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Abstract. In this article, friction-induced vibrations of a xerographic
cleaning blade are investigated theoretically and numerically. Using
a finite element model, eigenvalue analysis of the blade vibration is
conducted considering the friction force between the cleaning blade
and the photoreceptor. It is indicated that two different mechanisms
exist for the cleaning blade vibrations: the negative speed depen-
dence of the friction coefficient and the friction induced coupling of
certain vibration modes. Numerical analysis is carried out for a typi-
cal blade, and the unstable vibration modes are predicted for both
mechanisms. Simulations are performed to verify the results of the
eigenvalue analysis and to obtain additional results regarding the
characteristics of the nonlinear vibrations in the time domain. The
results are in agreement with vibrations observed in recent years in
many xerographic cleaning subsystems. © 2006 Society for Imag-
ing Science and Technology.
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INTRODUCTION
In many recent xerographic printers/copiers, a cleaning
blade made from urethane rubber is used to remove un-
transferred toner and other particles from the photoreceptor
surface before another cycle of printing/copying. The blade
is typically fixed on a metal bracket through which the pre-
scribed normal load is applied to compress the blade onto
the surface of the rotating photoreceptor drum. A problem
for the blade cleaning subsystem is the blade vibration
caused by the friction between the blade and the
photoreceptor.”* The friction-induced blade vibration is es-
sentially a self-excited vibration. It influences the cleaning
subsystem performance, and can cause other problems such
as noise and excessive wear of the blade and the
photoreceptor.” Although the blade vibration can lead to
severe failure of the cleaning subsystem, it is not fully inves-
tigated up to now. Research that focused on this subject is
described in Ref. 2. In Ref. 2, the vibration of a cleaning
blade was investigated using a single degree of freedom (1-
DOF) model. It was indicated that the vibration was caused
by the negative damping due to the negative speed depen-
dence of the friction coefficient in the low slip-speed region.
Besides the vibrations described in Ref. 2, another class
of vibrations were observed in recent years in several proto-
types of high-speed printers under development. Although
the blade configurations are somewhat different from each

Received Nov. 1, 2004; accepted for publication Feb. 8, 2005.
1062-3701/2006/50(1)/103/8/$20.00.

other for these prototypes, the vibrations have several char-
acteristics in common which are apparently different from
those described in Ref. 2, which suggests a possibility of a
different mechanism for blade vibrations:

(1) The main resonance frequencies of the vibrations
are in the range of 4-5 kHz, which are much higher
than in Ref. 2 (where it is about 2.3 kHz).

(2) The vibrations occurred constantly at the normal
process speed. In contrast, the vibrations in Ref. 2
arose just after the rotation of the photoreceptor
drum started and just before it stopped, and it did
not continue at a normal process speed.

Self-excited vibrations have been under investigation for
a wide variety of mechanical systems for decades. It is well
known that a multi-degrees-of-freedom (MDOF) system has
a potential to be dynamically unstable (and as a result, self-
excited vibration can occur) due to nonconservative force,
which is formulated as asymmetric cross terms in the stiff-
ness matrix. For example in rotor dynamics, rotor internal
damping, including material damping and internal friction,
and forces generated by fluid lubricants in journal bearings
may be destabilizing depending on the rotational speed.*’
For many automotive braking systems such as a disk brake
system®™® or a drum brake system,”'” friction force, which
causes asymmetric coupling of dynamic modes, is a reason
for self-excitation. Since the cleaning blade is essentially a
MDOF system, it is possible that the same kind of self-
excited vibration occurs. The purpose for this article is to
give further investigation into the mechanism for the blade
vibrations, especially the possibility of instabilities caused by
dynamic coupling. The rest of the article is organized as
follows. First, using a finite element model (which, being a
MDOF model, gives better representation of the behavior of
an actual blade compared to a 1-DOF one), the equation of
motion for the blade is derived considering the friction force
between the blade and the photoreceptor. Speed dependence
of the friction coefficient is incorporated into the model.
Next, through eigenvalue analysis, conditions for instability
are discussed in the modal space of the nonfrictional system.
It is indicated that both friction characteristics and dynamic
coupling can drive the system to instability. Then, numerical
analysis is conducted for a typical cleaning blade, and the
unstable modes are predicted for both mechanisms. In the
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Figure 1. Configuration of a typical cleaning subsystem.

