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Estimation of Cell Count from Cell Culture Images
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Abstract. In this paper, we present an algorithm to estimate the cell
counts from cultured rat B104 neuroblastoma cell images. Assuming
that cells are alike, the algorithm identifies the representative cell
based on processing the sorted size sequence of the threshold-
segmented regions. The size of the representative cell is used to
estimate the number of cells in each cluster where cells are at-
tached and inseparable. Preprocessing procedures include the ho-
momorphic filtering for improving the evenness of the image back-
ground, and gray-level morphologic dilation and erosion operations
for filling the hollow cells. Results on the B104 neuroblastoma cell
images are provided and compared with the numbers derived from
manual cell count by pathologists. © 2006 Society for Imaging Sci-
ence and Technology.
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INTRODUCTION

Quantitative analysis of the change of cell number over time
is used to evaluate various physiological phenomena such as
cell proliferation, differentiation, and cell death in the pres-
ence or depletion of biologically active compounds includ-
ing growth or tropic factors." B104 neuroblastoma cells dis-
play morphological and physiological features of neurons”
and are widely used as a model for studying molecular in
vitro analysis of phenomena in basic and applied
neuroscience.” Cellular loss or gain as a consequence of cell
death, proliferation or other mechanisms in an in vitro cul-
ture system can only be determined by an accurate count of
cells remaining on a culture plate. Biochemical methods of
cell death and proliferation such as flow cytometry, thymi-
dine incorporation, and TUNEL assay often introduce meth-
odological variables that may compromise the accuracy of
actual cell count, therefore, it has been suggested that quan-
tification should include microscopic evaluation of cell
count.* The estimation of cell count in an image requires
accurate segmentation of the cell regions.” Images of red
blood cells and spores without significant crowding can be
well segmented by thresholding and watershed algorithms.”
However, it is difficult to segment images of overcrowding
cells of large clusters such images of B104 neuroblastoma
cells.

Quantification based on sufficiently large microscopic
fields can be approached by digital image analysis. Such
analysis can be hampered by cell clusters and by unevenness
of examination fields resulting from illumination problems
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during photography with the inverted microscope. Although
B104 neuroblastoma cells generally display homogeneously
distributed bipolar cytoarchitecture with long neurite-like
processes and a rounded cell body,® the presence of cell
clumps is often observed. Such cell clusters, as well as un-
evenly illuminated microscopic fields can compromise digi-
tal cell counts. Here we present an algorithm for accurate
digital estimation of cell count that compensated for cluster
and illumination deficiency of microscopic cell culture im-
ages.

The paper is organized as follows. The section “Prepro-
cessing” describes the preprocessing procedures of homo-
morphic filtering that improves the homogeneousness of the
cell image background for the threshold segmentation of
cells, and morphological dilation and erosion operations for
the filling of the low intensity holes inside each cell. The
“Identifying the Representative Cell” section presents an ap-
proach to identify the representative individual cell based on
processing the size sequence of threshold-segmented re-
gions. Results are provided in the section “Results” and dis-
cussions are presented in the “Conclusions and Discussions”
section.

PREPROCESSING
A cell culture image usually contains scattered bright cells in
a dark background that has uneven light. To differentiate the
cell pixels from the background, a simple threshold may
separate the higher intensity cell pixels from the lower inten-
sity background. However, there are two problems that
should be addressed before the threshold segmentation.
The first problem is the uneven background that may
cause significant misclassification of pixels when a global
threshold is applied. The homomorphic filtering with a
high-pass filter can be used to reduce the slow changing
unevenness in the background and retain the fast changing
information.” Let the original image be represented by x(i,7),
fori=0,1,...,N;—1 and j=0,1,...,N,—1. The homomor-
phic filter is shown in Fig. 1 where a linear two-dimensional
high-pass filter is applied on the logarithmic image
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Figure 1. Homomorphic filtering reducing the slow changing back-
ground intensities.
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X(i,7) =log[x(i,7)] followed by an inverse exponential opera-
tion y(i,j)=exp[y(i,j)]. To ensure the output is still in the
image intensity range of [0,255], a normalization mapping is
performed such as y(i,7)=255[7(i,7) = 7minl/ Fmax — Vmin)s
where 7,.i and 7., are the maximum and minimum values
of y(i,j), for i=0,1,...,N,—1 and j=0,1,...,N,—1, re-
spectively.

