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Abstract. In this article we propose a multiresolution texture syn-
thesis algorithm in which coefficient blocks of the spatiofrequency
components of the input texture are efficiently stitched together to
form the corresponding components of the synthesized output tex-
ture. We propose two algorithms to this effect. In the first, we use a
constant block size throughout the algorithm. In the second, we
adaptively split blocks so as to use the largest possible block size in
order to preserve the global structure, while maintaining the mis-
matched error of the overlapped boundaries below a certain error
tolerance. Throughout the algorithm designs, special consideration
is given to minimizing the computational cost. We show that the
adaptation of the multiresolution approach results in a fast, cost ef-
fective, flexible texture synthesis algorithm that is capable of being
used in conjunction with modern, bandwidth-adaptive, Markov ran-
dom field imaging applications. A collection of regular and stochastic
test textures is used to prove the effectiveness of the proposed
algorithm. © 2006 Society for Imaging Science and
Technology. [DOI: 10.2352/J.ImagingSci.Technol.(2006)50:1(93)]

INTRODUCTION

Digital technology has already taken over much of the en-
tertainment market with new developments in three-
dimensional (3D) television, digital films, and modern video
games. Television production is increasingly making use of
3D models, in applications including animation and virtual
production. There are efforts to replace human actors by
animated actors. Researchers are trying hard to make the
animated figures to look more realistic. In adding realism to
computer graphics applications, mapping natural textures
into computer-generated images is vital. Most of the map-
ping algorithms used today either wrap presynthesized tex-
tures or directly synthesize textures, on surfaces. Texture syn-
thesis has a variety of other applications in computer vision,
graphics, and image processing, such as occlusion fill-in and
image/video compression.

Textures have been traditionally classified as either regu-
lar or stochastic. Almost all the real world textures lie in
between these two extremes. Natural examples of such tex-
tures include fur of animals, patterns of flowers, bark on a
tree, etc., whereas fabric patterns and stone patterns on walls
are examples of man-made textures. A good texture synthe-
sis algorithm should have the ability to synthesize both these
types successfully.

A texture synthesis method starts from a sample image
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and attempts to produce a texture with a visual appearance
similar to that sample, by repeated placement of micropat-
terns of texture elements on a surface so that when perceived
by a human observer, it appears to be generated by the same
underlying stochastic process. Unfortunately, creating a ro-
bust and general texture synthesis algorithm has been proven
difficult.

The problem of synthesizing textures has been studied
extensively and numerous approaches have already been
proposed. So far the most common approach to texture syn-
thesis has been to develop a statistical model, which emu-
lates the generative process of the texture, which it is intend-
ing to mimic. Markov random field (MRF) is a widely used
texture model, which assumes the underline stochastic pro-
cess is both local and stationary. It is accepted that MRF can
model wide range of textures accurately. In our algorithm we
use the properties of this model in frequency domain. Other
successful  but more specialized models include
reaction-diffusion,"” frequency domain,” and fractals.*®

Algorithms using Markov random field models (or in a
different mathematical form, Gibbs Sampling)”™"" produces
better perceptual results, which are good approximations to
a broad range of textures. However the main drawback of
these algorithms is their computational intensiveness that
prevents them being used in real time texture synthesizing
applications: even small texture patches can take hours or
days to generate. Based on this MRF model Paget and
Longstaff11 proposed an algorithm with multiscale synthesis,
incorporating local annealing. Results show that this model
is able to produce a realistic texture. Although multiscale
synthesis with local annealing improves the implementation
of the MRF model, the speed of operation is below that
required for Markov random field operation. Zhu, Wu, and
Mumford'* presented a statistical theory for texture model-
ing. Their algorithm combines filtering theory and Markov
random field modeling through the maximum entropy prin-
ciple, and interprets and clarifies many previous concepts
and methods for texture analysis and synthesis from a uni-
fied point of view.

Another common approach is the physical simulation
of the texture. In this method texture generation is done by
directly simulating the physical generation process of specific
textures such as corrosion, weathering, etc. Certain patterns
such as fur, scale, and skin are modeled using reaction
diffusion”™'® and cellular texturing.™® In addition some
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weathering and mineral phenomena can be reproduced by
detailed simulations of texture."”" The main disadvantage
of these algorithms is that they cannot be applied to general
categories.

