
A
t
c
f
t
c
a
o
m
t
i
a
f
u
d
t
a
T

I
D
t
d
g
3
p
a
a
c
i
p
t
t
g
i

l
b
t
t
a
s
t

R

1

Journal of Imaging Science and Technology® 50(1): 93–102, 2006.
© Society for Imaging Science and Technology 2006
Multiresolution Texture Synthesis in Wavelet
Transform Domain

D. S. Wickramanayake, H. E. Bez and E. A. Edirisinghe
Department of Computer Science, Loughborough University,
Loughborough, Leicestershire LE11 3TU, United Kingdom

a
s
t
b
u
b
d

e
p
t
l
i
t
c
m
u
s
r

d
b
a
t
p
a
d
L
i
i
s
o
r
M
i
r
c
a
fi

o
d
t
s

bstract. In this article we propose a multiresolution texture syn-
hesis algorithm in which coefficient blocks of the spatiofrequency
omponents of the input texture are efficiently stitched together to
orm the corresponding components of the synthesized output tex-
ure. We propose two algorithms to this effect. In the first, we use a
onstant block size throughout the algorithm. In the second, we
daptively split blocks so as to use the largest possible block size in
rder to preserve the global structure, while maintaining the mis-
atched error of the overlapped boundaries below a certain error

olerance. Throughout the algorithm designs, special consideration
s given to minimizing the computational cost. We show that the
daptation of the multiresolution approach results in a fast, cost ef-

ective, flexible texture synthesis algorithm that is capable of being
sed in conjunction with modern, bandwidth-adaptive, Markov ran-
om field imaging applications. A collection of regular and stochastic

est textures is used to prove the effectiveness of the proposed
lgorithm. © 2006 Society for Imaging Science and
echnology. �DOI: 10.2352/J.ImagingSci.Technol.�2006�50:1�93��

NTRODUCTION
igital technology has already taken over much of the en-

ertainment market with new developments in three-
imensional (3D) television, digital films, and modern video
ames. Television production is increasingly making use of
D models, in applications including animation and virtual
roduction. There are efforts to replace human actors by
nimated actors. Researchers are trying hard to make the
nimated figures to look more realistic. In adding realism to
omputer graphics applications, mapping natural textures
nto computer-generated images is vital. Most of the map-
ing algorithms used today either wrap presynthesized tex-

ures or directly synthesize textures, on surfaces. Texture syn-
hesis has a variety of other applications in computer vision,
raphics, and image processing, such as occlusion fill-in and
mage/video compression.

Textures have been traditionally classified as either regu-
ar or stochastic. Almost all the real world textures lie in
etween these two extremes. Natural examples of such tex-
ures include fur of animals, patterns of flowers, bark on a
ree, etc., whereas fabric patterns and stone patterns on walls
re examples of man-made textures. A good texture synthe-
is algorithm should have the ability to synthesize both these
ypes successfully.

A texture synthesis method starts from a sample image

eceived Sep. 20, 2004; accepted for publication Feb. 11, 2005.
d062-3701/2006/50�1�/93/10/$20.00.
nd attempts to produce a texture with a visual appearance
imilar to that sample, by repeated placement of micropat-
erns of texture elements on a surface so that when perceived
y a human observer, it appears to be generated by the same
nderlying stochastic process. Unfortunately, creating a ro-
ust and general texture synthesis algorithm has been proven
ifficult.

The problem of synthesizing textures has been studied
xtensively and numerous approaches have already been
roposed. So far the most common approach to texture syn-

hesis has been to develop a statistical model, which emu-
ates the generative process of the texture, which it is intend-
ng to mimic. Markov random field (MRF) is a widely used
exture model, which assumes the underline stochastic pro-
ess is both local and stationary. It is accepted that MRF can
odel wide range of textures accurately. In our algorithm we

se the properties of this model in frequency domain. Other
uccessful but more specialized models include
eaction-diffusion,1,2 frequency domain,3 and fractals.4–6

Algorithms using Markov random field models (or in a
ifferent mathematical form, Gibbs Sampling)7–10 produces
etter perceptual results, which are good approximations to
broad range of textures. However the main drawback of

hese algorithms is their computational intensiveness that
revents them being used in real time texture synthesizing
pplications: even small texture patches can take hours or
ays to generate. Based on this MRF model Paget and
ongstaff11 proposed an algorithm with multiscale synthesis,

ncorporating local annealing. Results show that this model
s able to produce a realistic texture. Although multiscale
ynthesis with local annealing improves the implementation
f the MRF model, the speed of operation is below that
equired for Markov random field operation. Zhu, Wu, and

umford12 presented a statistical theory for texture model-
ng. Their algorithm combines filtering theory and Markov
andom field modeling through the maximum entropy prin-
iple, and interprets and clarifies many previous concepts
nd methods for texture analysis and synthesis from a uni-
ed point of view.