Figure 2. A finite element model.

final part of this article, simulations are performed to verify
the results of the eigenvalue analysis and to further explore
the characteristics of the nonlinear vibration in the time
domain. It becomes clear that the self-excited vibration of
the cleaning blade observed at a low-speed region is mainly
caused by the friction characteristics, while that observed at
a relatively high-speed region is mainly caused by dynamic
coupling. The results are in agreement with vibrations ob-
served in many cleaning subsystems in recent years.

MODELING OF THE VIBRATION SYSTEM

Figure 1 shows the configuration of a typical blade cleaning
subsystem. The urethane blade is glued to a metal holder,
which is, for example, fixed on the frame of the toner car-
tridge unit. The portion of the blade extending out of the
holder is called the free length (FL), and the angle formed by
the holder and the drum surface is called the blade setting
angle (BSA). The blade has a thickness T. The dotted line in
Fig. 1 shows the unstressed geometry of the blade, and with
a positional interference d, the blade is compressed onto the
drum surface with a normal load of a designed value. Since
the system is uniform and long enough in the direction
perpendicular to the plane shown, it will be treated as a
plane strain problem.

In this article, a finite element model is used to approxi-
mate the behavior of the blade. Figure 2 shows an example
of a finite element model with four-noded plane strain ele-
ments. The velocity at the drum surface (also called the pro-
cess speed) is assumed to be constant. For the sake of sim-
plicity, it is supposed that the only node that contacts the
drum surface is the node at the edge of the blade. However,
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the following derivation can be easily generalized to a
multinode-contact case. Both the holder and the drum are
assumed to be rigid, thus a fixed boundary condition is ap-
plied to the portion of the blade surface glued to the holder,
and with an assumption that the edge of the blade will not
leave the drum surface, the movement at the edge is con-
strained in the direction y (see Fig. 2). The friction force that
acts on the edge is first treated as an external force, and its
influence on the system dynamics will become clear by the
subsequent derivation. The force of gravity is neglected.

Linearized in the vicinity of the equilibrium state, that
is, the steady sliding state, the blade dynamics can be de-
scribed by the following n-dimensional second-order vector
equation:

MX,+ CX,+KX,=F,, (1)

where X, and F, are, respectively, the displacement vector
and the external force vector. The subscript r means that
these vectors are variations from the equilibrium state in-
stead of an unstressed state. M, C, and K are, respectively,
mass, damping, and stiffness matrices. The modal matrix of
the corresponding undamped, nonfrictional system is

(I):((f’l’d)b-"’d)n)’ (2)

where ¢,(i=1,2,...,n) is the ith mode shape vector, and P
is normalized with respect to the mass matrix. Assume pro-
portional structural damping. Through a transformation

X, =dgq, 3)

Eq. (1) can be rewritten in terms of the modal coordinate
vector q as follows:

14+ 2304 + O*q = ®'F,, (4)
where I is the unit matrix of order n, and

q=(q192 -9,
2 = diag(gl’gl’ . ")gn):

O =diag(w,, w,,...,w,).

Assume that the displacement at the edge in the x direction
(see Fig. 2) corresponds to the mth element of vector X,.
From the one node contact assumption, we have

m
F,=(0,...,0, f,0,...,0)7,

where f, is the variation (from the steady sliding state) of the
friction force, and the cap over it indicates its index in the
vector. Equation (4) then becomes

IG+230q+ Q% =fA, (5)

where
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A= (¢1m) ¢2m)---)¢nm)T’ (6)

and ¢;,,(i=1,2,...,n), whose value indicates how strongly
the modal coordinate g; is excited by the friction force, is the
mth element of the ith mode shape vector ¢,.

