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bstract. In this article, friction-induced vibrations of a xerographic
leaning blade are investigated theoretically and numerically. Using
finite element model, eigenvalue analysis of the blade vibration is

onducted considering the friction force between the cleaning blade
nd the photoreceptor. It is indicated that two different mechanisms
xist for the cleaning blade vibrations: the negative speed depen-
ence of the friction coefficient and the friction induced coupling of
ertain vibration modes. Numerical analysis is carried out for a typi-
al blade, and the unstable vibration modes are predicted for both
echanisms. Simulations are performed to verify the results of the
igenvalue analysis and to obtain additional results regarding the
haracteristics of the nonlinear vibrations in the time domain. The
esults are in agreement with vibrations observed in recent years in
any xerographic cleaning subsystems. © 2006 Society for Imag-

ng Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.�2006�50:1�103��

NTRODUCTION
n many recent xerographic printers/copiers, a cleaning
lade made from urethane rubber is used to remove un-
ransferred toner and other particles from the photoreceptor
urface before another cycle of printing/copying. The blade
s typically fixed on a metal bracket through which the pre-
cribed normal load is applied to compress the blade onto
he surface of the rotating photoreceptor drum. A problem
or the blade cleaning subsystem is the blade vibration
aused by the friction between the blade and the
hotoreceptor.1,2 The friction-induced blade vibration is es-
entially a self-excited vibration. It influences the cleaning
ubsystem performance, and can cause other problems such
s noise and excessive wear of the blade and the
hotoreceptor.3 Although the blade vibration can lead to
evere failure of the cleaning subsystem, it is not fully inves-
igated up to now. Research that focused on this subject is
escribed in Ref. 2. In Ref. 2, the vibration of a cleaning
lade was investigated using a single degree of freedom (1-
OF) model. It was indicated that the vibration was caused

y the negative damping due to the negative speed depen-
ence of the friction coefficient in the low slip-speed region.

Besides the vibrations described in Ref. 2, another class
f vibrations were observed in recent years in several proto-
ypes of high-speed printers under development. Although
he blade configurations are somewhat different from each

eceived Nov. 1, 2004; accepted for publication Feb. 8, 2005.
062-3701/2006/50�1�/103/8/$20.00.
ther for these prototypes, the vibrations have several char-
cteristics in common which are apparently different from
hose described in Ref. 2, which suggests a possibility of a
ifferent mechanism for blade vibrations:

(1) The main resonance frequencies of the vibrations
are in the range of 4–5 kHz, which are much higher
than in Ref. 2 (where it is about 2.3 kHz).

(2) The vibrations occurred constantly at the normal
process speed. In contrast, the vibrations in Ref. 2
arose just after the rotation of the photoreceptor
drum started and just before it stopped, and it did
not continue at a normal process speed.

Self-excited vibrations have been under investigation for
wide variety of mechanical systems for decades. It is well

nown that a multi-degrees-of-freedom (MDOF) system has
potential to be dynamically unstable (and as a result, self-

xcited vibration can occur) due to nonconservative force,
hich is formulated as asymmetric cross terms in the stiff-
ess matrix. For example in rotor dynamics, rotor internal
amping, including material damping and internal friction,
nd forces generated by fluid lubricants in journal bearings
ay be destabilizing depending on the rotational speed.4,5

or many automotive braking systems such as a disk brake
ystem6–8 or a drum brake system,9,10 friction force, which
auses asymmetric coupling of dynamic modes, is a reason
or self-excitation. Since the cleaning blade is essentially a

