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bstract. The article aims to provide a solution for multispectral
mage compression for high color reproducibility with preservation to
pectral accuracy. In the method previously proposed to reduce the
olorimetric error of the reconstructed multispectral image, a weight-

ng matrix is incorporated to Karhunen-Loeve transform (KLT) as the
pectral transform for multispectral image compression, which ac-
ounts for the color matching functions of human observers as well
s the viewing illuminants. However, the colorimetric improvements
re obtained on the cost of degradation of spectral accuracy. In this
aper, we show that the reduction of colorimetric error and the pres-
rvation of spectral accuracy is a tradeoff that can be controlled by
dding a diagonal matrix that is composed of a scalar multiple of an

dentity matrix to the weighting matrix of KLT. As the result, the small
alues in the weighting matrix can be lifted up, thus reduce the
pectral errors in the corresponding reconstructed multispectral im-
ge bands. We implement a multispectral image compression sys-

em that integrates the proposed spectral transforms with the addi-
ion of diagonal matrix and JPEG2000 for high colorimetric and
pectral reproducibility. Experimental results for three 16-band mul-
ispectral images show that spectral accuracy can be improved with-
ut loss of substantial color reproducibility if the magnitude of the
calar in the diagonal matrix is chosen appropriately © 2006 Soci-
ty for Imaging Science and Technology.
DOI: 10.2352/J.ImagingSci.Technol.�2006�50:1�64��

NTRODUCTION
ultispectral imaging (MSI) is a promising technology for

ritical color-matching applications such as telemedicine,
lectronic museum, art book reproductions, on-line shop-
ing, etc., since conventional RGB color images, although
leasing, are unacceptable in respect for high fidelity color

eceived Jan. 31, 2005; accepted for publication Sep. 25, 2005.
062-3701/2006/50�1�/64/9/$20.00.
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eproduction.1,2 In response to the huge data volume of
ultispectral images, many compression algorithms have

een carried for the efficiency of transmission, mainly in the
eld of remote sensing.3,4 Among various methods, trans-

orm coding based methods are one of the feasible solutions
or multispectral image compression. When multispectral
mages are coded by transform coding, spectral and spatial
ransforms are usually independently and sequentially
pplied.5 A typical multispectral image compression system
s composed of Karhunen-Loeve transform (KLT) as the
pectral transform and discrete cosine transform (DCT) or
iscrete wavelet transform (DWT) as the spatial ones, fol-

owed by quantization and encoding.
However, these conventional transforms of multispec-

ral image compression are mostly designed for better spec-
ral accuracy purpose and use mean squared error (MSE)
ased evaluation measurements, e.g., peak signal-to-noise
atio (PSNR). That is to say, they aim to minimize the dif-
erence between the original and reconstructed multispectral
mages. In the applications for color reproduction, it is valu-
ble to utilize the characteristics of visual color perception,
ut conventional compression methods do not take the ad-
antage of colorimetry into consideration. In response to
his problem, Murakami used a method called weighted KLT
WKLT) as the spectral transform for multispectral image
ompression,6 which is a special case of one mode analysis
OMA).7 In this method, the colorimetric error is decreased
s compared to conventional KLT based methods by incor-
orating a weighting matrix to KLT that accounts for the
olor matching functions of human observer. Mase com-
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ined WKLT with JPEG2000 as the spatial compression
cheme for multispectral image compression and confirmed
he effectiveness of WKLT in the aspect to reduce color dif-
erence in CIE L�a�b� color space.8

However, the improvements in color reproduction for
MA and WKLT based compression schemes are obtained

n the cost of poor spectral accuracy in certain wavelengths.
n some applications, multispectral imaging technology is
aluable for both accurate color reproduction and spectral
mage analysis, for example, medical color imaging, textile,
nd other merchandize imaging for electronic commerce
nd digital archive of historical artworks. In those applica-
ions, spectral information is used for classification,9