Assume the friction coefficient is a function of the rela-
tive speed between the blade and the drum surface

= pls])

where s=V,— v, and V|, and v are the process speed and the
speed at the blade edge, respectively. If the amplitude of the
vibration is small enough that the direction of the relative
speed keeps the same, then we have

fr= (Vo= v)(No + N,) = (V) Ny, 7)

where Nj is the reaction force (or, normal load) at the steady
sliding state, and N, is the variation. Recalling that the dis-
placement at the edge corresponds to the mth element of
vector X,, from Egs. (3) and (6), we have

v=ATq. (8)

Then w(Vy—v) can be expanded into the polynomial of g as
follows:

w(Vo—v) = u(Vo) — ' (Vo)ATq + o(g). )

Moreover, the reaction force variation N, in Eq. (7) can be
written in terms of modal coordinates as

N,=B'q, (10)
where
B:(bl)bz,...,bn)T. (11)

In Eq. (11), b)(i=1,2,...,n) is the amplitude of the reaction
force corresponding to a unit vibration of ith mode. More
specifically, when the undamped, nonfrictional system is vi-
brating in its ith mode with X,= ¢, the reaction force N,
will be b,e’®. Equation (10) is true for a linear continuum
and approximately true for a finite element model described
by Eq. (1) when the elements at the contact area are small
enough. Substituting Egs. (9) and (10) into Eq. (7) and
eliminating higher order terms, we have

fr=— 1 (VoN,ATq + u(Vo)B'g. (12)

Consequently, from the earlier equation and Eq. (5), the
dynamic equation of the frictional vibration system is de-
rived as

I +[230 + u/' (V))N,AATq + [Q* — u(V)AB"]q = 0,
(13)

based on which the dynamic stability of the blade will be
analyzed. From Eq. (13), the speed dependence of the fric-
tion coefficient causes an additional term to the damping
matrix, and the friction itself causes an additional term to
the stiffness matrix whether or not the friction is speed de-
pendent. Since their nondiagonal elements are generally
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nonzero, the additional terms result in the coupling of the
vibration modes. The damping matrix of the frictional sys-
tem remains symmetric. However, if the friction-speed curve
has a negative slope at Vg, ie., u'(Vy) <0, the damping
matrix may become nonpositive-definite. In addition, the
stiffness matrix of Eq. (13) is generally asymmetric. As a
result, dynamic instability may occur.

FRICTION-INDUCED INSTABILITIES

The two factors, say, the negative speed dependence of the
friction coefficient and the asymmetric coupling of vibration
modes, together determine the stability of the frictional sys-
tem. With the blade parameters and the friction characteris-
tics given, stability of the frictional system can be analyzed
by finding the eigenvalues of Eq. (13). The eigenvalues of Eq.
(13) can be obtained, for example, by calculating the eigen-
values of the following matrix of the equivalent first order
equations:

0 I
—[Q2 = w(Vy)AB™] —[23Q + pu/(V)N,AA™] |’
(14)

If there is any eigenvalue whose real part is positive, the
system will be unstable. The imaginary part of the eigen-
value corresponds to the frequency of the unstable mode.

To get further insights into the problem, the following
two special cases are investigated, specifically the cases when
one of the aforementioned factors is dominant so that the
influence of the other factor can be ignored.

Instability Due to Friction Characteristics

Consider the instability caused by the speed dependence of
the friction coefficient. Neglecting coupling of the modes
from Eq. (13), the equation of motion of modal coordinate
q:(i=1,2,...,n) can be approximated by

G+ [28i0; + ' (Vo)Noi, 14 + [@] — w(Vo) ibilq; = 0.
(15)

Since in general w?> u(V;)g;,b;, the above equation be-
comes unstable if its damping term is negative, or

w' (Vo) < = 28w/ (Ny b7, (16)

It is clear that the degree of instability of Eq. (15) increases
with the negative derivative of the friction function and with
the increasing of the normal load. This is consistent with the
results in Ref. 2. Moreover, because the damping coefficient,
{;, 1s generally larger for high-order modes, low-order modes
with larger |¢;,| have higher risk to become unstable. The
physical meaning for this is that, it is easier for modes with
larger displacement at the blade edge to be excited by the
negative damping force caused by friction.