Another common approach is the physical simulation
f the texture. In this method texture generation is done by
irectly simulating the physical generation process of specific

extures such as corrosion, weathering, etc. Certain patterns
uch as fur, scale, and skin are modeled using reaction

13–16 5,6
iffusion and cellular texturing. In addition some
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eathering and mineral phenomena can be reproduced by
etailed simulations of texture.17–19 The main disadvantage
f these algorithms is that they cannot be applied to general
ategories.

Another commonly used approach is statistical feature
atching. In this method certain features of the input tex-

ure are matched in constructing the resulting texture. These
lgorithms are more efficient than Markov random field al-
orithms. Heeger and Bergen20 proposed a method for mod-
ling textures by matching marginal histograms of image
yramids. This algorithm failed to give good results on
tructured textures. Simoncelli and Portilla21 were able to
mprove the synthesis results on structures by using a com-
licated optimisation procedure. De Bonet22 synthesized the

extures from a wide variety of input images by shuffling the
lements in the Laplacian pyramid representation. Although
his method is better than Ref. 20, for structured textures it
an produce boundary artefacts in some cases.

The inspiration for our work comes from the recent
lgorithms proposed by Efros and Freeman23 and Ling and
iu.24 Both these algorithms use patch based sampling and
ing and Liu24 addresses the problem of constrained texture
ynthesis. They use feathering (Szeliski and Shum25) for edge
moothing while Efros and Freeman are using minimum
rror boundary cut. Further more Ling and Liu optimize the
erformance of their algorithm using an approximate near-
st neighborhood (ANN) algorithm.26 Their approaches are
imple and work well with most textures. The proposed al-
orithm is able to perform multiresolution texture synthesis
n a wider selection of textures with significant reduction in
omputational cost. In order to enable the comparison of
ur algorithm with that of others, we use the widely used
enchmark texture synthesis algorithm of Ref. 23 as our
enchmark, and perform our experiments on widely used
est images.

IXEL BASED IMAGE QUILTING
n Ref. 23 Efros and Freeman proposed a patch based texture
ynthesis algorithm in the pixel domain. The basic idea of
he algorithm is to create a large output texture from a given
mall sample texture. The algorithm can be summarized as
ollows.

First, a random, n�n block [see Fig. 1(b)] is selected
rom the sample texture and is placed at the top left-hand
orner of the output texture to be synthesized. Second, all
ossible (i.e., overlapping) n�n blocks in the sample texture
re matched, using a certain overlap area [see Fig. 1(c)] to
he above block. The block with the minimum matching
rror [see Eq. (1)] is found and blocks which fall within 10%
f the minimum matching error are separated. A random
lock from this group is picked as the blocked to be patched
o the block already synthesized in the output texture. This
rocess is continued in raster scan order until the output

exture is fully synthesized [see Fig. 1(a)].
Finally, a dynamic programming based edge cutting

echnique along minimum cost paths23 is used to smoothen
he often visible straight line edge artefacts of the

atched block boundaries. For a clearer understanding we l

4

rovide a simplified pseudocode of the earlier algorithm
s follows:

BEGIN
Pick a Random n�n Block from Sample,
Place in the top left corner of OutputTexture.
LastSynthesizedBlock�n�n Block

WHILE (OutputTexture is incomplete)
FOR all n�n Blocks of the Sample

Overlap with the LastSynthesizedBlock and/or
lock directly above (depending on position)

Store OverlapError and corresponding Block-
umber.

ENDFOR
Find Minimum OverlapError and Store Blocks

ithin 10% of it.
Pick a Random n�n Block amongst them
Patch block
LastSynthesizedBlock�above n�n Block

ENDWHILE
Perform Edge Cutting
END
Note that the quality of match between the overlapping

reas of two blocks is calculated in terms of the sum of
quared error (i.e., the L2 norm), as follows:

SSE = �
p�O

�I1�p� − I2�p��2, �1�

here Ix�p� is the intensity value of the pixel p ,O is the set
epresenting all pixels belonging to the overlap area of over-

igure 1. Pixel quilting algorithm: �a� pasting blocks in raster scan order,
b� randomly picking blocks from the sample, and �c� overlapping ran-
omly picked block B2 with already pasted block B1. �d� Cutting through
inimum error boundary.
apping blocks, I1 and I2.

