be useful is in making the images with a lot of noise look
better to the eye. For example, an image acquired from a
camera at extremely low light levels or low fluorescence sig-
nal may have lot of noise in the picture. Applying this filter
to the image will make the picture appear better and may be
a good first step in analysis to help the scientist, Table I.

Edge Detection
Edge detection is one of the more fundamental operations
which is probably the most common operation performed

by the human eye and, hence, the edge enhanced image
sometimes appears sharper to the observer. There are many
operators that are used and only two of them will be
discussed—Laplacian and Sobel.

Laplacian
Applying a Laplacian kernel to the image highlights the
edges in the image. The sharper the transition from dark to
light the brighter the transition point will be. Each of the
values in the kernel is multiplied by the corresponding im-
age pixel intensity values and the sum of nine multiplica-
tions is the center pixel. The kernel works by being center
weighted and will thus enhance the centermost pixel while
the neighboring pixels will have little influence. But since the
coefficients all add up to zero, only the transition point will
be accentuated and uniform areas will calculate to 0 (black).
This kernel is omnidirectional—it does not matter along
which axis the transition takes place—it will highlight axis
from 0 to 360 deg.

Sobel
Another edge detection filter but the way it is implemented
is to calculate a vertical edge followed by horizontal edge and
then sum the result. The vertical and horizontal edge detec-
tors can be used independently too if required. Analogous to
Laplacian, each value in the kernel is multiplied by its re-
spective image pixel intensity value and the sum of nine
multiplications results in the center pixel. This kernel is
weighted along any one axis and this higher pixel value is
amplified in only one direction. For example, the operations
for vertical operator in vertical axis leads to a positive value
but in horizontal direction it tends to zero. This operator is
not as sensitive to noise as Laplacian but on the other hand
it might have a problem with fine details in biological im-
ages.

Though these are omnidirectional operators, other op-
erations like Prewitt gradient can detect edges along any
particular direction too.

SHARPENING OR HIGH PASS FILTER
In an image, each pixel can have distinct values. The change
in pixel intensity values from a pixel to its adjacent pixel can
be thought of in terms of frequency. Thus, adjacent pixels
change rapidly from one another signifies high frequency.
Filters can be designed to influence a specific range of fre-
quencies. It is possible to create a high pass filter which
accentuates rapid change while being unaffected by regions
of uniform intensity. The way to understand the sharpening
filter is to appreciate that the center pixel has the highest
value and will have the largest influence on the image as
shown in Table I. In implementation, it is similar to Laplac-
ian, all the values in the kernel are multiplied by the pixel
intensity values and the sum of nine multiplications com-
putes to the center pixel. Thus, a change in the pixel inten-
sity accentuates a high center value and at the same time the
neighboring pixels obtain a lower than the average intensity
value, thus highlighting the change. This operation makes
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the image appear sharper and removes haziness in the im-
age. It is of interest to note that the edge detector Laplacian
kernel is also a high pass filter since it emphasizes the change
in pixels intensity.

Unsharp Mask
This is another sharpening or high pass filter with similar
results and similar logic except due to a high center pixel

value it leads to a nonzero sum of operations and thus might
even brighten the image.

Dilation and Erosion
These operations have been used primarily with binary im-
ages to remove or smooth out surfaces though the method is
slightly different with grayscale images. In explaining this
method we will assume that the object of interest is bright

Table I. The picture is a cellular preparation stained for DNA in the nucleus with Hoechst 33342. The original source image �A� was processed with different 3�3 kernel operators to show the effect of
kernel operations. The images were cropped similar to the source image �B� to show a close up of the effect of different operations. The name of each operation is followed by the kernel and the result image.
Often, kernel filters are combined and used in different strengths. This example shows a single operation performed on the starting image. The image �C� is a binary image of �B� using a fixed threshold
to detect bright nuclei and is used as a starting point for illustrating binary dilation and erosion in which objects have greater intensity value than the background.
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(high intensity values) and the background is dark (low in-
tensity values) for both binary images and grayscale images.
The individual operations have different effects upon re-
peated application or in alternating cycles and lead to more
pronounced effects.

Binary Dilation
This has the effect of enlarging the edges of bright objects
and erodes the dark ones. This also uses the kernel opera-
tions as shown in Table I. The value of the center pixel is
determined by comparing the value of the 9 pixels in the

Table I. �Continued.�
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image with the nine pixels in the kernel and whenever any
value in the kernel or the input pixel is 1 (bright) then the
center pixel gets the bright (1) value. Otherwise, the result is
a black pixel. The effect of such an operation would be to
expand the bright (1) values since having a bright neighbor
would in effect make the center pixel bright. Thus, when we
use this operation in binary image the white objects grow in
size. This operation is useful in getting rid of black areas as
well as joining bright objects together. It can also be used in
filling holes in bright objects.