The second problem is that the cells themselves are not
even in intensities. The cells show the bright membrane
rings with different thickness and black holes of variant
sizes. An approach to fill the hollowed cell bodies is the
gray-level morphologic closing that is a cascade of dilation
and erosion operations of circular structure element
of radius R, such as g(i,j)=ero[dilly(i,j)]], where
dilly(i,j)]=max,z,2<ply(i+m,j+n)] and  eroly(i,j)]
=min,, 2<ply(i+m,j+n)], for i=0,1,...,N;—1 and j
=0,1,...,N,—1. The dilation operation completely fills the
dark holes inside the cells if R is large enough. The distor-
tion of the cell regions resulting from the dilation is restored
by a subsequent reverse procedure of erosion operation with
the same structure element.

IDENTIFYING THE REPRESENTATIVE CELL
With the images of filled cells in clean and homogeneous
background after preprocessing, satisfactory segmentation of
cell regions can be achieved by a global thresholding sepa-
rating cells of high intensities from darker background. Let
the threshold-segmented image be represented by g;(i,j)
=1 (true) if g(i,j)=T, and 0 (false) otherwise. A pixel at the
coordinate (i,7) is considered belonging to a cell region if
gr(i,j)=1, to the background if g;(i,7)=0. If the threshold,
T, is properly selected, there should be a number of isolated
cell regions of different shapes and sizes sparsely located in
the black background. Each of the cell regions may contain
one or more cells if its area is large enough. Separating the
individual cells from a large region of mingled cells is diffi-
cult since they are often attached very tightly. In this section,
we describe an approach to identify the representative cell
that can be used to estimate the number of cells in each
isolated region in the threshold-segmented image, g(i,7).
Suppose there are totally K segmented regions that are
addressed by the index k for k=1,2,...,K. The background
region is referred by index of 0 which is treated separately.
Let the sequence hy(k), for k=1,2,...,K, represent the
number of pixels in the kth segmented region. When rear-
ranging the sequence h(k) in an ascending order, we obtain
the sorted sequence h(k), for k=1,2,...,K, where h(k)
<h(m) if k<m. If the cells have a similar size, we can
expect the regions of the isolated single cells are located
together in the sorted sequence since they have the similar
size and significantly different from those much larger re-
gions with multiple cells. To have a more stable and smooth
curve of sequence, we use a moving average filter with win-
dow of size 2M,+1, such as h(k)=1/(2M+1)Z™: | h(k
+m), for k=M,+1, M,+2,...,K—M,. Based on the as-
sumption of similar size of cells, h (k) will have a relatively
leveled period with small slopes corresponding to the single

‘(C)
Figure 2. (a) Original cultured rat B104 neuroblastoma cell image; (b)

normalized Homomorphically fillered image; (c) dilated image of (b);

and (d) eroded image of (c).

cell regions. Let the derivative sequence h (k)=h,(k)—h,(k
—1), for k=M,+2, M+3,...,K—M,. Large derivatives that
are basically located in the high end can be excluded since
they correspond to two regions with different number of
cells. We seek the cutting point at K, by searching h,(k)
from M,+2 upward until hy(K,—1)<T, and hy(K;)=T,,
where T, is a specified constant so that the (K,—1)th and
(K,)th regions have different number of cells. Thus, T,
should be larger than the average size of cells. While T, can
be significantly larger than the average cell size, limiting its
value can make the computations more simple. On the other
hand, much smaller regions such as regions less than a few
pixels should not be cell regions. While the derivatives are
small for these regions, the relative derivatives to the size of
the regions defined as h,(k) =h,(k)/ h(k) are high. Again, we
use a moving average filter to smooth the relative derivative
such as hs,(k)=[1/Ns(k)]2x;_M hk+m), k=M,+1, M,
+2,...,K=M, where N,(k) is the number of points in both
the moving window of size 2M,+1 and the signal support
[M,+1, K—M,]. Ny(k) is equal to 2M,+1 if 2M,<k<K
—2M,, and smaller otherwise.

If the h(k) is too small, then the kth region may not be
a cell region. Suppose h(m’—1)<T’ and h(m')=T’, where
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Figure 3. The sorfed size sequence of the segmented regions and its derivatives.

T’ is a small number. Assign the larger one of m’ and M,
+1ton',ie., n' equals m" if m">M+1, M+1 otherwise.
The sequence of h (k) for m' <k<K, is an approximately
decreasing sequence. The portion of regions in the range
m' <k<K, with lower h,(k) is the range of possible single
cells. To separate the low h,(k) from high h(k), we apply a
threshold that is the middle of the total dynamic range, such
as %[max(hsr)+min(hsr)], where max(h,,) and min(h,,) are
the maximum and minimum of h,(k), for m' <k<K,, re-
spectively. Search h,(k) upward from m’+1 for the index K,
such that h(K,—1)> %[max(hsr)+min(hs,)] and h(K;)
< J[max(h,,) + min(h,)].