DOF system, it is possible that the same kind of self-
xcited vibration occurs. The purpose for this article is to
ive further investigation into the mechanism for the blade
ibrations, especially the possibility of instabilities caused by
ynamic coupling. The rest of the article is organized as

ollows. First, using a finite element model (which, being a
DOF model, gives better representation of the behavior of

n actual blade compared to a 1-DOF one), the equation of
otion for the blade is derived considering the friction force

etween the blade and the photoreceptor. Speed dependence
f the friction coefficient is incorporated into the model.
ext, through eigenvalue analysis, conditions for instability

re discussed in the modal space of the nonfrictional system.
t is indicated that both friction characteristics and dynamic
oupling can drive the system to instability. Then, numerical
nalysis is conducted for a typical cleaning blade, and the
nstable modes are predicted for both mechanisms. In the
103
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nal part of this article, simulations are performed to verify
he results of the eigenvalue analysis and to further explore
he characteristics of the nonlinear vibration in the time
omain. It becomes clear that the self-excited vibration of

he cleaning blade observed at a low-speed region is mainly
aused by the friction characteristics, while that observed at
relatively high-speed region is mainly caused by dynamic

oupling. The results are in agreement with vibrations ob-
erved in many cleaning subsystems in recent years.

ODELING OF THE VIBRATION SYSTEM

igure 1 shows the configuration of a typical blade cleaning
ubsystem. The urethane blade is glued to a metal holder,
hich is, for example, fixed on the frame of the toner car-

ridge unit. The portion of the blade extending out of the
older is called the free length (FL), and the angle formed by

he holder and the drum surface is called the blade setting
ngle (BSA). The blade has a thickness T. The dotted line in
ig. 1 shows the unstressed geometry of the blade, and with
positional interference d, the blade is compressed onto the
rum surface with a normal load of a designed value. Since

he system is uniform and long enough in the direction
erpendicular to the plane shown, it will be treated as a
lane strain problem.

In this article, a finite element model is used to approxi-
ate the behavior of the blade. Figure 2 shows an example

f a finite element model with four-noded plane strain ele-
ents. The velocity at the drum surface (also called the pro-

ess speed) is assumed to be constant. For the sake of sim-
licity, it is supposed that the only node that contacts the

Figure 1. Configuration of a typical cleaning subsystem.

Figure 2. A finite element model.
rum surface is the node at the edge of the blade. However, w

04
he following derivation can be easily generalized to a
ultinode-contact case. Both the holder and the drum are

ssumed to be rigid, thus a fixed boundary condition is ap-
lied to the portion of the blade surface glued to the holder,
nd with an assumption that the edge of the blade will not
eave the drum surface, the movement at the edge is con-
trained in the direction y (see Fig. 2). The friction force that
cts on the edge is first treated as an external force, and its
nfluence on the system dynamics will become clear by the
ubsequent derivation. The force of gravity is neglected.

Linearized in the vicinity of the equilibrium state, that
s, the steady sliding state, the blade dynamics can be de-
cribed by the following n-dimensional second-order vector
quation:

MẌr + CẊr + KXr = Fr , �1�

here Xr and Fr are, respectively, the displacement vector
nd the external force vector. The subscript r means that
hese vectors are variations from the equilibrium state in-
tead of an unstressed state. M, C, and K are, respectively,

ass, damping, and stiffness matrices. The modal matrix of
he corresponding undamped, nonfrictional system is

� = ��1,�2,¼,�n� , �2�

here �i�i=1,2 ,¼ ,n� is the ith mode shape vector, and �
s normalized with respect to the mass matrix. Assume pro-
ortional structural damping. Through a transformation

Xr = �q , �3�

q. (1) can be rewritten in terms of the modal coordinate
ector q as follows:

Iq̈ + 2��q̇ + �2q = �TFr , �4�

here I is the unit matrix of order n, and

q = �q1,q2,¼,qn�T ,

� = diag��1,�2,¼,�n� ,

� = diag��1,�2,¼,�n� .

ssume that the displacement at the edge in the x direction
see Fig. 2) corresponds to the mth element of vector Xr.
rom the one node contact assumption, we have

Fr = �0,¼,0, f̆

m

r,0,¼,0�T ,

here fr is the variation (from the steady sliding state) of the
riction force, and the cap over it indicates its index in the
ector. Equation (4) then becomes