J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
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The typical overlap used is 1/6th the width of the
lock. The block having the best matching overlap, and all
ther blocks whose matching error is within 10% of that of
he best’s is selected as the subset from which subsequently a
lock is picked up randomly. This block will be used to
atch the output image at the location to the right of the
reviously patched block (in this instance, the top left-hand
orner block). This process is continued until the whole out-
ut image is formed. In selecting nonboundary type blocks
and the last column of blocks), the overlap considered in-
ludes both the overlap with the block in front (as discussed
bove) and the block above. The output image formed fol-
owing the above procedure is then subjected to a second
tage in which each overlapping set of blocks is combined
ogether along a line of best fit, i.e., by performing a mini-

um error boundary cut, rather than the more obvious
traight edge cut.

Unfortunately, the above algorithm cannot be used for
eal time texture synthesis. This is due to its complexity re-
ulting from two key approaches adopted. First, the use of
xhaustive searching in choosing the best match from the
ample texture (note: all possible overlapping blocks are con-
idered) causes computational power to be wasted. Second,
he use of a random picking technique (described above) in
electing the final block to be patched with the preceding
lock, often results in the seam between the two adjacent
i.e., patched) blocks to be visible. Even though a minimum
rror boundary cutting technique is used to smoothen off
hese sudden changes in texture, it involves computationally
xtensive methodologies such as dynamic programming and
hus would not be suitable for real time applications.

In order to resolve the problems discussed above, we
ropose the use of a multiresolution framework, which is
apable of faster texture synthesis.

ULTIRESOLUTION IMAGE QUILTING ALGORITHM
enerally, the process of texture synthesis can be mathemati-

ally represented by Eq. (2), where F is the texture synthesis
unction, which takes the input texture sample Isample as the
nput and synthesizes a texture, Ioutput:

Ioutput = F�Isample� . �2�

he proposed multiresolution approach to texture synthesis
tarts by applying an n level (n=3 in our experiments) two-
imensional (2D) discrete wavelet transform (e.g., Haar
ransform) to the sample image, Isample. The application of
ingle level 2D wavelet transform will result in decomposing

sample into a set of component images (subbands)

Isample = f�Csa0,Csh0,Csv0,Csd0� , �3�

here Csa0 ,Csh0 ,Csv0 ,Csd0 are the image subbands (coeffi-
ient matrices) corresponding, respectively, to low-resolution
pproximation, horizontal detail, vertical detail, and diagonal
etail of the sample input texture. Similarly two-level and

hree-level decompositions are obtained by applying 2D

avelet transform to the low-resolution subband of the pre- a

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
ious decomposition level. This could be mathematically
resented as follows:

Csa0 = f�Csa1,Csh1,Csv1,Csd1� , �4�

Csa1 = f�Csa2,Csh2,Csv2,Csd2� . �5�

or the purpose of clarity, a three-level wavelet decomposi-
ion of a sample texture is illustrated in Fig. 2.

If a wavelet decomposition strategy similar to the above
s performed on the output texture, Ioutput (which is yet to be
enerated) the following set of equations can be used for its
athematical representation:

Ioutput = f�Coa0,Coh0,Cov0,Cod0� , �6�

Coa0 = f�Coa1,Coh1,Cov1,Cod1� , �7�

Coa1 = f�Coa2,Coh2,Cov2,Cod2� . �8�

herefore, the three-level wavelet decomposition of the
ample and output textures consist of ten subbands each [see
ig. 2(d)].

As the proposed algorithm involves the representation/
rocessing of the sample and synthesized textures in multi-

evel discrete wavelet transform (DWT) decomposed states
escribed earlier, we generalize the notations used in Eqs.
3)–(8) as follows: in general we represent an image subband

igure 2. Transforming the sample texture into a multiresolution image
epresentation. �a� Sample texture, �b� single level decomposition, �c� two
evel decomposition, and �d� three level decomposition.
s Ckpl where k� �s ,o�, p� �a ,h ,v ,d�, and l� �0 ,1 ,2�. In

95
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he above notation k represents decomposed image type (k
s for sample image, k=o for output/synthesized image), l

epresents the decomposition level (0–1st level, 1–2nd level,
–3rd level), and p represents the subbands within each de-
omposition level (a—low resolution, h—horizontal,
—vertical, d—diagonal). Note that f represents the inverse
nd f−1 represents the forward, discrete wavelet transform
unction.

The basic idea of proposed multiresolution texture syn-
hesis algorithm is to synthesize each subband of the output
exture by the corresponding subband of the input, sample
exture. This could be mathematically represented as Copl

Fpl�Cspl�, where Fpl represents the synthesis function for
ubband under consideration, i.e., �p , l�. This texture synthe-
is procedure can be described in more detail as follows.