Binary Erosion
This operation erodes the edges of bright objects and en-
larges dark ones. This uses a different kernel from that of
binary dilation shown in Table I. In this case the value of the
center pixel is determined to be bright only if all the nine
pixels match that of the kernel which is all bright (1). Thus,
if any one pixel in the background is dark (0) then the value
of the center pixels is dark. This thus converts single bright
pixels to dark and expands the dark regions. When com-
bined with a compensating dilation this operation is useful
in separating bright attached objects and smoothing edges.

Grayscale Dilation and Erosion
These are similar to the binary operation as the dilation
expands the white regions whereas the erosion decreases the
white regions. Dilation and erosion are implemented by
adding the contents of the mask, which is zero, to the
3�3 matrix from the source image. In dilation the maxi-
mum value becomes the center pixel value whereas in ero-
sion the minimum value becomes the center pixel value.
Thus, in dilation the effect is that the center pixel tends to
expand and become as bright as the neighbor whereas in
erosion the central pixel tends to decrease in intensity with
the neighboring pixel. They are used for similar purposes to
binary dilation and erosion. The effect of many dilation op-
erations is to make all the pixel intensity in the image equal
to maximum intensity value. Similarly repeated erosion will
make all the intensity values equal to the minimum value of
the original image.

Opening and Closing
The combination of erosion followed by dilation is called
opening. Opening darkens small objects and is one of the
best ways to remove noise within the image. Closing, in
contrast, is dilation followed by erosion. Closing brightens
small objects and can fill small holes within objects. Both of
these operations are used to smooth jagged objects if re-
quired since they will both remove pixel anomalies.

There are other filters that are useful in separating se-
lected objects. The watershed filter, like the opening opera-
tion, is also useful in separating touching objects. The top
hat filter and well filter are peak and valley detectors, respec-
tively, and are useful in finding sharp transitions in images.
These filters are derivations of the kernel operations men-
tioned above. For example, if an “opened” image is sub-
tracted from the original image, the resulting image shows
only peak intensity values similar to a top hat filter. In con-

clusion, many of these filters are usually used in combina-
tion to derive the most benefit from image processing.

FREQUENCY DOMAIN OPERATIONS
One of the common methods to remove repetitive noise or
analyze regular patterns in images uses a technique called
Fourier transform and its computationally fast equivalent—
the fast Fourier transform.8 This technique uses Fourier’s
theorem which states that it is possible to form any one
dimensional function as a summation of a series of sine and
cosine terms of increasing frequency. The simplistic, non-
mathematical explanation of the Fourier transform in one
dimension is that it is a way to represent a line using the sum
of multiple frequencies. Thus, summation of tens or hun-
dreds of frequency curves can recreate the original line
which can be represented in terms of the frequencies used
and their respective phases. This method in two dimensions
can be used to represent any image as a set of frequencies
along the two axes that together makes up the spatial image.
The Fourier transform converts the image to two parts—the
magnitude and the phase. These can be graphically drawn as
an image as shown in Fig. 4(e). The magnitude part is
drawn as the pixel intensity and the phase part is drawn
along the vertical and horizontal axis. Thus, in an image
with a repetitive pattern—the frequency representing that
pattern will be highlighted as shown in Fig. 4(e). Selectively
removing the frequency will remove the noise, Fig. 4. The
frequency domain operations have other uses too such as
image compression and image orientation.

FUTURE OF IMAGING
With the advent of bigger CCD arrays, higher resolution and
cheaper computing and storage, imaging technology is find-
ing more and more uses in industrial style imaging: from
high content high throughput screening to industrial inspec-
tions of soda cans. This large amount of image data will
require unique methodologies in image analysis and data-
base technologies. Currently, the method of storing an image
requires some form of annotation such that the image can
be retrieved easily using conventional string searches. For
example a cellular image can be stored with an annotation
such as “treated with Colchicine” and we might easily search
for “Colchicine.” However, in a high throughput assay it
would be tremendously useful if we could search for patterns
such as “find cells with disrupted microtubules.” Unfortu-
nately, current methodology would require processing each
and every image to find patterns of normal and disrupted
microtubules, assuming of course the sample had been
stained for microtubules. And, if we decided that we wanted
to look for intact nuclei as opposed to necrotic nuclei then
that would require another set of processing.