Iq̈ + 2��q̇ + �2q = frA , �5�
here

J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006



a
t
m

t

w
s
v
s

w
s
p
v

T
f

M
w

w

I
f
s
b
w
a
b
e
e

C
d
r

b
a
t
m
t
p

n
v
t
h
m
s
r

F
T
f
m
t
t
b
(
v
e

I
s
v

t
o
i

I
C
t
f
q

S
c

I
w
t
r
�
w
p
l
n

I
I
d
f

Yu: Analysis of friction-induced vibrations¼

J

A = ��1m,�2m,¼,�nm�T , �6�

nd �im�i=1,2 ,¼ ,n�, whose value indicates how strongly
he modal coordinate qi is excited by the friction force, is the

th element of the ith mode shape vector �i.
Assume the friction coefficient is a function of the rela-

ive speed between the blade and the drum surface

� = ���s�� ,

here s=V0 −�, and V0 and � are the process speed and the
peed at the blade edge, respectively. If the amplitude of the
ibration is small enough that the direction of the relative
peed keeps the same, then we have

fr = ��V0 − ���N0 + Nr� − ��V0�N0, �7�

here N0 is the reaction force (or, normal load) at the steady
liding state, and Nr is the variation. Recalling that the dis-
lacement at the edge corresponds to the mth element of
ector Xr, from Eqs. (3) and (6), we have

� = ATq̇ . �8�

hen ��V0 −�� can be expanded into the polynomial of q̇ as
ollows:

��V0 − �� = ��V0� − ���V0�ATq̇ + o�q̇� . �9�

oreover, the reaction force variation Nr in Eq. (7) can be
ritten in terms of modal coordinates as

Nr = BTq , �10�

here

B = �b1,b2,¼,bn�T . �11�

n Eq. (11), bi�i=1,2 ,¼ ,n� is the amplitude of the reaction
orce corresponding to a unit vibration of ith mode. More
pecifically, when the undamped, nonfrictional system is vi-
rating in its ith mode with Xr =�ie

i�it, the reaction force Nr

ill be bie
i�it. Equation (10) is true for a linear continuum

nd approximately true for a finite element model described
y Eq. (1) when the elements at the contact area are small
nough. Substituting Eqs. (9) and (10) into Eq. (7) and
liminating higher order terms, we have

fr = − ���V0�N0ATq̇ + ��V0�BTq . �12�

onsequently, from the earlier equation and Eq. (5), the
ynamic equation of the frictional vibration system is de-
ived as

Iq̈ + �2�� + ���V0�N0AAT�q̇ + ��2 − ��V0�ABT�q = 0 ,

�13�

ased on which the dynamic stability of the blade will be
nalyzed. From Eq. (13), the speed dependence of the fric-
ion coefficient causes an additional term to the damping

atrix, and the friction itself causes an additional term to
he stiffness matrix whether or not the friction is speed de-

endent. Since their nondiagonal elements are generally s

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
onzero, the additional terms result in the coupling of the
ibration modes. The damping matrix of the frictional sys-
em remains symmetric. However, if the friction-speed curve
as a negative slope at V0, i.e., ���V0��0, the damping
atrix may become nonpositive-definite. In addition, the

tiffness matrix of Eq. (13) is generally asymmetric. As a
esult, dynamic instability may occur.

RICTION-INDUCED INSTABILITIES
he two factors, say, the negative speed dependence of the

riction coefficient and the asymmetric coupling of vibration
odes, together determine the stability of the frictional sys-

em. With the blade parameters and the friction characteris-
ics given, stability of the frictional system can be analyzed
y finding the eigenvalues of Eq. (13). The eigenvalues of Eq.
13) can be obtained, for example, by calculating the eigen-
alues of the following matrix of the equivalent first order
quations:

� 0 I

− ��2 − ��V0�ABT� − �2�� + ���V0�N0AAT�� .

�14�

f there is any eigenvalue whose real part is positive, the
ystem will be unstable. The imaginary part of the eigen-
alue corresponds to the frequency of the unstable mode.

To get further insights into the problem, the following
wo special cases are investigated, specifically the cases when
ne of the aforementioned factors is dominant so that the

nfluence of the other factor can be ignored.

nstability Due to Friction Characteristics
onsider the instability caused by the speed dependence of

he friction coefficient. Neglecting coupling of the modes
rom Eq. (13), the equation of motion of modal coordinate

i�i=1,2 ,¼ ,n� can be approximated by

q̈i + �2�i�i + ���V0�N0�im
2 �q̇i + ��i

2 − ��V0��imbi�qi = 0.