Another commonly used approach is statistical feature
matching. In this method certain features of the input tex-
ture are matched in constructing the resulting texture. These
algorithms are more efficient than Markov random field al-
gorithms. Heeger and Bergen® proposed a method for mod-
eling textures by matching marginal histograms of image
pyramids. This algorithm failed to give good results on
structured textures. Simoncelli and Portilla*" were able to
improve the synthesis results on structures by using a com-
plicated optimisation procedure. De Bonet™ synthesized the
textures from a wide variety of input images by shuftling the
elements in the Laplacian pyramid representation. Although
this method is better than Ref. 20, for structured textures it
can produce boundary artefacts in some cases.

The inspiration for our work comes from the recent
algorithms proposed by Efros and Freeman™ and Ling and
Liu.** Both these algorithms use patch based sampling and
Ling and Liu** addresses the problem of constrained texture
synthesis. They use feathering (Szeliski and Shum®) for edge
smoothing while Efros and Freeman are using minimum
error boundary cut. Further more Ling and Liu optimize the
performance of their algorithm using an approximate near-
est neighborhood (ANN) algorithm.*® Their approaches are
simple and work well with most textures. The proposed al-
gorithm is able to perform multiresolution texture synthesis
on a wider selection of textures with significant reduction in
computational cost. In order to enable the comparison of
our algorithm with that of others, we use the widely used
benchmark texture synthesis algorithm of Ref. 23 as our
benchmark, and perform our experiments on widely used
test images.

PIXEL BASED IMAGE QUILTING

In Ref. 23 Efros and Freeman proposed a patch based texture
synthesis algorithm in the pixel domain. The basic idea of
the algorithm is to create a large output texture from a given
small sample texture. The algorithm can be summarized as
follows.

First, a random, n X n block [see Fig. 1(b)] is selected
from the sample texture and is placed at the top left-hand
corner of the output texture to be synthesized. Second, all
possible (i.e., overlapping) n X n blocks in the sample texture
are matched, using a certain overlap area [see Fig. 1(c)] to
the above block. The block with the minimum matching
error [see Eq. (1)] is found and blocks which fall within 10%
of the minimum matching error are separated. A random
block from this group is picked as the blocked to be patched
to the block already synthesized in the output texture. This
process is continued in raster scan order until the output
texture is fully synthesized [see Fig. 1(a)].

Finally, a dynamic programming based edge cutting
technique along minimum cost paths™ is used to smoothen
the often visible straight line edge artefacts of the
patched block boundaries. For a clearer understanding we
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Figure 1. Pixel quiliing algorithm: (a) pasting blocks in raster scan order,
(b) randomly picking blocks from the sample, and (c) overlapping ran-
domly picked block B, with already pasted block B;. (d) Cutting through

minimum error boundary.

provide a simplified pseudocode of the earlier algorithm
as follows:
BEGIN
Pick a Random n X n Block from Sample,
Place in the top left corner of OutputTexture.
LastSynthesizedBlock=n X n Block
WHILE (OutputTexture is incomplete)
FOR all nXn Blocks of the Sample
Overlap with the LastSynthesizedBlock and/or
Block directly above (depending on position)
Store OverlapError and corresponding Block-
Number.
ENDFOR
Find Minimum OverlapError and Store Blocks
within 10% of it.
Pick a Random 71 X n Block amongst them
Patch block
LastSynthesizedBlock=above n X n Block
ENDWHILE
Perform Edge Cutting
END
Note that the quality of match between the overlapping
areas of two blocks is calculated in terms of the sum of
squared error (i.e., the L? norm), as follows:

SSE= > [L,(p) - L(p) (1)

pe0
where I(p) is the intensity value of the pixel p,O is the set

representing all pixels belonging to the overlap area of over-
lapping blocks, I, and I,.
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The typical overlap used is 1/6th the width of the
block. The block having the best matching overlap, and all
other blocks whose matching error is within 10% of that of
the best’s is selected as the subset from which subsequently a
block is picked up randomly. This block will be used to
patch the output image at the location to the right of the
previously patched block (in this instance, the top left-hand
corner block). This process is continued until the whole out-
put image is formed. In selecting nonboundary type blocks
(and the last column of blocks), the overlap considered in-
cludes both the overlap with the block in front (as discussed
above) and the block above. The output image formed fol-
lowing the above procedure is then subjected to a second
stage in which each overlapping set of blocks is combined
together along a line of best fit, i.e., by performing a mini-
mum error boundary cut, rather than the more obvious
straight edge cut.

Unfortunately, the above algorithm cannot be used for
real time texture synthesis. This is due to its complexity re-
sulting from two key approaches adopted. First, the use of
exhaustive searching in choosing the best match from the
sample texture (note: all possible overlapping blocks are con-
sidered) causes computational power to be wasted. Second,
the use of a random picking technique (described above) in
selecting the final block to be patched with the preceding
block, often results in the seam between the two adjacent
(i.e., patched) blocks to be visible. Even though a minimum
error boundary cutting technique is used to smoothen off
these sudden changes in texture, it involves computationally
extensive methodologies such as dynamic programming and
thus would not be suitable for real time applications.