Let Bspl�x,y� represent a general square block of the de-
omposed sample image (i.e., k= s), located at position �x ,y�
elative to the subband �p , l�’s origin. Note that in our ex-
eriments we have set the size of the above block to be
5−l �25−l. In the first phase of the proposed texture synthe-
is procedure we only consider the p=a subband of the 3rd
ecomposition level of the output image, i.e., the subband

oa2 is synthesized from samples of Csa2. We first pick a
lock, Bsa2�x1,y1�, randomly from Csa2 and place it in the top

eft-hand corner of the output coefficient image, Coa2. Si-
ultaneously blocks on all remaining subbands of the

ample texture, which corresponds in location to the ran-
om block above (i.e., Bspl�x1,y1�) are transferred to the top

eft-hand corners of the associated subbands, Copl. [See Fig.
(a) dotted blocks.] Note that at the end of this step the
ynthesis of top left-hand corner blocks of all subbands (size
5−l �25−l) of the output texture will be completed. Subse-
uently, all possible (i.e., overlapping) blocks, Bsa2�x,y� of
imilar size (i.e., 23 �23) from the input sample image’s Csa2

omponent are picked and matched, for a good overlap with
he first block, i.e., the previously synthesized block. The

atching criteria used is as follows.
In general, if Bopl�x1,y1� and Bspl�x2,y2� are two blocks to be

atched, we say Bspl�x2,y2� is the best match for Bopl�x1,y1� if
�Bopl�x1,y1� ,Bspl�x2,y2�� is minimum for all possible Bspl blocks
here,

�Bspl�x2,y2�,Bopl�x1,y1��

= �
i��B

���Bopl�x1,y1��i�

− �Bspl�x2,y2��i��2� , �9�

here �Bxpl is the edge zone of block Bxpl�x,y� [see Fig. 3(c)]
nd i is an element (coefficient) within the edge zone.

In the proposed scheme, the matching described earlier
or the best neighbor is done only considering two subbands
f the lowest level of decomposition. The two subbands in-
lude the low resolution subband and one out of the detail
ubbands. In our experiments due to the use of a three-level
WT decomposition, we use the combined matching error
f the blocks in subbands p=a and p=d of decomposition
evel l=2 to compute the total matching error. This is illus- O

6

rated in Fig. 3(c). In general, the decision to select the most
ppropriate detail subband in the above matching process
an be based on the total energy contained in the relevant
etail component. This is justified as a higher energy detail
omponent of a particular type; say Csh2 component, would
ean that the horizontal details of the original image would

e more significant and visually important than the vertical
r diagonal detail.

In combining the two overlap errors, i.e., the overlap
rror between the blocks in the low-resolution component
nd overlap error between the corresponding blocks (i.e.,
ome spatial location) in the selected detail component [“di-
gonal” in the illustration of Fig. 3(c)]; we use the sum of
he squares of the square-errors [Eq. (1)] of the two com-
onents, as the matching criteria. For example, if diagonal
etails are prominent, Eq. (9) can be modified as follows:

d�B�x2,y2�,B�x1,y1�� = �
i��B

����Boa2�x1,y1��i� − �Bsa2�x2,y2��i��2

+ ��Bod2�x1,y1��i� − �Bsd2�x2,y2��i��2�� .

�10�

igure 3. Construction of the output texture. �a� First random block �dot-
ed� and its best match �shaded� �second block� placed on top left hand
orner of the output texture together with the corresponding coefficient
locks of detail components in all three levels. �b� Selected best match for

he first block with its corresponding coefficient blocks from the input tex-
ure. �c� The matching criterion.
nce the best matching block to the first block of the output

J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
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mage is found and located in the output images Coa2 com-
onent using the above procedure, the corresponding coef-
cient blocks of size 25−l �25−l from all detail images of the
ample texture image are transferred to the appropriate com-
onents of the output texture image. [See Figs. 3(a) and
(b).] This process is continued until the whole output tex-
ure image is constructed in a three-level decomposed for-

at. Note that when constructing blocks other than those
elonging to the first row and first column of blocks, the two
verlaps, first corresponding to the overlap with the block in
ront and second corresponding to the overlap with the
lock above, needs to be considered. Finally, an inverse
WT is performed on the output image decomposition to

reate the output texture image, Ioutput.
Therefore, the proposed texture synthesis process de-

cribed in detail above, can be summarized as follows:

(1) Apply an N-level DWT decomposition to the
sample image and assume an empty N-level de-
composed structure of the texture to be synthe-
sized.

(2) Use a modified block quilting based texture synthe-
sis approach to synthesize the lowest resolution
subband of the texture to be synthesized from the
lowest resolution subband of the sample texture
(note: one detailed subband of the lowest resolu-
tion level is used in the above block matching to
improve the quality of this synthesis).

(3) For each best matching block position at the lowest
resolution level in step-2, transfer the correspond-
ing blocks of corresponding size of all other sub-
bands [see Fig. 3(a)] to the decomposed structure
of the empty output texture.