�15�

ince in general �i
2 	��V0��imbi, the above equation be-

omes unstable if its damping term is negative, or

���V0� � − 2�i�i/�N0�im
2 � . �16�

t is clear that the degree of instability of Eq. (15) increases
ith the negative derivative of the friction function and with

he increasing of the normal load. This is consistent with the
esults in Ref. 2. Moreover, because the damping coefficient,

i, is generally larger for high-order modes, low-order modes
ith larger ��im� have higher risk to become unstable. The
hysical meaning for this is that, it is easier for modes with

arger displacement at the blade edge to be excited by the
egative damping force caused by friction.

nstability Due to Dynamic Coupling
n order to investigate the influence of the friction-induced
ynamic coupling on the stability of the system, assume the

riction is not speed dependent. To assist in further under-

tanding of the mechanism, consider the simplest case when

105



t
s
t
m

T
t
u

o

I
s
i
w
b

t
i
(
m

T
c
m
g
a
t
s
f
b

a
f
p
T
f
�
�
F
s
f
a
c
b

N
C
e
=
Y
t
p
(

A
t
t

f
r
v
e
a
s
s
−
t
g

M

Yu: Analysis of friction-induced vibrations¼

1

wo modes, say, the ith and the jth modes, of an undamped
ystem are coupled by friction force. In this case, the equa-
ions of motion can be written as follows by an expansion of

atrices in Eq. (13):

�q̈i

q̈j
	 + ��i

2 − ��imbi − ��imbj

− ��jmbi �j
2 − ��jmbj

��qi

qj
	 = �0

0
	 .

�17�

he eigenvalues for Eq. (17) can be derived analytically. Af-
er some manipulation, the condition for the system to be
nstable can be obtained as

�2��imbi���jmbj� � −
���i

2 − ��imbi� − ��j
2 − ��jmbj��2

4
,

�18�

r approximately

�2��imbi���jmbj� � −
��i

2 − �j
2�2

4
. �19�

t can be easily verified that when Eq. (17) becomes un-
table, the imaginary parts of the eigenvalues, and accord-
ngly the frequencies of the modes of the frictional system
ill become equal, while the real parts of the eigenvalues will
e equal in absolute value but with opposite sign.

In contrast to inequality (16), which is a condition on
he derivative of the friction-speed function, inequality (19)
s a condition on the amount of the friction. From inequality
19), for instability to occur, it is required that the two

odes have the following properties:

(1) �imbi and �jmbj are of opposite sign and
(2) the frequencies of the modes are close enough.

o help understand the meaning of these two conditions, a
onceptual diagram is shown in Fig. 3 of an example of two
odes that satisfy the earlier requirements. Without loss of

enerality, assume �imbi is positive and �jmbj is negative. In
ddition, for the sake of simplicity, assume the frequencies of
hese two modes are almost equal. If mode i is excited
lightly by some noise, a displacement variation xri�t� and a
riction variation fri�t� will be generated at the edge of the

Figure 3. An example of two modes whose coupling causes instability.
lade. Since �imbi is positive, fri�t� will be of the same phase T

06
s xri�t� [refer to the definition of bi below Eq. (11)]. The
orce variation fri�t� then excites mode j and causes a dis-
lacement variation xrj�t� with a phase lag of about 
 /2.
he vibration of mode j will produce a friction variation

rj�t�, which, with a phase reversing that of xrj�t� (recalling

jmbj is negative), in turn excites mode i. In Fig. 3, �i�t� and

j�t� are velocities corresponding to xri�t� and xrj�t�. From
ig. 3, frj�t� and �i�t� are of the same phase, and it is the
ame with fri�t� and �j�t�. Thus, because of the existence of
riction, these two modes do positive work on each other,
nd as a result the vibration grows, which consequently
auses instability. This is the physical explanation of insta-
ility caused by dynamic coupling of vibration modes.