ecognition,10 material identification,11 and content-based
mage retrieval.12 In addition, in printer industry, spectral
ransmittance images are required for the spectral reproduc-
ion techniques.13 In these occasions, the loss of spectral
ccuracy is not expected. In this paper, we show that the
reservation of spectral accuracy and the reduction of colo-
imetric error is a tradeoff, which can be controlled by add-
ng a diagonal matrix that is composed of a scalar multiple
f an identity matrix to the weighting matrix of KLT. It is
lso demonstrated that spectral accuracy can be improved
ithout substantial colorimetric degradation if the scalar is

hosen appropriately.
In order to evaluate the performance of the addition of

iagonal matrix to the weighting matrix, we use the follow-
ng spectral transforms for multispectral image compression:
LT, WKLT with and without the addition of diagonal ma-

rix to the weighting matrix, and for comparison, we also
ntroduce another special case of OMA, and we call it re-
ised WKLT (RWKLT), which considers both the color
atching functions of human observer and the influence of
predetermined illuminant set in the weighting matrix. In

rder to utilize these transforms for spectral decorrelation of
ultispectral images, we adopt the following process: first,

he spectral reflectance is estimated from the multispectral
ata by certain estimation method such as Wiener estima-
ion, and the estimated spectral reflectance is transformed by
ifferent transforms, followed by JPEG2000 as the spatial
ompression scheme.

PECTRAL TRANSFORMS FOR MULTISPECTRAL
MAGE COMPRESSION FOR BETTER COLOR
EPRODUCIBILITY
ome spectral transforms for multispectral image compres-
ion in purpose of better color reproducibility have been
roposed, including OMA, WKLT,14 etc., which are shortly
utlined in the Appendix, as well as the celebrated KLT.
MA is a general concept that incorporates a weighting ma-

rix in KLT and WKLT is a special case of OMA, where in
he weighting matrix of WKLT, the color matching functions
f human observers are considered.

Besides OMA and WKLT, we also introduce a revised
ersion of WKLT (RWKLT) in this section, which is another
pecial case of OMA. RWKLT can consider the influence of
predetermined illuminant set as well as the color matching
unctions of human observer in its weighting matrix. c

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
As stated in the Appendix, WKLT is based on the as-
umption that the number of illuminants L is towards infi-
ite so that different kinds of illuminants can be considered
s independently and identically distributed at each wave-
ength. In practice, we can limit the set of illuminants that
re frequently used for real applications of color reproduc-
ion. In such cases, recalling the weighting matrix for WKLT:

WWKLT
2 = TXYZ

2 = TX
2 + TY

2 + TZ
2 , �1�

here TX ,TY ,TZ are diagonal matrices whose diagonal ele-
ents indicate the color matching functions of human ob-

erver, such as CIE 1931 XYZ color matching functions, it is
easonable to substitute WWKLT by WRWKLT to take the in-
uence of the illuminants into consideration:

WRWKLT
2 = TXYZ� = TXRTX + TYRTY + TZRTZ , �2�

here

R = ĒĒT . �3�

Here we use the normalized illuminant set Ē = �ē � ēi

ei / �ei��, i=1,2 , . . . ,L, to equalize the influence of different
lluminants ei�i=1,2 , . . . ,L�. In order to distinguish from

KLT, we call the transform that incorporates the weighting
atrix of WRWKLT as RWKLT.

Figure 1 shows the diagonal values for the weighting
atrices of WKLT and RWKLT, where the illuminant set

sed in RWKLT is shown in Fig. 2 and will be further dem-
nstrated in the experimental section. It can be seen that the
eighting matrices decrease at long visible wavelength for
oth WKLT and RWKLT by the influence of the spectral
hape of the color matching function. In addition, we can
lso observe the effect of the predetermined illuminant set in
he case of RWKLT. That the magnitudes for the weighting

atrix of RWKLT are smaller compared to that of WKLT is
aused by illumination normalization in RWKLT.

Besides, as OMA, WKLT, and RWKLT are all KLT based
ransforms, they are image-dependent and the pertinent sta-
istics information of the image data is needed for the cal-

igure 1. Diagonal coefficients for the weighting matrices of WKLT and
WKLT.
ulation of KLT vectors. In this paper, the correlation matrix

65
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hat is used to obtain the basis functions of KLT is generated
rom the spectral reflectance, which is estimated from the
riginal multispectral image. The image-independent
cheme for the simplification of calculating the correlation

atrix is our future issue.