So far, we have found two indices K; and K, that set the
lower and upper limits to the representative cell. While the
isolated single cells are located in the index range of [K,,K,],
the isolated regions of double cells are likely included in this
range as well since there may be a significant number of
such regions in the image. However, regions of more than
two cells should be very few if any included in this range
since their small number of regions result in extraordinary
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Figure 4. The circularity factor, 7(k), for k=K, Ky +1,...,Ky. A lower

factor corresponds to a region of shape more similar to a circle, while 1,
the lowest possible value, corresponds to an ideal circular disk.
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Figure 5. (a) The inifial segmentation; (b) limited regions containing
single, double or triple cells; (c) selected from (b) the regions that are
closer to round disks with smaller circularity factors; and (d) the single
region identified as the representative cell region shown in white pointed
by an arrow while the rest cells set to lower gray level from (c). Estimated
186 cells based on the selected representative cell.

It is observed that the cells from cultured rat B104 neu-
roblastoma are generally nearly round in shape. Regions of
double cells are much longer with two touched circles and
significantly different from a round shape. Based on the
shape information, it is efficient to differentiate between re-
gions containing single cells and regions with double cells.
We define a circularity factor, 7, that measures the difference
of a region of area A to a circular disk of the radius VA/
such as 17(k):(ZW/Ai)ZZg(i,j):k[(i—ik)2+(j—jk)z], v (i,j),
where Ay is the number of pixels in the kth region and (i, j;)
is the centroid of the kth region. The minimum value of
7(k) is 1 that corresponds to an ideal circular disk. A larger
value of 7(k) corresponds to a region more different from a
round disk such as a longer and narrower shape. It is noticed
that regions of single cells show more roundness and thus
have smaller 7 values. If a region whose 7 value is higher
than a given value T, the region is then not considered a
region of isolated single cell and should be excluded. In the
remaining regions, the one with the median size is consid-
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Figure 6. (a) Another original cultured rat B104 neuroblastoma cell im-
age and (b) normalized homomorphically filtered image.

ered as the best representative region for the cells. With the
representative cell region, the number of cell count of any
other region can then be estimated by comparing their sizes.
If the size of the representative region is measured as «, the
total number of cells in a given region is estimated by
(h(k)/ @), where the operator (-) is to round the enclosed
variable to its closest integer. The total number of cells in the
whole image is then estimated as the sum of cell counts in all
regions such as EI,S:K1<h(k)/ a).

RESULTS

Figure 2(a) shows an original cultured rat B104 neuroblas-
toma cell digital image of size 450 X 304 and 256 gray levels
acquired by phase microscopy. It is seen that many cells are
mingled and attached together in clusters where individual
cells are difficult to be separated. Although most cells are
attached to form large clusters, there are many loose indi-
vidual cells that are isolated from the others. Our algorithm
is to first identify those isolated cells and then find the typi-
cal cell that is representative to others on average in size. To
improve the thresholding segmentation of image, we apply a
homomorphic filtering to produce an image that has more
uniform background followed by a dynamic linear mapping
to expand the image range to the maximum of [0,255].
Figure 2(b) is the result after the homomorphic filtering and
mapping. Note that cells are hollowed with bright mem-
branes and dark cores. To have a segmentation of the whole
cell regions, it requires a mechanism to fill those holes with-
out significantly changing the cell sizes and shapes. We apply
a gray-level dilation to fill the holes followed by an erosion
to restore the cell regions. Figure 2(c) is the dilated image of
Fig. 2(b) by a structure element of a solid circle of radius 5,
while Fig. 2(d) is the eroded image of Fig. 2(c) by the same
structure element. Figure 2(d) is the preprocessed image in
which the hollow cells have been turned to solid ones for the
subsequent thresholding segmentation. The image has an
intensity range of [0,255]. We select the threshold T=90,
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Figure 7. The sorted size sequence of the segmented regions, its derivatives, and the circularity factor.

somewhat below 127, the middle level of the intensity range,
since the background near zero in intensities has a signifi-
cantly smaller dynamic range than the foreground of cells.
The resulting segmentation is shown in Fig. 5(a) where the
black represents the background while the white represents
the segmented cell pixels.