UMERICAL ANALYSIS FOR A TYPICAL BLADE
onsider a typical cleaning blade with the following param-

ters: FL=8 mm, T=2 mm, BSA=25 deg, d=1.2 mm, E
8.0�106 N/m2 , DEN=1.5�103 kg/m3, where E is the

oung’s modulus, and DEN is the mass density of the ure-
hane rubber. Moreover, suppose the blade is stiffness pro-
ortional damping. That is, for the damping matrix C in Eq.
1), we have

C = �K . �20�

value 2.0�10−6 s, which is approximately estimated from
he rubber’s rebound resilience, is assumed for damping fac-
or � in the following numerical analyses and simulations.

With the friction coefficient ��V0� given, the blade de-
ormation at steady sliding is first calculated. Then the natu-
al vibrations in the absence of friction are calculated in the
icinity of the steady sliding state. The results for the first
ight modes are given in Table I (the friction coefficient is
ssumed to be 0.7 when calculating the deformed shape at
teady sliding). The unit of bi is N/m because this is a plane
train problem. The eigenvalue real parts are simply
0.5 ��i

2 from the stiffness proportional damping assump-
ion. Modes of higher order are not considered since, in
eneral, the high-order modes are only minimally excited.

Table I. Natural vibrations in the absence of friction.

ode i Frequency �Hz� Eigenvalue real part �im �m� bi �N / m�

1 1164 −5.35�101 −0.16 −3.22�106

2 2186 −1.89�102 10.18 −3.79�106

3 3162 −3.95�102 0.99 −1.78�107

4 4944 −9.65�102 4.30 −2.77�107

5 5339 −1.13�103 −5.37 −1.14�107

6 6651 −1.75�103 −7.27 −1.78�107

7 7333 −2.12�103 1.43 −1.87�107

8 9059 −3.24�103 11.61 1.28�107
he mode shapes for the first five modes are shown in Fig. 4,

J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
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n which the dotted lines correspond to the shape of the
lade at steady sliding. It is clear that the first and the third
odes are dominated by bending vibrations. For these two
odes, the displacements at the edge of the blade are very

mall. On the other hand, the second mode is more affected
y longitudinal vibration, thus, the displacement at the edge
or the second mode is larger compared with other modes.
his can be seen from the values of �im in Table I, too. From

nequality (16), it can be easily verified that the second mode
s more likely to become unstable than other modes if the
riction coefficient is negative speed dependent. Referring to
able I, the frequency of the second mode is about 2.2 kHz.
his value corresponds approximately with the frequency in
ef. 2 of the vibration due to the speed dependence of fric-

ion.
Since there was much investigation in Ref. 2 concerning

he instability due to the speed dependence of friction, fur-
her discussion is omitted here. Instead, a detailed investiga-
ion is performed concerning the instability due to dynamic
oupling of vibration modes.

Assume a constant friction coefficient �=0.7. From the
nstability conditions and a simple observation of the modal
nformation given in Table I, the forth and the fifth modes
re most likely to be coupled to cause instability when cou-
ling of the neighboring two modes is considered (however,

his does not exclude the possibility of other unstable cou-
ling). For eigenvalue calculation, a higher-order model is
sed considering all of the first eight modes. The results are
iven in Table II. From Table II, the fourth mode has an

Figure 4. Modal shapes of the blade in the absence of friction.
igenvalue with positive real part. This indicates that for � g

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
0.7, the frictional system is dynamically unstable at a fre-
uency of about 5.2 kHz. This frequency corresponds ap-
roximately with that observed in the prototypes. A com-
arison of Tables I and II shows that, eigenvalues of the

ourth and the fifth modes move in the opposite direction.
hile the fourth mode becomes unstable, the fifth mode

ecomes more stable. Also, the frequencies of these two
odes become nearly equal. For other modes, the eigenvalue

eal parts remain almost unchanged, although for some of
hem, specifically the modes with large displacement at the
dge, the frequencies are affected by the existence of friction.
hus, as predicted, friction-induced coupling of the fourth
nd the fifth modes can lead to the instability of the system.
n the other hand, stabilities of the other modes are only

lightly affected.
To investigate the influence of the friction coefficient on

he system instability, eigenvalue analyses are performed us-
ng different values of friction coefficients, and the results are
hown in Fig. 5. It can be seen that when � is small, the
igenvalue real parts of these two modes remain almost un-
hanged, and the dynamic coupling works to get the fre-
uencies closer. When � reaches about 0.35, the real parts
tart to separate, and of these two modes, the real part of the
ourth mode moves toward the unstable region. At the same
ime, the frequencies become even closer and nearly equal.
t a value �
0.64, the eigenvalue real part of the fourth
ode crosses the horizontal axis. Thus, for the current

lade, the frictional system is unstable for �0.64, and the
egree of instability increases with increasing of �.