The kernel operations using smaller arrays tend to work
as mentioned before. As the matrix gets bigger the opera-
tions tend to be more selective for features of the matrix
dimensions. Therefore, a 21�21 matrix will be specific for
features that are 21 pixel dimensions while ignoring smaller
objects. Similarly, a 3�3 matrix operation will appear to
have a very different effect on an image with eight million
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pixels as opposed to one million pixels. So one has to be
careful in using matrix operations for a particular micro-
scope magnification, camera resolution and image depth.

Another technology that will be very useful in imaging
is to use field programmable gate arrays (FPGA) for image
processing.9–11 At present, the CCD captures the image,
transfers it to the computer in which a micro processor cal-
culates the results one pixel at a time to come up with the
result. In parallel architectures, multiple processors handle
the task of working on different parts of the image or dif-
ferent images to give the result faster than a single computer.
Whereas, FPGA can be thought of as a computer hardwired
to do one thing extremely fast though it can be repro-
grammed to do something else too using the same hardware.
Thus, first a FPGA is programmed which would make a

series of circuits in a particular configuration on a virtual
circuit board. Once programmed, the FPGA can calculate
the result almost instantaneously. Thus, it may be possible to
have multiple circuits, with each circuit representing one
pixel do instantaneous calculation and thus come up with
the result. When multiple operations are required the circuit
can be reprogrammed again or multiple circuits used to get
almost instantaneous results. These arrays are being built
capable of direct attachment to CCD cameras thus replicat-
ing the image processing that happens in our eye.

CONCLUSIONS
Image processing as it is used in biology has been a new
development even though many of the algorithms used in
image analysis have been mathematically well understood for
a long time. This is because of three major developments.
One, with cheaper processing power it is possible to do
thousands of computations quickly to derive meaningful
data from images and/or store some of these images for
off-line processing. Second, automation to prepare and treat
biological samples with multiple chemical entities has made
it possible to bring industrial style operations to biological
enterprise. Third, biological systems have been better under-
stood with the availability of unambiguous fluorescent
probes labeling specific cellular compartments with superb
fluorescent properties such as green fluorescent protein al-
lowing observation of transfected proteins in living cells.12–15

However, with all the developments, the critical and
sometimes the rate limiting component of any image analy-
sis or image processing in biology are still the identification
of objects of interest. Only when the cells, tissue, or the
organelle have been identified can the components be mea-
sured. For instance, the rate limiting step in image based
pathology is not the ability to prepare more tissue sections
or process data or even stain the specimen, instead it is the
ability to identify and analyze the objects of interest. Those
difficult steps are where image segmentation methods using
kernel and morphological operations, presented in this re-
view, are extremely useful. These tools are complex and
sometimes require judicious use of combining various meth-
ods to successfully identify objects. But even then, they may
work only within a defined set of conditions like a specific
microscope magnification with precise sample preparation.

The use of kernel methods can also be challenging and
it is possible that the complexity of image segmentation has
encouraged the development of fluorescent technology for
biology rather than traditional histological techniques. The
big advantage of fluorescence from image analysis point of
view is that the object is brighter than the background. This
simplifies object identification considerably. Using a simple
threshold function delineates the objects against the back-
ground. But, since biological objects have complex mor-
phologies, it still requires the use of kernel operations to
complete the segmentation process. Another advantage of
using kernel methods with fluorescence is that it analyzes
groups of pixels rather than single pixel values. So, the dif-
ference from the background can be easily highlighted.

Even with the availability of these kernel and morpho-

Figure 4. A fluorescent image of a group of cells was captured with a
CCD camera �a� when zoomed, �b� showed a series of patterns possibly
derived from the CCD elements. To remove this periodic noise a Fast
Fourier transform of the image was created �e�. A box was drawn around
the regions where the noise frequency was expected �e� and the box
filled with black �f� to eliminate those frequencies. The inverse transform of
�f� yielded the image �c� which when zoomed �d� showed that the noise
had been specifically eliminated.
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logical methods, it requires an understanding of the image to
interpret the data. Maybe, for true and accurate identifica-
tion segmentation and analysis of images will require a
knowledge base at the backend to understand biological ob-
jects rather than mere pixel number crunching engine. Thus,
the next big step in kernel and morphological processing will
be more intelligent identification of images assuming we
have resolved how to store and retrieve the large amounts of
data that are generated.
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