(4) Repeat step 3 until the decomposed structure of the
output texture is completely filled.

(5) Apply an N-level inverse DWT to obtain the syn-
thesized texture in pixel domain.

In order to maintain the global structure of the overall
exture it is important to select the block size to be suffi-
iently large. This also accounts for increased efficiency of
he algorithm as the choice of blocks available for filling the
utput texture becomes less, making the process fast (see
lock size). Unfortunately the selection of large block sizes
akes it increasingly difficult to find overlapping areas pro-

iding a good match, which in turn may effect the quality of
he resulting texture. On the other hand, the use of small
lock sizes will increase the synthesis time and may have a
egative effect on the global structure of the synthesized

exture (see Block size). It has been shown that the selection
f the optimum size of the block is dependent on the repeat-

ng pattern contained in the texture to be synthesized.23

hus, in an effective implementation of the proposed algo-
ithm we need to have a trade off between the image quality
nd efficiency in selecting the block size. We use the follow-
ng procedure to achieve optimum trade off. For blocks in
he decomposition level l, we start with a block size of
5−l 5−l
�2 coefficients. Subsequently, a maximum allowed s

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
verlap error (mean-squared error) threshold �1, beyond
hich the visual quality is poor, is defined. If overlap error is
reater than �1, the block is split into four smaller blocks.
See Fig. 4.) Finally, we repeat the above procedure for these
our blocks. However, the process is not repeated iteratively
o smaller block sizes due to the need of preserving the
lobal structure.

The following section provides detailed experimental re-
ults to justify the design and implementation of the pro-
osed algorithm and to critically analyze its performance.

XPERIMENTAL RESULTS AND ANALYSIS
n order to analyze the performance of the proposed algo-
ithm, experiments were performed on a widely used set of
opular, test, texture images (see Fig. 5), consisting of tex-

ures of both regular [Figs. 5(b), 5(c), and 5(e)] and stochas-
ic nature [Figs. 5(a), 5(d), and 5(f)]. A typical sample size of
84�184 pixels was used to synthesize textures of size 512

512 pixels. The selection of publicly available texture im-
ges for our experiments should enable readers to compare
he performance of our algorithm with that of others (see
ig. 10 for a comparison with Ref. 23).

In Design Considerations we further investigate the per-
ormance of the proposed algorithm under three varying
esign considerations and in Comparison with benchmark
e compare it directly with that of Ref. 23. A close visual

nspection of Fig. 5, illustrates a very good synthesized tex-
ure quality with no visibility of straight line edges (i.e.,

ismatches) between patched blocks. To further support the
ubjective investigations and to allow a direct comparison
ith textures synthesized in Ref. 23 we propose the use of

he objective quality measure, mean squared difference of
lopes (MSDS),27 which gives a measure of continuity of
exture across block boundaries. MSDS is defined as the

ean of the square of the difference between the slope
cross two adjacent blocks and the average between the

Figure 4. Changing the block size adaptively.
lopes of each of the two blocks close to the boundary. In

97
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elation to Fig. 6, where w�i , j� and f�i , j�, (0� i, j�N−1)
re two adjacent (patched) N�N blocks, the MSDS along
n edge (boundary) can be mathematically defined as

MSDSedge = �
k=0

N−1 ��f�k,0� − w�k,N − 1��

− 	�w�k,N − 1� − w�k,N − 2�� + �f�k,1� − f�k,0��

2

�2� N .

�11�

he overall MSDS of the synthesized texture is calculated by
otaling the squared difference of slopes over all such edges
boundaries) in the synthesized texture and calculating the

ean.
The quality metric MSDS has been used in the literature

o evaluate the performance of blocking artifact reduction
lgorithms in DCT based image coding. It is capable of
hecking local smoothness across straight edge, block
oundaries. Thus, it is not ideal in quantifying the mainte-
ance of global structure of synthesized textures. However, it
rovides a reasonable objective metric to compare the per-

ormance of texture synthesis algorithms. This is particularly

igure 5. Multiresolution image quilting results. Sample texture �smaller
mages� and synthesized texture �larger images� using proposed
lgorithm.
rue for regular textures. b

8

esign Considerations
loser subjective analysis of the synthesized textures in Fig. 5

nd further experimental analysis carried out by us have
evealed that there are important factors that are crucial in
eciding the quality of the final texture synthesized by the
roposed algorithm. They are:

(1) Level and type of detail used in selecting the match-
ing block.