In order to resolve the problems discussed above, we
propose the use of a multiresolution framework, which is
capable of faster texture synthesis.

MULTIRESOLUTION IMAGE QUILTING ALGORITHM
Generally, the process of texture synthesis can be mathemati-
cally represented by Eq. (2), where F is the texture synthesis
function, which takes the input texture sample I as the
input and synthesizes a texture, Loy

Ioutput = F(Isample) . (2)

The proposed multiresolution approach to texture synthesis
starts by applying an n level (n=3 in our experiments) two-
dimensional (2D) discrete wavelet transform (e.g., Haar
transform) to the sample image, Imple- The application of
single level 2D wavelet transform will result in decomposing
Iample Into a set of component images (subbands)

Isample = f( CsaO’ CshO’ Cst’ Cst) > (3)

where C,,g,Cy0,Cs0,Cogo are the image subbands (coeffi-
cient matrices) corresponding, respectively, to low-resolution
approximation, horizontal detail, vertical detail, and diagonal
detail of the sample input texture. Similarly two-level and
three-level decompositions are obtained by applying 2D
wavelet transform to the low-resolution subband of the pre-
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Figure 2. Transforming the sample texture info a multiresolution image
representation. (a) Sample texture, (b) single level decomposition, (c) two
level decomposition, and (d) three level decomposition.

vious decomposition level. This could be mathematically
presented as follows:

CsaO :f(csuhcshl’csvhcsdl)’ (4)

Csal :f(C5u2>Csh2>C5v2>Csd2) . (5)

For the purpose of clarity, a three-level wavelet decomposi-
tion of a sample texture is illustrated in Fig. 2.

If a wavelet decomposition strategy similar to the above
is performed on the output texture, I,y (Which is yet to be
generated) the following set of equations can be used for its
mathematical representation:

Ioutput = f(CoaO’ CohO’ Cov0> Codo) > (6)
CouO :f(Coul)CohI)Covl’Codl): (7)
Coal :f(Can’Cth’CDVZ’CDdZ)' (8)

Therefore, the three-level wavelet decomposition of the
sample and output textures consist of ten subbands each [see
Fig. 2(d)].

As the proposed algorithm involves the representation/
processing of the sample and synthesized textures in multi-
level discrete wavelet transform (DWT) decomposed states
described earlier, we generalize the notations used in Egs.
(3)—(8) as follows: in general we represent an image subband
as Cyy where ke {s,o}, pe{a,h,v,d}, and 1€{0,1,2}. In

95



Wickramanayake, Bez, and Edirisinghe: Multiresolution texture synthesis...

the above notation k represents decomposed image type (k
=s for sample image, k=0 for output/synthesized image), [
represents the decomposition level (0-1st level, 1-2nd level,
2-3rd level), and p represents the subbands within each de-
composition level (a—Ilow resolution, h—horizontal,
v—vertical, d—diagonal). Note that f represents the inverse
and f! represents the forward, discrete wavelet transform
function.

The basic idea of proposed multiresolution texture syn-
thesis algorithm is to synthesize each subband of the output
texture by the corresponding subband of the input, sample
texture. This could be mathematically represented as C,
=Fy(Cyy), where Fp; represents the synthesis function for
subband under consideration, i.e., (p,]). This texture synthe-
sis procedure can be described in more detail as follows.

Let By, represent a general square block of the de-
composed sample image (i.e., k=s), located at position (x,y)
relative to the subband (p,])’s origin. Note that in our ex-
periments we have set the size of the above block to be
2571x 257! In the first phase of the proposed texture synthe-
sis procedure we only consider the p=a subband of the 3rd
decomposition level of the output image, i.e., the subband
C,q 1s synthesized from samples of C,,,. We first pick a
block, By (y1,41), randomly from C,, and place it in the top
left-hand corner of the output coefficient image, C,,,. Si-
multaneously blocks on all remaining subbands of the
sample texture, which corresponds in location to the ran-
dom block above (i.e., Byyx1,,1)) are transferred to the top
left-hand corners of the associated subbands, C,;. [See Fig.
3(a) dotted blocks.] Note that at the end of this step the
synthesis of top left-hand corner blocks of all subbands (size
25712571 of the output texture will be completed. Subse-
quently, all possible (i.e., overlapping) blocks, By, of
similar size (i.e., 2% X 2°) from the input sample image’s C,,
component are picked and matched, for a good overlap with
the first block, i.e., the previously synthesized block. The
matching criteria used is as follows.