DDITION OF DIAGONAL MATRIX TO WEIGHTING
ATRIX
KLT and RWKLT based methods are superior in color

eproducibility compared with KLT based multispectral im-
ge compression scheme.8 However, the improvement in
olor accuracy is on the cost of poor spectral accuracy. Fig-
re 3 compares the peak signal-to-noise ratio (PSNR) as the
easurement for spectral accuracy for each band of a 16-

and multispectral image, respectively, using KLT and WKLT
ased compression methods. We can observe the shape of
he WKLT result is similar to the shape of the weighting

atrix of WKLT in Fig. 1, where the magnitudes of diagonal
lements of the weighting matrix are small in long wave-
engths. When multiplied by such a weighting matrix, the
pectral reflectance estimated from the multispectral image
ill also become small in the corresponding wavelengths. In

igure 2. Spectral radiances of the illuminants that are used as the illumi-
ant set for the weighting matrix of RWKLT.

igure 3. Comparison of PSNR results for each band image of a 16-
and multispectral image using KLT and WKLT as the spectral transform.
he horizontal axis indicates the multispectral image band number, which
s in accordance to the spectral wavelength, the larger the number value,
he longer central wavelength for the corresponding multispectral color
lter.
he viewpoint of image compression, this process equals to E

6

uantize the spectral reflectance of the corresponding wave-
ength range by larger quantization step-sizes, which will re-
ult in bigger quantization error and degradation in spectral
ccuracy for the corresponding wavelengths range, as is
hown in Fig. 3.

In order to improve the spectral accuracy, let us recall
he cost function for KLT (in the Appendix), which aims to

inimize the spectral error and we can take the weighting
atrix for KLT as an identity matrix. Namely, the improve-
ent of spectral accuracy in WKLT can be achieved by a

ompromise of WKLT and KLT. Thus we define a modified
ost function to take both the colorimetric and spectral ac-
uracies into consideration

� = �W�f − f̂��2 + �2�f − f̂�2, �4�

ere, the first item W�f − f̂� is according to the colorimetric

ccuracy while the second item �f − f̂� to spectral accuracy
eproduction and � determines the balance of colorimetric
nd spectral accuracies. We can further write Eq. (4) into

� �
1

2
��W�f − f̂� + ��f − f̂��2� =

1

2
���W + �I��f − f̂��2� ,

�5�

hich means that the minimization of the cost function in
q. (A1) can be realized by substituting W in Eq. (A4) by

+�I. Therefore, it can be said that by adding a scalar
ultiple of an identity matrix to the weighting matrices of
KLT or RWKLT, the spectral accuracy can be taken into

ccount as well as the colorimetric accuracy. In this case, the
ear zero values can be lifted up and thus the quantization
rrors can be reduced in the corresponding reconstructed
ultispectral image channels. At the same time, the feature

f weighting matrices for WKLT and RWKLT can also be
reserved if the scalar � is small and properly chosen.

The magnitude of the scalar � can be determined ac-
ording to the different applications of the multispectral im-
ge and the intent for compression system design. Too large
alue of � will diminish the effects of the weighting matrices
or WKLT and RWKLT and cause colorimetric degradation,
hile too small � will result in little improvements for spec-

ral accuracy.
Let us rewrite Eq. (5) as

� � ��W�2 + �2���f�2, �6�

here �f = f − f̂ and if �f is constant for all wavelength, ��f�2

an be written as

��f�2 = N · ��1
2, �7�

here N refers to the number of spectral samples in the
avelength range of the narrow visual band �380–780 nm�
f the spectral data for color reproduction and ��1 is the

ifference between f and f̂ under a single wavelength. Then

q. (6) can be written as

J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
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� � ��W�2 + �2���f�2 = ��W�2 + �2�N��1
2. �8�

rom Eq. (8), we can find the weighting factor �2 is inversely
roportional to the wavelength range of the spectral data N
hen � is constant. That is to say, � is inversely proportional

o the square root of the range of spectral data

�WKLT = 1/�N = 1/�wavelength range of the spectral data.