The next step is to evaluate the size of each threshold-
segmented region and rearrange the size sequence in an as-
cending order to obtain the sorted size sequence h(k), for
k=1,2,...,K, as shown in Fig. 3(a), where the number of
isolated cell regions counted as K=75 meaning there are 75
isolated white regions in Fig. 5(a). The smoothed sequence
hy(k) by a moving average filter of window of size of 9 is
shown in Fig. 3(b). The derivative of the smoothed se-
quence, hy(k), is displayed in Fig. 3(c) where the value keeps
low until after k=50 when it increases abruptly. Set the
threshold T, =40 for hy(k) to find the cutting index K,. A T,
value of 40 is a large value to ensure that the K,th and the
(K,—1)th segmented regions contain different number of
cells. The upper index boundary is found to be K,=63 in
this case. The smoothed relative derivative, h(k), is shown
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in Fig. 3(d). The size of the moving average window is also
selected as 9. We select the constant m’=10 implying that
regions smaller in size than ten pixels are not considered as
a whole cell. The assumption is reasonable since a whole cell
region is generally much larger than ten pixels. The maxi-
mum and minimum of hgy(k), for m'<k<K,, are
max(h,,)=0.157 and min(h,,)=0.0375, respectively. The
midlevel is therefore 3[max(h,)+min(h,)]=0.0972. The
lower index boundary is found to be K;=31 by searching
through the smoothed relative derivative hg (k) for m' <k
< K,. Thus, we expect that all the isolated regions of single
cells are located in the index range [K,,K,]=[31,63]. The
corresponding segmented cell regions in the index range of
[31,63] are displayed in Fig. 5(b) where the regions consid-
ered too large or too small are eliminated. The next step is to
further exclude those regions of multiple cells in the index
range of [K;,K,]. The circularity factor, 7(k), of each region
in the interested index range K; <k=<XK, is calculated and
shown in Fig. 4. As known, regions of single cells have sig-
nificantly lower value of circularity factor # than regions
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Figure 8. (a) The initial segmentation; (b) limited regions containing
single, double or triple cells; (c) selected from (b) those regions closer to
round disks with smaller circularity factors; and (d) the individual region
identified as the representative cell in white intensity pointed by an arrow
while the rest cells sef fo gray level from (c). Estimated 229 cells based on
the selected representative cell compared to about 202 cells of manual
count by pathologists.

with two cells. By eliminating all the regions whose 7 value
is above T,=1.5, we obtain the segmentation of isolated
regions of single cells as shown in Fig. 5(c) in which regions
appear longer and less round are eliminated. The best rep-
resentative cell region is selected as the one whose size is the
median of the remaining regions. In this case the represen-
tative cell is indexed as k=43 in the size sequence and
marked by a pointing arrow in Fig. 5(d). The size of the
representative cell region in Fig. 5(d) is measured as a
=105 pixels. The estimated total number of cells is then
estimated to be 186 compared to 184, the numbers of cells
derived from manual cell count by pathologists.

Figures 6-8 show the results of the estimation of cell
count from another B104 neuroblastoma cell image. All the
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choosing parameters are the same as those used in the pre-
vious experiment. The derived parameters are K;=27 and
K,=133. The index of the representative cell region is found
k=74. The size of the representative cell is a=85. The total
number of cells is estimated to be 229 compared to 202, the
manual count by pathologists.

CONCLUSIONS AND DISCUSSIONS

We have presented an algorithm for automatic counting of
cells from cultured rat B104 neuroblastoma cell images. A
preprocessing procedure converts cell regions from shapes of
hollow rings to shapes of solid circles by filling the holes in
center of cells with morphological operations of dilation and
erosion. Assuming that the cells are alike, the number of cells
in each cell cluster is estimated based on the size of a repre-
sentative cell. If the number of cells in an image is large
enough, there are likely many cells that are loose and isolated
from the others. The loose cells are located adjacent in the
ascending size sequence of the segmented regions forming a
wide plateau. The algorithm seeks all the loose single cells
based on the derivatives of the sorted size sequence and the
roundness of the segmented regions before selecting the re-
gion with median size as the representative cell region. The
total number of cells is finally estimated based on the size of
the representative cell.

The assumptions in the algorithm imply the limitation
of its applications. If cells in an image are not alike, the
estimation will be less accurate. If there are no loose cells
that are individually isolated in the image, the algorithm will
give inaccurate results. Fortunately, the images of B104 neu-
roblastoma cells satisfy these assumptions. The possible ap-
plications of the algorithm to other cell images remain to be
investigated.
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