In general, if Byyjx1,,1) and Bgyxa,y2) are two blocks to be
matched, we say By, ) is the best match for By ,y1) if
d(Bopix1,91)> Bpi(xa,y2)) is minimum for all possible By, blocks
where,

d(Bspl(xz,yZ)’ Bopl(xl,yl))
= E {[aBapl(xl,yl)(i)

iedB
- aBspl(x2,y2)(i)]2}) (9)

where dB,,; is the edge zone of block B, [see Fig. 3(c)]
and i is an element (coefficient) within the edge zone.

In the proposed scheme, the matching described earlier
for the best neighbor is done only considering two subbands
of the lowest level of decomposition. The two subbands in-
clude the low resolution subband and one out of the detail
subbands. In our experiments due to the use of a three-level
DWT decomposition, we use the combined matching error
of the blocks in subbands p=a and p=d of decomposition
level I=2 to compute the total matching error. This is illus-
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Figure 3. Construction of the output fexture. (a) First random block (dot-
ted) and its best match (shaded) (second block) placed on fop left hand
corner of the output fexiure together with the corresponding coefficient
blocks of defail components in all three levels. (b) Selected best match for
the first block with its corresponding coefficient blocks from the input tex-
ture. (c) The matching criferion.

trated in Fig. 3(c). In general, the decision to select the most
appropriate detail subband in the above matching process
can be based on the total energy contained in the relevant
detail component. This is justified as a higher energy detail
component of a particular type; say C,, component, would
mean that the horizontal details of the original image would
be more significant and visually important than the vertical
or diagonal detail.

In combining the two overlap errors, i.e., the overlap
error between the blocks in the low-resolution component
and overlap error between the corresponding blocks (i.e.,
some spatial location) in the selected detail component [“di-
agonal” in the illustration of Fig. 3(c)]; we use the sum of
the squares of the square-errors [Eq. (1)] of the two com-
ponents, as the matching criteria. For example, if diagonal
details are prominent, Eq. (9) can be modified as follows:

d(B(XZ,y2)>B(x1,yl)) = E ({[aBan(xl,yl)(i) - aBsaZ(xZ,yz)(i)]z
iedB

+ [&BvdZ(xl,yl)(i) - aBst(xZ,yZ)(i)]z})-
(10)

Once the best matching block to the first block of the output
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image is found and located in the output images C,,, com-
ponent using the above procedure, the corresponding coef-
ficient blocks of size 2°7/x 257 from all detail images of the
sample texture image are transferred to the appropriate com-
ponents of the output texture image. [See Figs. 3(a) and
3(b).] This process is continued until the whole output tex-
ture image is constructed in a three-level decomposed for-
mat. Note that when constructing blocks other than those
belonging to the first row and first column of blocks, the two
overlaps, first corresponding to the overlap with the block in
front and second corresponding to the overlap with the
block above, needs to be considered. Finally, an inverse
DWT is performed on the output image decomposition to
create the output texture image, Ioutput.

Therefore, the proposed texture synthesis process de-
scribed in detail above, can be summarized as follows:

(1) Apply an N-level DWT decomposition to the
sample image and assume an empty N-level de-
composed structure of the texture to be synthe-
sized.

(2) Use a modified block quilting based texture synthe-
sis approach to synthesize the lowest resolution
subband of the texture to be synthesized from the
lowest resolution subband of the sample texture
(note: one detailed subband of the lowest resolu-
tion level is used in the above block matching to
improve the quality of this synthesis).

(3) For each best matching block position at the lowest
resolution level in step-2, transfer the correspond-
ing blocks of corresponding size of all other sub-
bands [see Fig. 3(a)] to the decomposed structure
of the empty output texture.

(4) Repeat step 3 until the decomposed structure of the
output texture is completely filled.

(5) Apply an N-level inverse DWT to obtain the syn-
thesized texture in pixel domain.