(2) Size of the unit of construction used.
(3) Overlapping area used in matching.

evel and type of detail
n contrast to the method proposed by Efros and Freeman,
e have adapted a multiresolution matching strategy in se-

ecting the adjacent blocks of the output texture. The use of
ixel level detail in Ref. 23 would not only make the texture
ynthesis inefficient, but also unsuitable for real time texture
ynthesis capabilities expected by modern imaging applica-
ions. This is because full-resolution level details (pixel do-

ain) have to be considered within the synthesis algorithm.
In the experiments performed we have assumed a typi-

al three-level decomposition resulting in the lowest resolu-
ion component image to be 1/64 times the size of the origi-
al image. The decisions about matching adjacent blocks are

aken only considering the above component and one other
etail component (see Multiresolution Image Quilting Algo-
ithm) from the third level of decomposition. Thus the com-
utational complexity is considerably reduced as compared

o the method proposed in Ref. 23 which performs block
atching in the pixel domain, i.e., full resolution level. The

xclusive use of the low resolution component is justified
ue to the fact that it possesses the highest energy of all four
omponents at a given level of decomposition. Further ex-
erimental results indicated that the use of the additional
etail component (see Multiresolution Image Quilting Algo-
ithm) resulted in better matching as compared to using
nly the lowest resolution component, justifying its use. Fur-
her experiments also showed that using detail images of
igher resolution levels does not significantly improve the
uality of the final output texture.

Instead of randomly picking a block from a set of

Figure 6. Pixels used in MSDS calculation.
locks, which matches within 10% of the error of the best

J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
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atching block,23 the proposed texture synthesis method se-
ects the best possible match in terms of the overlap criteria
iscussed above. The experiments carried out by us revealed

hat the random block picking technique proposed in Ref.
3 is ineffective when used in conjunction with the proposed
ultiresolution-based approach. This is due to two reasons.
he first is the fact that the proposed algorithm performs
lock quilting (matching) using the p=a and p=d (say)
ubbands of the lowest resolution level �l=2� and a ran-
omly selected block within 10% of the error of the best
atching block could be vastly different from the best
atching block. Second, in order to keep the computational

ost down we do not carry out the minimum error bound-
ry cut proposed in Ref. 23 or the feathering technique pro-
osed in Ref. 24. This simplification also means that the
roposed technique needs less memory capacity to carry out

his task.

lock size
n Multiresolution Image Quilting Algorithm it was men-
ioned that the size of the element used in building the over-
ll texture accounts for the overall quality of the texture and
he efficiency of the algorithm. In Fig. 7 we compare the
ynthesized texture quality obtained when using block sizes
6�16, 32�32, 64�64, and 128�128 (note: these are
he equivalent full resolution block sizes). A close examina-
ion of Fig. 7 reveals that at block sizes 16�16 and 128

igure 7. Block size vs synthesized texture quality �a� 16�16, �b� 32
32, �c� 64�64, and �d� 128�128.
128, the block boundaries are more visible than at inter- c

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
ediate block sizes. Lower block sizes often result in the
lgorithm being unable to capture the global repetitive pat-
ern that may be present in the sample texture. This may
ead to a degradation of synthesized texture quality near
oundaries. On the other hand, if the block size is too large,
he number of matching candidates becomes less. This may
ffect the synthesized texture quality. Within our experi-
ents we found out that an equivalent block size of 64
64 at full resolution level suits most textures. Note that

his means at level-three decomposition the actual block size
onsidered is 8�8. Further experiments revealed that for
rregular textures, the effects of block size variation is mini-

al as compared to that of regular textures.
Table I tabulates the synthesis time and MSDS values of

he texture of Fig. 7, when using different block sizes. Note
hat as expected the doubling of the block dimensions result
n a more than four fold decrement in synthesis time. How-
ver, the MSDS values increases in increasingly larger steps
iving rise to a need in selecting a compromised block size.
hus, the best approach could be to use a fully adaptive,
ariable block size algorithm rather than the fixed block size
lgorithm.

In the latter algorithm proposed in this article, we adap-
ively change the block size. Three different block sizes,
�8 , 4�4, and 2�2 are used in the resolution level l=2.
igure 8 shows the results synthesized using the proposed
ethod when the adaptive block size algorithm is used. Fig-

re 9 compares the performance of the proposed algorithm
sing fixed sized blocks with that of using variable size
locks. It clearly shows the improvement of the quilting
uality obtainable with the adaptive block size selection al-
orithm.

In Fig. 7 it is illustrated that when a block size of
28�128 is used, the subjective quality of synthesized tex-
ure is superior when compared to that obtained when using

block size of 16�16. However, the MSDS values of Table
contradicts this as it gives a markedly smaller MSDS value
hen a block size of 16�16 is used. A close look at the

ynthesized textures show that even though the global
moothness of synthesized texture in Fig. 7(a) is low (highly
isible artifacts at the bottom right corner), local smoothness
luminance gradients) in the texture across block boundaries
s relatively better as compared to that of Fig. 7(d). This
oncludes that MSDS is not an ideal metric to measure and

Table I. The effect of varying the block size on synthesis time and quality.