�9�

For RWKLT, the influence of the illuminant set is also
onsidered, along with the number of samples in of the
ange of the spectral data. �RWKLT is defined as

�RWKLT = 1/��Ik�L , �10�

here L is the number of the illuminants used in the weight-
ng matrix of RWKLT and k is the dimension of the spectral
ata f. Here, the functionality of �Ik� is the same as that of N

n Eq. (9).

OMPRESSION SCHEME
n order to implement the multispectral image compression
ased on the proposed method to preserve both colorimetric
nd spectral accuracy, in this section, we will introduce the
otal compression scheme, which is shown in Fig. 4: First,
he spectral reflectance f is obtained by Wiener estimation
ixel by pixel from the original multispectral image g, then
pectral transform is performed on the estimated spectral
eflectance. These spectral processes can be done by vector

atrix product. Suppose the numbers of channels in the
ultispectral image g and the spectral reflectance f are j and

, respectively, where the rank of f is j, and k� j matrix M
epresents the Wiener estimation matrix, and k�k matrix R
ith the rank j is the spectral transform matrix, then the

pectral transform coefficient vector a with the size k and
ank j can be expressed by

a = R · f = R · M · g . �11�

The proposed spectral transform method can be used in
ombination with different spatial compression schemes.
mong them, JPEG2000 is suitable for multispectral image

ompression, because it can deal with both gray-scale and

igure 4. Multispectral compression framework and evaluation
easurements.
ultichannel images. Meanwhile, JPEG2000 can integrate F

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
oth lossless and lossy compressions under the same
ramework.15 Furthermore, although it is not the definitive
eason to choose the format, the supplementary information
eeded for the color reproduction can be stored in metadata

n JPEG2000 format.16 All these merits of JPEG2000 make it
good candidate to serve as the spatial compression scheme

n our multispectral compression system.
For the implementation of JPEG2000, the software

uraWave.jp2 by LuraTech company is used.17 Because the
pectral transform coefficients are all real numbers, we must
uantize them into integers for the input of JPEG2000. The
ollowing quantization method is used in the experiment.8

Suppose aabs be the maximum of the absolute value in
ll transform coefficient channels, the coefficients inside the
nterval �−aabs ,aabs� will be linearly quantized to the q-bit
nteger values by

a� = �a − aabs

2aabs
��2q − 1� , �12�

here q is the bit depth of the transformed coefficient and
he operation � � denotes to round the real number towards
he nearest integer to the minus infinity.

XPERIMENT
hree multispectral images are used in the experiments,
hich are captured by a multispectral camera with 16 nar-

ow band color filters.2 The spectral sensitivities of the mul-
ispectral camera color filters are shown in Fig. 5. Figure 6
hows one band for each of the three multispectral images,
espectively, all in the color filter central wavelength of
50 nm. Each band image consists of 512�512 pixels with
6-bit dynamic resolution, which is downsampled from the
riginal 1024�1024 pixels’ image. For convenience of dem-
nstration, we name the three multispectral images in Fig. 6
oy, scarf, and flowers, respectively.

The illuminant set used in RWKLT is shown in Fig. 2,
ltogether 19 kinds of illuminants, including CIE A, B, C,
nd 4 kinds of daylight with different color temperature (de-
oted by D50, D55, D65, and D75) and a set of fluorescent
denoted by F1-F12). We assume the viewing illuminant for
he experiments is one of CIE D65, F2 and FLAT, where

igure 5. Spectral sensitivity of the 16-band multispectral camera used in
xperiments.
LAT indicates the spectral power is evenly distributed along

67
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68
avelength. Here D65 and F2 are inside the illuminant set of
WKLT, while FLAT is not included in the predetermined

lluminant set.
For experimental evaluation, we use PSNR as the mea-

urement for spectral accuracy, which is expressed by

PSNR = 20 log
2b − 1

�g − ĝ�
, �13�

here g and ĝ denote the original and reconstructed multi-
pectral images, respectively, and b means the bit-depth of
he multispectral pixels. And for the evaluation of color re-
roducibility, CIE 1931 L�a�b� color difference under a cer-

ain illuminant is used, which is denoted by �Eab�:

�Eab
� = ���L��2 + ��a��2 + ��b��2	1/2, �14�

here �L�, �a�, and �b� represent the differences of the
IE L�a�b� color images restored from the original and re-

onstructed multispectral images.
Moreover, in this paper, the compression ratio is defined

s

CR =
compressed data size

original data size
. �15�

ETERMINATION OF THE MAGNITUDE OF THE
IAGONAL MATRIX

n the experiments, we examine the effectiveness of the pro-
osed method to determine the scalar �, which indicates the
agnitude of the diagonal matrix that are added to the
eighting matrices of WKLT and RWKLT. Figure 7 shows

he relationship between PSNR and the magnitude of the
iagonal matrix added to the weighting matrix of WKLT and
WKLT for image flowers under various compression ratios.
igure 8 shows the relationship between average CIE L�a�b�

olor differences and the magnitudes of the diagonal matrix
dded to the weighting matrix of WKLT and RWKLT for
mage flowers under different illuminants when CR=0.05.

WKLT and �RWKLT in the figures are corresponding to the
agnitudes for the diagonal matrices that are determined by

qs. (9) and (10). We can also get similar results from the
xperiments of the other two multispectral images. From
hese results, we can notice that in both cases of WKLT and
WKLT, the PSNR always increase with the increase of �.
ore specifically, PSNR is very sensitive and increase a great

eal when ���WKLT��RWKLT�, while ���WKLT��RWKLT�,
SNR becomes not very sensitive to the variance of �. In the
ase of color difference, the results in Fig. 8 show that the
olor difference is much more sensitive to the increase of �
nd when ���WKLT��RWKLT�, although PSNR still in-
reases a little in Fig. 7, the color differences will get worse
apidly. This means the calculated magnitude of the diagonal

atrix for WKLT and RWKLT by Eqs. (9) and (10) can
each a good balance between spectral and colorimetric ac-
uracies.

Moreover, the tendencies of PSNR and color difference

igure 6. One band image for each multispectral image used in the
xperiments with 550 nm of central wavelength of the color filter. For
esults in Figs. 8 and 9 appear to be similar for various

J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
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agnitude of � under different illuminants for both WKLT
nd WRKLT and a small deviate of � will not change the
olorimetric results very much. That means the regularized
arameter � is robust for various illuminants, transforms, as
ell as a mis-specified parameter �.

OMPARISON OF WKLT AND RWKLT WITH THE
DDITION OF DIAGONAL MATRIX

n this section, we will compare the performance of WKLT
nd RWKLT with the addition of diagonal matrix to the
eighting matrix as the spectral transform for multispectral

mage compression. For comparison purpose, we will use
LT, WKLT (with and without the addition of diagonal ma-

rix), and RWKLT (with and without the addition of diago-
al matrix) as the spectral transforms in the experiments.
oreover, we will use Eqs. (9) and (10) for the determina-

igure 7. The magnitude of the diagonal matrix that are added to the
eighting matrix of �a� WKLT, �b� RWKLT vs PSNR under different com-
ression ratio for image flowers. The specified magnitudes are deter-
ined by Eqs. �9� and �10�.
ion of the magnitudes for the diagonal matrices. R

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
Figure 9 is a comparison between the first four analysis
ectors for KLT, WKLT, and RWKLT, respectively, which are
btained from the spectral reflectance estimation of multi-
pectral image toy. We can see compared with the vectors for
LT, WKLT, and RWKLT can reflect the influence of the

pectral shape of the color matching function, and RWKLT
ontains the information of the predetermined illuminant
et.