In order to maintain the global structure of the overall
texture it is important to select the block size to be suffi-
ciently large. This also accounts for increased efficiency of
the algorithm as the choice of blocks available for filling the
output texture becomes less, making the process fast (see
Block size). Unfortunately the selection of large block sizes
makes it increasingly difficult to find overlapping areas pro-
viding a good match, which in turn may effect the quality of
the resulting texture. On the other hand, the use of small
block sizes will increase the synthesis time and may have a
negative effect on the global structure of the synthesized
texture (see Block size). It has been shown that the selection
of the optimum size of the block is dependent on the repeat-
ing pattern contained in the texture to be synthesized.”
Thus, in an effective implementation of the proposed algo-
rithm we need to have a trade off between the image quality
and efficiency in selecting the block size. We use the follow-
ing procedure to achieve optimum trade off. For blocks in
the decomposition level I, we start with a block size of
2571x 257! coefficients. Subsequently, a maximum allowed
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Figure 4. Changing the block size adaptfively.

overlap error (mean-squared error) threshold &;, beyond
which the visual quality is poor, is defined. If overlap error is
greater than ), the block is split into four smaller blocks.
(See Fig. 4.) Finally, we repeat the above procedure for these
four blocks. However, the process is not repeated iteratively
to smaller block sizes due to the need of preserving the
global structure.

The following section provides detailed experimental re-
sults to justify the design and implementation of the pro-
posed algorithm and to critically analyze its performance.

EXPERIMENTAL RESULTS AND ANALYSIS

In order to analyze the performance of the proposed algo-
rithm, experiments were performed on a widely used set of
popular, test, texture images (see Fig. 5), consisting of tex-
tures of both regular [Figs. 5(b), 5(c), and 5(e)] and stochas-
tic nature [Figs. 5(a), 5(d), and 5(f)]. A typical sample size of
184 X 184 pixels was used to synthesize textures of size 512
X 512 pixels. The selection of publicly available texture im-
ages for our experiments should enable readers to compare
the performance of our algorithm with that of others (see
Fig. 10 for a comparison with Ref. 23).

In Design Considerations we further investigate the per-
formance of the proposed algorithm under three varying
design considerations and in Comparison with benchmark
we compare it directly with that of Ref. 23. A close visual
inspection of Fig. 5, illustrates a very good synthesized tex-
ture quality with no visibility of straight line edges (i.e.,
mismatches) between patched blocks. To further support the
subjective investigations and to allow a direct comparison
with textures synthesized in Ref. 23 we propose the use of
the objective quality measure, mean squared difference of
slopes (MSDS),”” which gives a measure of continuity of
texture across block boundaries. MSDS is defined as the
mean of the square of the difference between the slope
across two adjacent blocks and the average between the
slopes of each of the two blocks close to the boundary. In
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Figure 5. Muliiresolution image quilting results. Sample texture (smaller
images) and synthesized texiure (larger images) using proposed
algorithm.

relation to Fig. 6, where w(i,j) and f(i,j), (0<i, j<N-1)
are two adjacent (patched) N X N blocks, the MSDS along
an edge (boundary) can be mathematically defined as

N-1
MSDS g = >, ([f(k,o) —w(k,N-1)]
k=0
{[w(k,N— 1) = wik, N = 2)] + [flk,1) —ﬂk,o)]})z/ .
2

(11)

The overall MSDS of the synthesized texture is calculated by
totaling the squared difference of slopes over all such edges
(boundaries) in the synthesized texture and calculating the
mearn.

The quality metric MSDS has been used in the literature
to evaluate the performance of blocking artifact reduction
algorithms in DCT based image coding. It is capable of
checking local smoothness across straight edge, block
boundaries. Thus, it is not ideal in quantifying the mainte-
nance of global structure of synthesized textures. However, it
provides a reasonable objective metric to compare the per-
formance of texture synthesis algorithms. This is particularly
true for regular textures.
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Figure 6. Pixels used in MSDS calculation.

Design Considerations

Closer subjective analysis of the synthesized textures in Fig. 5
and further experimental analysis carried out by us have
revealed that there are important factors that are crucial in
deciding the quality of the final texture synthesized by the
proposed algorithm. They are:

(1) Level and type of detail used in selecting the match-
ing block.

(2) Size of the unit of construction used.

(3) Overlapping area used in matching.

Level and type of detail
In contrast to the method proposed by Efros and Freeman,
we have adapted a multiresolution matching strategy in se-
lecting the adjacent blocks of the output texture. The use of
pixel level detail in Ref. 23 would not only make the texture
synthesis inefficient, but also unsuitable for real time texture
synthesis capabilities expected by modern imaging applica-
tions. This is because full-resolution level details (pixel do-
main) have to be considered within the synthesis algorithm.