IMULATION RESULTS
ecause the problem is essentially nonlinear, the unstable
ibration will not grow infinitely, but will develop into a

imit cycle oscillation instead. Although eigenvalue analysis
an predict the unstable modes, many characteristics in time
omain of the resultant vibration cannot be obtained by
imply performing eigenvalue analysis. In this section, simu-
ations are conducted to verify the analyses results and to

Table II. Eigenvalues of the frictional system with µ = 0.7.

ode Frequency �Hz� Eigenvalue real part Eigenvalue imaginary part

1 1161 −5.34�101 7.29�103

2 2331 −1.90�102 1.46�104

3 3218 −3.93�102 2.02�104

4 5205 +1.27�102 3.27�104

5 5212 −2.21�103 3.27�104

6 6455 −1.76�103 4.05�104

7 7358 −2.12�103 4.62�104

8 8905 −3.24�103 5.59�104
ive further investigation into the characteristics of the non-
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inear vibration. The ABAQUS nonlinear finite element pro-
ram was used during the simulations. The blade and the
hotoreceptor drum are first modeled at positions without

nterference. Then the behavior of the blade is simulated by
direct integration over time. The simulation procedure is

s follows:

Step 1. Compress the blade to the photoreceptor drum
surface by a prescribed displacement, with the move-
ment of the drum constrained.
Step 2. Start up the rotation of the drum, until the
prescribed process speed is achieved.
Step 3. Keep the drum rotating with a constant speed.

he movement of the blade edge when the drum is rotating
onstantly is sampled and analyzed later.

ase 1
onsider the vibration caused by the negative speed depen-
ence of friction. Assume a friction coefficient that decays
xponentially with slip speed

���s�� = �� + ��0 − ���exp�− ��s�� , �21�

here �0 =0.4, �� =0.3, and �=0.8. Figure 6 shows the time
istories of the displacement at the edge when the process
peed is 20 and 50 mm/s, respectively. The corresponding
scillation frequencies are given alongside. The origin of the

igure 5. �a� Eigenvalue real parts and �b� frequencies as functions of
riction coefficient.
ime axis is shifted to a specific time step during step 3 when a

08
he amplitude of the oscillation converges to a certain value.
t can be seen that in both cases the motions are stick-slip
ibrations, which usually occur for systems with variation of
rictional resistance. For a very low process speed, say,
0 mm/s, the frequency of the vibration deviates from that
f the second mode, because in this case the frequency is
etermined mainly by the duration of the stick period. How-
ver, the frequency approaches that of the second mode
hen the process speed is 50 mm/s. It is confirmed that
ibrations do not occur for process speed 60 mm/s and
igher.

ase 2
onsider the vibration caused by the dynamic coupling of
ibration modes. Assume a constant friction coefficient �
0.7. It is predicted in the previous section by eigenvalue

nalysis that the system is unstable at a frequency of about 5
Hz. This vibration is observed in the simulation result. Fig-
re 7 gives the time histories of the displacement and veloc-

ty at the blade edge for a process speed 200 mm/s. It is
oted that, although the friction coefficient is assumed to
ave a constant value, the motion is a typical stick-slip os-
illation.

Figure 8 shows the time histories of the displacement at
he edge of the blade for different values of process speed
etween 50 and 200 mm/s. For the sake of clarity, the
urves have been shifted vertically by the amounts 0.11, 0.07,
.04, and 0.01 (from the upper to the lower curve), respec-
ively. It is clear that the amplitude of the vibration increases
ith the process speed, while the frequency of the vibration
eeps almost the same for the current range of process
peed.