Instability Due to Dynamic Coupling

In order to investigate the influence of the friction-induced
dynamic coupling on the stability of the system, assume the
friction is not speed dependent. To assist in further under-
standing of the mechanism, consider the simplest case when

105



Yu: Analysis of friction-induced vibrations...

Mode i Mode j

Txff/'(’)

g

Txri(’)
|

Twm Tw@
| \

Tfri(’) Tfr;‘(’)

| N

v
v

A 4
~

v
~.

v

Figure 3. An example of two modes whose coupling causes instability.

two modes, say, the ith and the jth modes, of an undamped
system are coupled by friction force. In this case, the equa-
tions of motion can be written as follows by an expansion of
matrices in Eq. (13):

(éi) [wf = ubimbi  — pubinb; :| (qi> (0)
+ = .
gj — kb wjz = udinb; [\ 4 0

(17)

The eigenvalues for Eq. (17) can be derived analytically. Af-
ter some manipulation, the condition for the system to be
unstable can be obtained as

[(0%2 — uinbi) — (‘UJ2 - ,U«d’jmbj)]z

W (i) (Pjby) < — 1 ’
(18)
or approximately
(0] - o)
W (i) (Bjpby) < — . (19)

It can be easily verified that when Eq. (17) becomes un-
stable, the imaginary parts of the eigenvalues, and accord-
ingly the frequencies of the modes of the frictional system
will become equal, while the real parts of the eigenvalues will
be equal in absolute value but with opposite sign.

In contrast to inequality (16), which is a condition on
the derivative of the friction-speed function, inequality (19)
is a condition on the amount of the friction. From inequality
(19), for instability to occur, it is required that the two
modes have the following properties:

(1) imb; and ¢;,b; are of opposite sign and
(2) the frequencies of the modes are close enough.

To help understand the meaning of these two conditions, a
conceptual diagram is shown in Fig. 3 of an example of two
modes that satisty the earlier requirements. Without loss of
generality, assume ¢;,,b; is positive and ¢;,,b; is negative. In
addition, for the sake of simplicity, assume the frequencies of
these two modes are almost equal. If mode i is excited
slightly by some noise, a displacement variation x,;(#) and a
friction variation f,;(f) will be generated at the edge of the
blade. Since ¢;,,b; is positive, f,;(t) will be of the same phase
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Table 1. Natural vibrations in the absence of friction.

Modei  Frequency (Hz)  Eigenvalue real part by, (m) b;(N/m)
1 1164 -5.35x10' -0.16 -3.22x 100
2 2186 -1.89x 102 10.18 -3.79x 106
3 3162 -3.95% 102 0.99 -178x 107
4 4944 -9.65x 102 4.30 -277x 107
5 5339 -1.13x 108 =537 -114x 107
6 6651 -1.75x10% -1.7 -178x 107
7 7333 -2.12x10° 1.43 -1.87 10
8 9059 -3.24x10° 11.61 1.28 <107

as x,i(t) [refer to the definition of b; below Eq. (11)]. The
force variation f,;(t) then excites mode j and causes a dis-
placement variation x,,(t) with a phase lag of about /2.
The vibration of mode j will produce a friction variation
(), which, with a phase reversing that of x,;(t) (recalling
&;nbj is negative), in turn excites mode i. In Fig. 3, v(¢) and
v(t) are velocities corresponding to x,(t) and x,;(t). From
Fig. 3, f,/(t) and v(t) are of the same phase, and it is the
same with f,;() and v,(t). Thus, because of the existence of
friction, these two modes do positive work on each other,
and as a result the vibration grows, which consequently
causes instability. This is the physical explanation of insta-
bility caused by dynamic coupling of vibration modes.