Block size Synthesis time of a 512�512 texture �S� MSDS

16�16 33.25 0.0129

32�32 9.92 0.0136

64�64 1.94 0.0140

128�128 0.24 0.0187
ompare synthesized texture qualities under varying block
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izes. Note, however, that given the same block size, it is a
ood metric to compare and contrast synthesized textures,
ecause global texture is maintained at an equivalent level
hen identical block sizes are used by two algorithms.

rea of overlap
n selecting the matching block, the area of overlap will also
ccount for the overall quality of the synthesized texture and
peed. Use of a smaller number of overlapping elements
coefficients) results in an increased speed but more visible
rtifacts at block boundaries. On the other hand, an increase
n the number of overlapping elements results in fewer arte-
acts but an increased synthesis time. Table II tabulates the
otal synthesis time and MSDS values of the synthesized tex-
ures when different overlap sizes are used. Note that the
lock size used is 64�64 and the overlaps quoted are mea-
ured in pixels, both at full resolution (i.e., in pixel domain)
evel. The results in Table II confirm the conclusions drawn
arlier. Note that, a too extensive increase in overlapping area

Figure 8. Texture synthesis results with adaptive block sizes.

igure 9. Performance comparison: The use of fixed �left� vs adaptive
right� block size.
overlap=40� will result in noticeable artifacts as it makes it f

00
ore difficult for the algorithm to make the correct decision
n the perceptually best matching block. For our experi-
ents we have adapted an overlap of a single coefficient row

or column) at the third level of decomposition. This
mounts to an overlap of eight pixel rows (or columns) in
he pixel domain. Note that in Table I the best speed and
uality performance is obtained when using the earlier over-

ap.

omparison with Benchmark
igure 10 compares the subjective performance of the pro-
osed algorithm with that of Efro’s and Freeman’s. The re-
ults illustrate that the subjective quality of the proposed
echnique is marginally better than that of Ref. 23. Note that
or a fair comparison with Ref. 23, we have used the fixed
lock size version of our algorithm for visual comparison in
ig. 10. In addition, Table III tabulates the MSDS values of
he synthesized textures obtained with the proposed and
enchmark algorithms for all test images considered in Figs.
and 10. These results show that the objective quality per-

igure 10. Comparison of performance of the purposed algorithm with
fros’ and Freeman’s �see Ref. 23� algorithm. Left: Sample input textures.
iddle: Output textures generated using proposed algorithm. Right: Out-

ut texture generated using Efros’ and Freeman’s algorithm.

Table II. The effect of varying the overlap size on synthesis time and quality.

Overlap Synthesis time of a 512�512 texture �S� MSDS

12.14 0.0186

6 21.76 0.0191

4 28.92 0.0194

2 33.45 0.0202

0 37.95 0.0215
ormance of the proposed technique is marginally better

J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
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han that of Ref. 23. In particular, for regular textures the
roposed algorithm performs relatively better in comparison

o the algorithm of Ref. 23, because the benchmark algo-
ithm picks up a random block among a set of best match-
ng candidate blocks (within 10% of the best match) in
atching two adjacent blocks. Although when using random

extures this process may not create significant visual arti-
acts along block boundaries, when using regular textures,
oticeable artifacts could arise and a randomly selected as a
andomly selected block would not be the best choice.

The earlier results show that both the subjective and
bjective performance of the proposed multiresolution tex-
ure synthesis algorithm is slightly better than that of Ref. 23.

owever, due to the use of the multiresolution approach the
est contribution of the novel technique is on the algorith-
ic simplification achieved. Given the fact that in the pro-

osed technique the output texture is synthesized based only
n a search on the lowest resolution level of the decomposed
ample texture image, a comprehensive computational com-
lexity investigation revealed that theoretically the proposed
lgorithm is approximately 64 times faster than the bench-
ark algorithm. This theoretical value has been calculated

ased on several assumptions. First, we have assumed that
he computational cost of additions, subtractions, and

odulus operations are equal and that only the diagonal
etail subband (out of the three detail subbands) of the low-
st resolution level is combined with the lowest resolution
ubband in calculating the selective area diffraction (SAD) of
he overlapped areas. Second, in order to enable an equiva-
ent single pixel shifted block to be selected in the full pixel
esolution level, searching is actually performed on the low-
st resolution subbands of 64 different wavelet decomposi-
ions of the sample image, each offset by one pixel. When
he synthesized texture size is considerably large as compared
o the sample texture, the earlier additional cost of needing
4, single pixel shifted DWTs of the relatively small sample
mage, can be neglected. However, when using a personal

Table III. Performance comparison: Efros’ �Ref. 23� versus proposed.