In the experiments performed we have assumed a typi-
cal three-level decomposition resulting in the lowest resolu-
tion component image to be 1/64 times the size of the origi-
nal image. The decisions about matching adjacent blocks are
taken only considering the above component and one other
detail component (see Multiresolution Image Quilting Algo-
rithm) from the third level of decomposition. Thus the com-
putational complexity is considerably reduced as compared
to the method proposed in Ref. 23 which performs block
matching in the pixel domain, i.e., full resolution level. The
exclusive use of the low resolution component is justified
due to the fact that it possesses the highest energy of all four
components at a given level of decomposition. Further ex-
perimental results indicated that the use of the additional
detail component (see Multiresolution Image Quilting Algo-
rithm) resulted in better matching as compared to using
only the lowest resolution component, justifying its use. Fur-
ther experiments also showed that using detail images of
higher resolution levels does not significantly improve the
quality of the final output texture.

Instead of randomly picking a block from a set of
blocks, which matches within 10% of the error of the best
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Figure 7. Block size vs synthesized texture quality (a) 16X 16, (b) 32
%32, (c) 64x 64, and (d) 128x 128.

matching block,” the proposed texture synthesis method se-
lects the best possible match in terms of the overlap criteria
discussed above. The experiments carried out by us revealed
that the random block picking technique proposed in Ref.
23 is ineffective when used in conjunction with the proposed
multiresolution-based approach. This is due to two reasons.
The first is the fact that the proposed algorithm performs
block quilting (matching) using the p=a and p=d (say)
subbands of the lowest resolution level (/=2) and a ran-
domly selected block within 10% of the error of the best
matching block could be vastly different from the best
matching block. Second, in order to keep the computational
cost down we do not carry out the minimum error bound-
ary cut proposed in Ref. 23 or the feathering technique pro-
posed in Ref. 24. This simplification also means that the
proposed technique needs less memory capacity to carry out
this task.

Block size

In Multiresolution Image Quilting Algorithm it was men-
tioned that the size of the element used in building the over-
all texture accounts for the overall quality of the texture and
the efficiency of the algorithm. In Fig. 7 we compare the
synthesized texture quality obtained when using block sizes
16 X 16, 32X 32, 64X 64, and 128 X128 (note: these are
the equivalent full resolution block sizes). A close examina-
tion of Fig. 7 reveals that at block sizes 16 X 16 and 128
X128, the block boundaries are more visible than at inter-
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Table 1. The effect of varying the block size on synthesis time and quality.

Block size Synthesis fime of a 512 X 512 texture (5) MSDS
1616 33.25 0.0129
32x32 9.92 0.0136
64 < 64 1.94 0.0140
128128 0.24 0.0187

mediate block sizes. Lower block sizes often result in the
algorithm being unable to capture the global repetitive pat-
tern that may be present in the sample texture. This may
lead to a degradation of synthesized texture quality near
boundaries. On the other hand, if the block size is too large,
the number of matching candidates becomes less. This may
affect the synthesized texture quality. Within our experi-
ments we found out that an equivalent block size of 64
X 64 at full resolution level suits most textures. Note that
this means at level-three decomposition the actual block size
considered is 8 X 8. Further experiments revealed that for
irregular textures, the effects of block size variation is mini-
mal as compared to that of regular textures.

Table I tabulates the synthesis time and MSDS values of
the texture of Fig. 7, when using different block sizes. Note
that as expected the doubling of the block dimensions result
in a more than four fold decrement in synthesis time. How-
ever, the MSDS values increases in increasingly larger steps
giving rise to a need in selecting a compromised block size.
Thus, the best approach could be to use a fully adaptive,
variable block size algorithm rather than the fixed block size
algorithm.

In the latter algorithm proposed in this article, we adap-
tively change the block size. Three different block sizes,
8X 8, 4X4, and 2 X2 are used in the resolution level [=2.
Figure 8 shows the results synthesized using the proposed
method when the adaptive block size algorithm is used. Fig-
ure 9 compares the performance of the proposed algorithm
using fixed sized blocks with that of using variable size
blocks. It clearly shows the improvement of the quilting
quality obtainable with the adaptive block size selection al-
gorithm.

In Fig. 7 it is illustrated that when a block size of
128 X 128 is used, the subjective quality of synthesized tex-
ture is superior when compared to that obtained when using
a block size of 16 X 16. However, the MSDS values of Table
I contradicts this as it gives a markedly smaller MSDS value
when a block size of 16X 16 is used. A close look at the
synthesized textures show that even though the global
smoothness of synthesized texture in Fig. 7(a) is low (highly
visible artifacts at the bottom right corner), local smoothness
(luminance gradients) in the texture across block boundaries
is relatively better as compared to that of Fig. 7(d). This
concludes that MSDS is not an ideal metric to measure and
compare synthesized texture qualities under varying block
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© (d)

Figure 8. Texiure synthesis results with adaptive block sizes.