NUMERICAL ANALYSIS FOR A TYPICAL BLADE
Consider a typical cleaning blade with the following param-
eters: FL=8 mm, T=2 mm, BSA=25 deg, d=1.2 mm, E
=8.0X 10° N/m?, DEN=1.5X 10’ kg/m?, where E is the
Young’s modulus, and DEN is the mass density of the ure-
thane rubber. Moreover, suppose the blade is stiffness pro-
portional damping. That is, for the damping matrix C in Eq.
(1), we have

C=pK. (20)

A value 2.0 X 107° s, which is approximately estimated from
the rubber’s rebound resilience, is assumed for damping fac-
tor B in the following numerical analyses and simulations.
With the friction coefficient w(Vy) given, the blade de-
formation at steady sliding is first calculated. Then the natu-
ral vibrations in the absence of friction are calculated in the
vicinity of the steady sliding state. The results for the first
eight modes are given in Table I (the friction coefficient is
assumed to be 0.7 when calculating the deformed shape at
steady sliding). The unit of b; is N/m because this is a plane
strain problem. The -eigenvalue real parts are simply
—0.5 Bw; from the stiffness proportional damping assump-
tion. Modes of higher order are not considered since, in
general, the high-order modes are only minimally excited.
The mode shapes for the first five modes are shown in Fig. 4,
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Figure 4. Modal shapes of the blade in the absence of friction.

in which the dotted lines correspond to the shape of the
blade at steady sliding. It is clear that the first and the third
modes are dominated by bending vibrations. For these two
modes, the displacements at the edge of the blade are very
small. On the other hand, the second mode is more affected
by longitudinal vibration, thus, the displacement at the edge
for the second mode is larger compared with other modes.
This can be seen from the values of ¢;,, in Table I, too. From
inequality (16), it can be easily verified that the second mode
is more likely to become unstable than other modes if the
friction coefficient is negative speed dependent. Referring to
Table 1, the frequency of the second mode is about 2.2 kHz.
This value corresponds approximately with the frequency in
Ref. 2 of the vibration due to the speed dependence of fric-
tion.

Since there was much investigation in Ref. 2 concerning
the instability due to the speed dependence of friction, fur-
ther discussion is omitted here. Instead, a detailed investiga-
tion is performed concerning the instability due to dynamic
coupling of vibration modes.

Assume a constant friction coefficient w=0.7. From the
instability conditions and a simple observation of the modal
information given in Table I, the forth and the fifth modes
are most likely to be coupled to cause instability when cou-
pling of the neighboring two modes is considered (however,
this does not exclude the possibility of other unstable cou-
pling). For eigenvalue calculation, a higher-order model is
used considering all of the first eight modes. The results are
given in Table II. From Table II, the fourth mode has an
eigenvalue with positive real part. This indicates that for u
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Table 1. Eigenvalues of the frictional system with p=0.7.

Mode  Frequency (Hz)  Eigenvalue real part  Eigenvalue imaginary part

1 1161 -5.34x10! 7.29 x10°
2 2331 -1.90x 102 1.46x 104
3 3218 -3.93x 102 202104
4 5205 +1.27 X 102 3.27 <10
5 5212 -2.21x10° 3.27 x 10
6 6455 -1.7610° 4.05x10*
7 7358 -212x103 4.62x10*
8 8905 -3.24x10° 5.59 10

=0.7, the frictional system is dynamically unstable at a fre-
quency of about 5.2 kHz. This frequency corresponds ap-
proximately with that observed in the prototypes. A com-
parison of Tables I and II shows that, eigenvalues of the
fourth and the fifth modes move in the opposite direction.
While the fourth mode becomes unstable, the fiftth mode
becomes more stable. Also, the frequencies of these two
modes become nearly equal. For other modes, the eigenvalue
real parts remain almost unchanged, although for some of
them, specifically the modes with large displacement at the
edge, the frequencies are affected by the existence of friction.
Thus, as predicted, friction-induced coupling of the fourth
and the fifth modes can lead to the instability of the system.
On the other hand, stabilities of the other modes are only
slightly affected.