In Fig. 10, PSNR versus different compression ratio is
hown as the measurement of the spectral accuracy of the
econstructed multispectral image using different spectral
ransforms As the measurements for color reproducibility,
he average and the maximum E�a�b	 versus the compres-
ion ratio under viewing illuminant F2 are shown in Fig. 11.
n those results, test image is flowers. From the results, it is
onfirmed that in the aspect of PSNR, adding a suitable
iagonal matrix to the weighting matrix of WKLT or

igure 8. The magnitude of the diagonal matrix that are added to the
eighting matrix of �a� WKLT �b� RWKLT vs average CIE L�a�b� color
ifferences under different illuminants when CR=0.05. The specified
agnitudes are determined by Eqs. �9� and �10�.
WKLT can greatly improve the spectral accuracy; And in
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he aspect of colorimetric error, the results for WKLT or
WKLT methods, with and without the addition of the di-
gonal matrix, are almost the same in a wide range of com-
ression ratio, which in turn proves the effectiveness of our
roposed method to determine the magnitude of the diago-
al matrix. Specifically, the results for RWKLT based method
an get the best color accuracy results in a large range of
ompression ratio, except at low bit rates. That is caused by
he normalization for the illuminants used in the weighting

atrix of RWKLT, which reduced the dynamic range of the
WKLT coefficients, thus made them more sensitive to the
uantization errors at low bit rates.

The results of the other two multispectral images under
arious illuminants are summarized in Tables I and II, Table

igure 9. First four analysis vectors of KLT, WKLT, and RWKLT obtained
rom the spectral reflectance estimated from multispectral image toy.
shows the results for image scarf under illuminant F2 while

0

able II is for image toy under illuminant D65. From those
esults, we can conclude that although there are some differ-
nces according to different test images or viewing illumi-
ants, the tendency of the results are almost the same.

Moreover, still in the case of RWKLT, adding a suitable
iagonal matrix to the weighting matrix has good generali-
ation ability even when the viewing illuminant is not in-
luded in the presumed illuminant set. Figure 12 shows an

igure 10. Comparison for PSNR using different spectral transforms for
mage flowers.

igure 11. Comparison for color difference using different spectral trans-
orms for image flowers under illuminant F2 �a� average E �a�b	 �b�
aximum E �a�b	.
J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
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xample for image flowers, when the viewing illuminant is
LAT, which is not included in the presumed illuminant set

or RWKLT. In this example, we can observe that RWKLT
ithout the addition of diagonal matrix will have little effect

o colorimetric error reduction at high bit rates. The degra-
ation of color reproducibility of RWKLT is related to the

Table II. Results for image toy under illuminant D65.

CR 0.01 0.05 0.25

PSNR 42.48 52.95 71.83

KLT ave E �a * b	 3.42 1.11 0.18

max E �a * b	 49.07 20.41 1.91

PSNR 34.40 41.72 50.14

WKLT ave E �a * b	 2.64 0.71 0.13

max E �a * b	 40.54 13.26 1.53

WKLT with PSNR 40.99 48.93 65.84

diagonal ave E �a * b	 2.65 0.71 0.13

matrix max E �a * b	 39.29 10.20 1.67

PSNR 33.45 41.25 49.86

RWKLT ave E �a * b	 2.98 0.49 0.05

max E �a * b	 46.56 8.28 0.72

RWKLT with PSNR 38.13 48.74 56.66

diagonal ave E �a * b	 3.01 0.52 0.06

matrix max E �a * b	 45.40 8.42 0.70

Table I. Results for image scarf under illuminant F2.

CR 0.01 0.05 0.25

PSNR 41.10 52.48 71.63

KLT ave E �a * b	 2.67 0.77 0.14

max E �a * b	 51.16 15.56 1.89

PSNR 36.20 40.77 51.04

WKLT ave E �a * b	 2.16 0.48 0.09

max E �a * b	 36.65 15.41 1.24

WKLT with PSNR 39.43 48.25 65.57

diagonal ave E �a * b	 2.14 0.50 0.10

matrix max E �a * b	 37.5 15.00 1.45

PSNR 31.20 40.32 50.98

RWKLT ave E �a * b	 2.41 0.32 0.03

max E �a * b	 48.54 10.65 0.50

RWKLT with PSNR 37.00 47.85 58.74

diagonal ave E �a * b	 2.49 0.34 0.03

matrix max E �a * b	 52.09 10.77 0.49
umber and the kinds of illuminants that are used in the t

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
lluminant set, and the similarity of the illuminant to those
n the illuminant set. This is similar to linear pattern match-
ng filter design, where the filter is sometimes designed from
limited training set. Then if the training set is ill suited and

annot represent a large range of dataset, the filter may be
nly optimized to the training set, while for other test set,
he performance will get worse. The addition of diagonal

atrix to the weighting matrix of RWKLT can improve such
henomenon to some extent, as is shown also in Fig. 12,
oth the average and the maximum color difference are re-
uced in high bit rate range when the diagonal matrix is
dded to the weighting matrix of RWKLT.