Figure 9. Performance comparison: The use of fixed (leff) vs adaptive
(right) block size.

sizes. Note, however, that given the same block size, it is a
good metric to compare and contrast synthesized textures,
because global texture is maintained at an equivalent level
when identical block sizes are used by two algorithms.

Area of overlap

In selecting the matching block, the area of overlap will also
account for the overall quality of the synthesized texture and
speed. Use of a smaller number of overlapping elements
(coefficients) results in an increased speed but more visible
artifacts at block boundaries. On the other hand, an increase
in the number of overlapping elements results in fewer arte-
facts but an increased synthesis time. Table II tabulates the
total synthesis time and MSDS values of the synthesized tex-
tures when different overlap sizes are used. Note that the
block size used is 64 X 64 and the overlaps quoted are mea-
sured in pixels, both at full resolution (i.e., in pixel domain)
level. The results in Table II confirm the conclusions drawn
earlier. Note that, a too extensive increase in overlapping area
(overlap=40) will result in noticeable artifacts as it makes it
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Table I1. The effect of varying the overlap size on synthesis time and quality.

Overlap Synthesis time of a 512 512 fexture ($) MSDS
8 12.14 0.0186
16 21.76 0.0191
24 28.92 0.0194
32 33.45 0.0202
40 37.95 0.0215
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Figure 10. Comparison of performance of the purposed algorithm with
Efros’ and Freeman’s (see Ref. 23) algorithm. Left: Sample input texiures.
Middle: Output textures generated using proposed algorithm. Right: Out-
put fexiure generated using Efros’ and Freeman's algorithm.

more difficult for the algorithm to make the correct decision
on the perceptually best matching block. For our experi-
ments we have adapted an overlap of a single coefficient row
(or column) at the third level of decomposition. This
amounts to an overlap of eight pixel rows (or columns) in
the pixel domain. Note that in Table I the best speed and
quality performance is obtained when using the earlier over-
lap.

Comparison with Benchmark

Figure 10 compares the subjective performance of the pro-
posed algorithm with that of Efro’s and Freeman’s. The re-
sults illustrate that the subjective quality of the proposed
technique is marginally better than that of Ref. 23. Note that
for a fair comparison with Ref. 23, we have used the fixed
block size version of our algorithm for visual comparison in
Fig. 10. In addition, Table III tabulates the MSDS values of
the synthesized textures obtained with the proposed and
benchmark algorithms for all test images considered in Figs.
5 and 10. These results show that the objective quality per-
formance of the proposed technique is marginally better

J. Imaging Sci. Technol. 50(1)/Jan.-Feb. 2006
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Table 111, Performance comparison: Efros’ (Ref. 23) versus proposed.

MSDS

Efros’ Proposed

Fig. 5(a) 0.0204 0.0201

Fig. 5(h) 0.0152 0.0146

Fig. 5(c) 0.0314 0.0306

Fig. 5(d) 0.0082 0.0081

Fig. 5(e) 0.0296 0.0287

Fig. 5() 0.0835 0.0776

Text image in Fig. 10 0.0744 0.0661
Granite image in Fig. 10 0.0243 0.0155

than that of Ref. 23. In particular, for regular textures the
proposed algorithm performs relatively better in comparison
to the algorithm of Ref. 23, because the benchmark algo-
rithm picks up a random block among a set of best match-
ing candidate blocks (within 10% of the best match) in
patching two adjacent blocks. Although when using random
textures this process may not create significant visual arti-
facts along block boundaries, when using regular textures,
noticeable artifacts could arise and a randomly selected as a
randomly selected block would not be the best choice.