To investigate the influence of the friction coefficient on
the system instability, eigenvalue analyses are performed us-
ing different values of friction coefficients, and the results are
shown in Fig. 5. It can be seen that when w is small, the
eigenvalue real parts of these two modes remain almost un-
changed, and the dynamic coupling works to get the fre-
quencies closer. When w reaches about 0.35, the real parts
start to separate, and of these two modes, the real part of the
fourth mode moves toward the unstable region. At the same
time, the frequencies become even closer and nearly equal.
At a value u=0.64, the eigenvalue real part of the fourth
mode crosses the horizontal axis. Thus, for the current
blade, the frictional system is unstable for w>0.64, and the
degree of instability increases with increasing of u.

SIMULATION RESULTS

Because the problem is essentially nonlinear, the unstable
vibration will not grow infinitely, but will develop into a
limit cycle oscillation instead. Although eigenvalue analysis
can predict the unstable modes, many characteristics in time
domain of the resultant vibration cannot be obtained by
simply performing eigenvalue analysis. In this section, simu-
lations are conducted to verify the analyses results and to
give further investigation into the characteristics of the non-

107



Yu: Analysis of friction-induced vibrations...

(@ 1000
unstable region 4th mode N
5 0
o
®
o
g -1000 €
g
& 5th mode
2 .2000
L \’\S\S\S\E
-3000 p
0 02 04 0.6 0.8 1
Friction coefficient
() 5600
5400 5th mode
— q
T
= 5200
>
o
<
% 5000
T 4th mode
4800
4600
0 02 0.4 0.6 0.8 1

Friction coefficient

Figure 5. (a) Eigenvalue real parts and (b) frequencies as functions of
friction coefficient.

linear vibration. The ABAQUS nonlinear finite element pro-
gram was used during the simulations. The blade and the
photoreceptor drum are first modeled at positions without
interference. Then the behavior of the blade is simulated by
a direct integration over time. The simulation procedure is
as follows:

Step 1. Compress the blade to the photoreceptor drum
surface by a prescribed displacement, with the move-
ment of the drum constrained.

Step 2. Start up the rotation of the drum, until the
prescribed process speed is achieved.

Step 3. Keep the drum rotating with a constant speed.

The movement of the blade edge when the drum is rotating
constantly is sampled and analyzed later.

Case 1

Consider the vibration caused by the negative speed depen-
dence of friction. Assume a friction coefficient that decays
exponentially with slip speed

pls]) = oo + (o — pec)exp(= ls[), (21)

where ©y=0.4, u,=0.3, and y=0.8. Figure 6 shows the time
histories of the displacement at the edge when the process
speed is 20 and 50 mm/s, respectively. The corresponding
oscillation frequencies are given alongside. The origin of the
time axis is shifted to a specific time step during step 3 when
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Figure . Time histories of the displacement at the blade edge of vibra-
tions due to speed dependent friction, for process speeds (a) 20 and (b)
50 mm/s.

the amplitude of the oscillation converges to a certain value.
It can be seen that in both cases the motions are stick-slip
vibrations, which usually occur for systems with variation of
frictional resistance. For a very low process speed, say,
20 mm/s, the frequency of the vibration deviates from that
of the second mode, because in this case the frequency is
determined mainly by the duration of the stick period. How-
ever, the frequency approaches that of the second mode
when the process speed is 50 mm/s. It is confirmed that
vibrations do not occur for process speed 60 mm/s and
higher.

Case 2

Consider the vibration caused by the dynamic coupling of
vibration modes. Assume a constant friction coefficient w
=0.7. It is predicted in the previous section by eigenvalue
analysis that the system is unstable at a frequency of about 5
kHz. This vibration is observed in the simulation result. Fig-
ure 7 gives the time histories of the displacement and veloc-
ity at the blade edge for a process speed 200 mm/s. It is
noted that, although the friction coefficient is assumed to
have a constant value, the motion is a typical stick-slip os-
cillation.