ONCLUSION AND DISCUSSION
he purpose of this paper is to propose a multispectral im-
ge compression method for high fidelity color reproducibil-
ty with spectral accuracy preservation. We add a diagonal

atrix to the weighting matrix of WKLT and RWKLT and
etermine the magnitude of the diagonal matrix by a novel
ost function. Experimental results that are performed on
hree 16-channel multispectral images shown the advantage
f adding a suitable diagonal matrix, where spectral accuracy

s improved without substantial loss of color reproducibility.
oreover, the addition of the diagonal matrix has generali-

ation effect for RWKLT in the case when the viewing illu-
inant is out of the predetermined illuminant set. Further-
ore, it is valuable to integrate the propose method to

PEG2000 for the compression of multispectral images and
he fact that fixed magnitude of the diagonal matrix works
ell for various multispectral images are also fine for prac-

igure 12. Comparison for color difference using RWKLT with and with-
ut the addition of diagonal matrix when the viewing illuminant is FLAT,
hich is not included in the presumed illuminant set for RWKLT. �a� Aver-
ge E �a�b	 �b� maximum E �a�b	.
ical use.
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PPENDIX
n the Appendix, we will briefly introduce three spectral
ransforms for multispectral image compression, where the
elebrated KLT is used for spectral accuracy reproduction
nd one mode analysis (OMA) and weighted KLT (WKLT)
re proposed for better color reproducibility purpose.

LT
LT aims to minimize the error defined by

�KLT = 
�f − f̂�� , �A1�

here f and f̂ denote the k-dimensional vector representa-

ions of the spectral reflectance estimated from the j-channel

2

riginal and reconstructed multispectral images. KLT for f
an be expressed by

A = Pf , �A2�

here A is the j-dimensional vector of the KLT coefficient,
nd the transformation matrix

P = �p1,p2, . . . ,pj�T , �A3�

ontains KLT analysis vectors pi�i=1,2 , . . . j�, which are the
igenvectors of the correlation matrix ffT and the rank of the
orrelation matrix is j.

MA
MA incorporates an k�k weighting matrix W to the spec-

ral reflectance and is proposed to minimize the following
rror

�OMA = 
�W�f − f̂��2� . �A4�

OMA can be expressed as:

B = Q�Wf� , �A5�

here B is the j-dimensional vector of the OMA coefficient,
nd the transformation matrix Q= �q1 , q2 , . . . qj� includes
he eigenvector qi�i=1,2 , . . . , j� of the matrix W
ffT�WT.

KLT
MA is a general model and the weighting matrix W can be

efined for different purposes. WKLT is a special case of
MA proposed by Murakami that aims to minimize the

rror7

�WKLT = 
�WWKLT�f − f̂��2� = 
�f − f̂�TWWKLT
T WWKLT�f − f̂��

= 
�f − f̂�T�TXEETTX + TYEETTY + TZEETTZ��f − f̂�� ,

�A6�

here TX ,TY ,TZ are diagonal matrices whose diagonal ele-
ents indicate the color matching functions of human ob-

erver, such as CIE 1931 XYZ color matching functions and
he matrix E= �e1 , e2 , . . . , eL� represents the spectral radia-
ions of L kinds of illuminants ei�i=1,2 , . . . ,L�. In order to
implify the weighting matrix, WKLT assumes that L gets
loser to infinite and the correlation matrix of illuminants
ET is approximated by a scalar multiple of an identity ma-

rix. Thus the weighting matrix can be simplified as

W2 = T2 = T2 + T2 + T2 . �A7�
WKLT XYZ X Y Z
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