From the earlier simulation results, the vibrations of the
lade caused by the two different mechanisms occur at dif-

erent process speed ranges. The vibrations due to the char-

igure 6. Time histories of the displacement at the blade edge of vibra-
ions due to speed dependent friction, for process speeds �a� 20 and �b�
0 mm/s.
cteristics of friction occur mainly in the low speed regime.

J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
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or a typical blade, the second mode is excited and the fre-
uency of the vibration is relatively low. On the other hand,
he vibrations due to dynamic coupling grow with the pro-
ess speed. For a typical blade, the coupling of the fourth
nd the fifth modes can cause instability, and the frequency
f the vibration is relatively high. Because the process speeds
f printers/copiers are becoming higher and higher, vibra-
ions caused by the dynamic coupling occur more frequently
han before. This explains why in many cases the vibrations
bserved in the prototypes being developed nowadays have

requencies higher than those observed a decade ago.

ase 3
o far the vibrations caused by the two mechanisms are

igure 7. Time histories of �a� the displacement and �b� the velocity at the
lade edge, of the vibration due to dynamic coupling of vibration modes.

igure 8. Time histories of the displacement at the blade edge for differ-
nt values of process speed, of vibrations due to dynamic coupling of
ibration modes.
nvestigated independently. It is natural to ask what will hap- a

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
en if both mechanisms work. To investigate this, assume a
elocity dependent friction coefficient as expressed by Eq.
21) but with �0 =0.8 and �� =0.7. Thus, in this case, the
riction coefficient has the same speed dependence as in case
, and it has the same value at the high-speed region as in
ase 2. Therefore, there is possibility that both mechanisms
ork. Simulations are performed for process speeds 20, 50,

nd 200 mm/s, respectively, and the results are given in Fig.
. For the sake of clarity, the curves have been shifted verti-
ally by the amounts 0.09, 0.05, and 0.02 (from the upper to
he lower curve), respectively. Comparing the results with
hose of cases 1 and 2, we can see that, for a low process
peed of 20 mm/s, the vibration is dominated by the speed
ependence of friction (the frequency is somewhat higher

han in case 1 because the amplitude in this case is smaller
ue to larger friction resistance and accordingly the period
f stick phase is shorter), while for a high process speed of
00 mm/s, the vibration is dominated by the coupling of
ibration modes. This is consistent with the results from
ases 1 and 2 concerning the relation between the vibration
echanisms and the process speed. For the process speed

0 mm/s, the vibration is more complicated due to the in-
uence from both factors. Because the stick-slip motion is
ighly nonlinear, the motion is far from a superposition of

wo vibrations with different frequencies. The stick and the
lip periods occur by a frequency of 3 kHz, which is in
etween the frequencies of the vibrations for process speeds
0 and 200 mm/s, while the amplitude of the oscillation
aries over time. Note that the frequency is close to that of
he third mode. Thus, the possibility of a resonance of the
hird mode cannot be excluded, although it is clear from the
igenvalue analysis that the third mode by itself can hardly
o unstable. Further investigation is needed in the future
esearch concerning the nonlinear behavior of the blade
hen both mechanisms work.

ONCLUSIONS
n this article, friction-induced vibrations of a cleaning blade

igure 9. Time histories of the displacement at the blade edge for differ-
nt values of process speed when both mechanisms may work.
re investigated theoretically and numerically. Using a finite
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lement model, the eigenvalue analysis of the blade vibration
s conducted considering the friction force between the
leaning blade and the photoreceptor. It is indicated that,
epending on the blade dynamics and the friction character-

stics, the blade vibrations can be caused by two different
echanisms: the negative speed dependence of the friction

oefficient, and the friction-induced coupling of vibration
odes. Numerical analysis and simulations are preformed

or a typical cleaning blade. It is shown that, for the first
echanism, primarily the second mode of the blade is ex-

ited. The vibration occurs mainly in the low-process-speed
ange. While for the second mechanism, the instability is

ost likely to be caused by the coupling of the forth and the
fth modes. The vibration tends to occur at rather higher
rocess speeds. These results are in agreement with vibra-
ions observed in recent years in many xerographic cleaning
ubsystems.
10
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