Figure 8 shows the time histories of the displacement at
the edge of the blade for different values of process speed
between 50 and 200 mm/s. For the sake of clarity, the
curves have been shifted vertically by the amounts 0.11, 0.07,
0.04, and 0.01 (from the upper to the lower curve), respec-
tively. It is clear that the amplitude of the vibration increases
with the process speed, while the frequency of the vibration
keeps almost the same for the current range of process
speed.

From the earlier simulation results, the vibrations of the
blade caused by the two different mechanisms occur at dif-
ferent process speed ranges. The vibrations due to the char-
acteristics of friction occur mainly in the low speed regime.
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For a typical blade, the second mode is excited and the fre-
quency of the vibration is relatively low. On the other hand,
the vibrations due to dynamic coupling grow with the pro-
cess speed. For a typical blade, the coupling of the fourth
and the fifth modes can cause instability, and the frequency
of the vibration is relatively high. Because the process speeds
of printers/copiers are becoming higher and higher, vibra-
tions caused by the dynamic coupling occur more frequently
than before. This explains why in many cases the vibrations
observed in the prototypes being developed nowadays have
frequencies higher than those observed a decade ago.

Case 3
So far the vibrations caused by the two mechanisms are
investigated independently. It is natural to ask what will hap-
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Figure 9. Time hisfories of the displacement at the blade edge for differ-
ent values of process speed when both mechanisms may work.

pen if both mechanisms work. To investigate this, assume a
velocity dependent friction coefficient as expressed by Eq.
(21) but with w,=0.8 and wu.,=0.7. Thus, in this case, the
friction coefficient has the same speed dependence as in case
1, and it has the same value at the high-speed region as in
case 2. Therefore, there is possibility that both mechanisms
work. Simulations are performed for process speeds 20, 50,
and 200 mm/s, respectively, and the results are given in Fig.
9. For the sake of clarity, the curves have been shifted verti-
cally by the amounts 0.09, 0.05, and 0.02 (from the upper to
the lower curve), respectively. Comparing the results with
those of cases 1 and 2, we can see that, for a low process
speed of 20 mm/s, the vibration is dominated by the speed
dependence of friction (the frequency is somewhat higher
than in case 1 because the amplitude in this case is smaller
due to larger friction resistance and accordingly the period
of stick phase is shorter), while for a high process speed of
200 mm/s, the vibration is dominated by the coupling of
vibration modes. This is consistent with the results from
cases 1 and 2 concerning the relation between the vibration
mechanisms and the process speed. For the process speed
50 mm/s, the vibration is more complicated due to the in-
fluence from both factors. Because the stick-slip motion is
highly nonlinear, the motion is far from a superposition of
two vibrations with different frequencies. The stick and the
slip periods occur by a frequency of 3 kHz, which is in
between the frequencies of the vibrations for process speeds
20 and 200 mm/s, while the amplitude of the oscillation
varies over time. Note that the frequency is close to that of
the third mode. Thus, the possibility of a resonance of the
third mode cannot be excluded, although it is clear from the
eigenvalue analysis that the third mode by itself can hardly
go unstable. Further investigation is needed in the future
research concerning the nonlinear behavior of the blade
when both mechanisms work.

CONCLUSIONS
In this article, friction-induced vibrations of a cleaning blade
are investigated theoretically and numerically. Using a finite
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element model, the eigenvalue analysis of the blade vibration
is conducted considering the friction force between the
cleaning blade and the photoreceptor. It is indicated that,
depending on the blade dynamics and the friction character-
istics, the blade vibrations can be caused by two different
mechanisms: the negative speed dependence of the friction
coefficient, and the friction-induced coupling of vibration
modes. Numerical analysis and simulations are preformed
for a typical cleaning blade. It is shown that, for the first
mechanism, primarily the second mode of the blade is ex-
cited. The vibration occurs mainly in the low-process-speed
range. While for the second mechanism, the instability is
most likely to be caused by the coupling of the forth and the
fifth modes. The vibration tends to occur at rather higher
process speeds. These results are in agreement with vibra-
tions observed in recent years in many xerographic cleaning
subsystems.
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