MSDS

Efros’ Proposed

Fig. 5�a� 0.0204 0.0201

Fig. 5�b� 0.0152 0.0146

Fig. 5�c� 0.0314 0.0306

Fig. 5�d� 0.0082 0.0081

Fig. 5�e� 0.0296 0.0287

Fig. 5�f� 0.0835 0.0776

Text image in Fig. 10 0.0744 0.0661

Granite image in Fig. 10 0.0243 0.0155
omputer with a Pentium III 700 MHz processor, nonopti- h

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
ized MATLAB code, software based wavelet transforms, no
ardware acceleration, and synthesizing a 512�512 texture

rom a 184�184 sample, the effective speedup finally
chieved was approximately tenfold. In particular when syn-
hesizing all textures considered in Figs. 5 and 10, Efros’
lgorithm took an average of 98.26 s per texture whereas the
roposed method took only 9.63 s. Optimization of the soft-
are based DWT implementations could lead to further

peeding up of the proposed algorithm. Further investiga-
ions revealed that use of graphics hardware capable of doing
ast wavelet transformations would improve the speed up
btainable to approximately 30-fold. However, when the al-
orithm is used within a image/video coding systems that
equire the multiresolution decomposition of texture detail,
he requirement for dedicated wavelet transform for the pur-
ose of texture quilting becomes nonessential. Therefore, the
ffective speedup that can be achieved becomes much higher
han the tenfold value stated above.

PPLICATIONS OF THE PROPOSED ALGORITHM
he multiresolution texture synthesis technique adopted
ithin the proposed scheme enables its use in modern in-

eractive media applications that require progressive/
nteractive image/video transmission. Of specific interest is
he video gaming industry that requires graphical objects to
ossess varying surface texture resolutions (thus appearance
f reality) depending on the visual significance of the object
ithin the viewed scene. In addition, the specific use of
WT in obtaining the multiresolution decomposition makes

he proposed technique adoptable to texture synthesis appli-
ations that are used in conjunction with the JPEG2000 im-
ge coding standard and the Animation Framework Exten-
ion (AFX) of the MPEG-4 video coding standard, which are
ased on DWT based coding. In addition it can be used in
elation to MIP-mapping28 which is used for antialiasing in
exture mapping which is used in majority of current graph-
cs applications.

In Fig. 11, we illustrate the synthesis of the output tex-
ure using a multiresolution approach. The synthesis of the
exture in Fig. 11(b) is done using only the Csa2 subband of
he sample texture in Fig. 11(a). The synthesis of texture in
ig. 11(c) is done using all subbands at resolution level
=2. In synthesizing the texture in Figs. 11(d) and 11(e), the
etailed subbands (p=v, p=h and p=d) in the next higher
esolution level are respectively considered in addition. Fig-
res 11(f)–11(i) illustrate the wrapping of the above textures
i.e., those of Figs. 11(b)–11(e)] onto a sphere, which is a

ore frequently encountered scenario within modern appli-
ations.

The ability of multiresolution texture synthesis is a key
dvantage provided by the proposed algorithm. This was not
ossible by the adaptation of the pixel based approach to

exture quilting as used in Refs. 23 and 24.

ONCLUSION AND FUTURE WORK
n this article we have introduced a novel approach to syn-
hesizing textures under a multiresolution framework. We

ave provided experimental results and an in-depth analysis,
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roving that the proposed method works remarkably well,
roducing equivalent (or better) output texture quality as
ompared to the method proposed in Ref. 23, at approxi-
ately sixfold decrement of computational cost. The multi-

esolution nature of the proposed framework also makes it
asily applicable to modern imaging applications needing
rogressive transmission capabilities.

In designing the earlier multiresolution texture synthesis
lgorithm we have made a compromise between the synthe-
ized texture quality and the algorithmic complexity by not
erforming seamless edge construction algorithms as in
efs. 23 and 24. However, due to the multiresolution ap-
roach and the novel matching criteria adopted, we have
anaged to obtain perceptually equivalent (or better) syn-

hesized texture quality to that of Refs. 23 and 24 with much
ess computational complexity. We are currently looking at
he implementation optimization of the algorithms and the
se of fast, simple, seamless edge cutting/construction algo-
ithms. We are also in the process of applying the idea to
andle the texture synthesis part omitted from consideration

n the fast MESHGRID coding algorithm of Ref. 29, which has
een a key contribution to the MPEG-4 AFX coding stan-
ard. This is expected to extend the applicability of the
ESHGRID algorithm to full, fast, multiscalable 3D object/

urface coding.

igure 11. Multiresolution texture synthesis: �a� Input texture. �b�–�e� Syn-
hesized textures onto a 2D surface �f�–�i� Synthesized textures onto a
phere, at progressively higher resolutions.
02
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