The earlier results show that both the subjective and
objective performance of the proposed multiresolution tex-
ture synthesis algorithm is slightly better than that of Ref. 23.
However, due to the use of the multiresolution approach the
best contribution of the novel technique is on the algorith-
mic simplification achieved. Given the fact that in the pro-
posed technique the output texture is synthesized based only
on a search on the lowest resolution level of the decomposed
sample texture image, a comprehensive computational com-
plexity investigation revealed that theoretically the proposed
algorithm is approximately 64 times faster than the bench-
mark algorithm. This theoretical value has been calculated
based on several assumptions. First, we have assumed that
the computational cost of additions, subtractions, and
modulus operations are equal and that only the diagonal
detail subband (out of the three detail subbands) of the low-
est resolution level is combined with the lowest resolution
subband in calculating the selective area diffraction (SAD) of
the overlapped areas. Second, in order to enable an equiva-
lent single pixel shifted block to be selected in the full pixel
resolution level, searching is actually performed on the low-
est resolution subbands of 64 different wavelet decomposi-
tions of the sample image, each offset by one pixel. When
the synthesized texture size is considerably large as compared
to the sample texture, the earlier additional cost of needing
64, single pixel shifted DW'Ts of the relatively small sample
image, can be neglected. However, when using a personal
computer with a Pentium III 700 MHz processor, nonopti-
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mized MATLAB code, software based wavelet transforms, no
hardware acceleration, and synthesizing a 512 X 512 texture
from a 184X 184 sample, the effective speedup finally
achieved was approximately tenfold. In particular when syn-
thesizing all textures considered in Figs. 5 and 10, Efros’
algorithm took an average of 98.26 s per texture whereas the
proposed method took only 9.63 s. Optimization of the soft-
ware based DWT implementations could lead to further
speeding up of the proposed algorithm. Further investiga-
tions revealed that use of graphics hardware capable of doing
fast wavelet transformations would improve the speed up
obtainable to approximately 30-fold. However, when the al-
gorithm is used within a image/video coding systems that
require the multiresolution decomposition of texture detail,
the requirement for dedicated wavelet transform for the pur-
pose of texture quilting becomes nonessential. Therefore, the
effective speedup that can be achieved becomes much higher
than the tenfold value stated above.

APPLICATIONS OF THE PROPOSED ALGORITHM
The multiresolution texture synthesis technique adopted
within the proposed scheme enables its use in modern in-
teractive media applications that require progressive/
interactive image/video transmission. Of specific interest is
the video gaming industry that requires graphical objects to
possess varying surface texture resolutions (thus appearance
of reality) depending on the visual significance of the object
within the viewed scene. In addition, the specific use of
DWT in obtaining the multiresolution decomposition makes
the proposed technique adoptable to texture synthesis appli-
cations that are used in conjunction with the JPEG2000 im-
age coding standard and the Animation Framework Exten-
sion (AFX) of the MPEG-4 video coding standard, which are
based on DWT based coding. In addition it can be used in
relation to MIP—rnapping28 which is used for antialiasing in
texture mapping which is used in majority of current graph-
ics applications.

In Fig. 11, we illustrate the synthesis of the output tex-
ture using a multiresolution approach. The synthesis of the
texture in Fig. 11(b) is done using only the C,,, subband of
the sample texture in Fig. 11(a). The synthesis of texture in
Fig. 11(c) is done using all subbands at resolution level
I=2. In synthesizing the texture in Figs. 11(d) and 11(e), the
detailed subbands (p=v, p=h and p=d) in the next higher
resolution level are respectively considered in addition. Fig-
ures 11(f)-11(i) illustrate the wrapping of the above textures
[i.e., those of Figs. 11(b)-11(e)] onto a sphere, which is a
more frequently encountered scenario within modern appli-
cations.

The ability of multiresolution texture synthesis is a key
advantage provided by the proposed algorithm. This was not
possible by the adaptation of the pixel based approach to
texture quilting as used in Refs. 23 and 24.

CONCLUSION AND FUTURE WORK

In this article we have introduced a novel approach to syn-
thesizing textures under a multiresolution framework. We
have provided experimental results and an in-depth analysis,
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Figure 11. Multiresolution texture synthesis: (a) Input fexture. (b)—(e) Syn-
thesized fextures onto a 2D surface (A—(i) Synthesized textures onto a
sphere, af progressively higher resolutions.

proving that the proposed method works remarkably well,
producing equivalent (or better) output texture quality as
compared to the method proposed in Ref. 23, at approxi-
mately sixfold decrement of computational cost. The multi-
resolution nature of the proposed framework also makes it
easily applicable to modern imaging applications needing
progressive transmission capabilities.

In designing the earlier multiresolution texture synthesis
algorithm we have made a compromise between the synthe-
sized texture quality and the algorithmic complexity by not
performing seamless edge construction algorithms as in
Refs. 23 and 24. However, due to the multiresolution ap-
proach and the novel matching criteria adopted, we have
managed to obtain perceptually equivalent (or better) syn-
thesized texture quality to that of Refs. 23 and 24 with much
less computational complexity. We are currently looking at
the implementation optimization of the algorithms and the
use of fast, simple, seamless edge cutting/construction algo-
rithms. We are also in the process of applying the idea to
handle the texture synthesis part omitted from consideration
in the fast MESHGRID coding algorithm of Ref. 29, which has
been a key contribution to the MPEG-4 AFX coding stan-
dard. This is expected to extend the applicability of the
MESHGRID algorithm to full, fast, multiscalable 3D object/
surface coding.
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