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Abstract. The article aims to provide a solution for multispectral
image compression for high color reproducibility with preservation to
spectral accuracy. In the method previously proposed to reduce the
colorimetric error of the reconstructed multispectral image, a weight-
ing matrix is incorporated to Karhunen-Loeve transform (KLT) as the
spectral transform for multispectral image compression, which ac-
counts for the color matching functions of human observers as well
as the viewing illuminants. However, the colorimetric improvements
are obtained on the cost of degradation of spectral accuracy. In this
paper, we show that the reduction of colorimetric error and the pres-
ervation of spectral accuracy is a tradeoff that can be controlled by
adding a diagonal matrix that is composed of a scalar multiple of an
identity matrix to the weighting matrix of KLT. As the result, the small
values in the weighting matrix can be lifted up, thus reduce the
spectral errors in the corresponding reconstructed multispectral im-
age bands. We implement a multispectral image compression sys-
tem that integrates the proposed spectral transforms with the addi-
tion of diagonal matrix and JPEG2000 for high colorimetric and
spectral reproducibility. Experimental results for three 16-band mul-
tispectral images show that spectral accuracy can be improved with-
out loss of substantial color reproducibility if the magnitude of the
scalar in the diagonal matrix is chosen appropriately © 2006 Soci-
ety for Imaging Science and Technology.

[DOI: 10.2352/J.ImagingSci.Technol.(2006)50:1(64)]

INTRODUCTION

Multispectral imaging (MSI) is a promising technology for
critical color-matching applications such as telemedicine,
electronic museum, art book reproductions, on-line shop-
ping, etc., since conventional RGB color images, although
pleasing, are unacceptable in respect for high fidelity color
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reproduction.”* In response to the huge data volume of
multispectral images, many compression algorithms have
been carried for the efficiency of transmission, mainly in the
field of remote sensing.”™ Among various methods, trans-
form coding based methods are one of the feasible solutions
for multispectral image compression. When multispectral
images are coded by transform coding, spectral and spatial
transforms are usually independently and sequentially
applied.” A typical multispectral image compression system
is composed of Karhunen-Loeve transform (KLT) as the
spectral transform and discrete cosine transform (DCT) or
discrete wavelet transform (DWT) as the spatial ones, fol-
lowed by quantization and encoding.

However, these conventional transforms of multispec-
tral image compression are mostly designed for better spec-
tral accuracy purpose and use mean squared error (MSE)
based evaluation measurements, e.g., peak signal-to-noise
ratio (PSNR). That is to say, they aim to minimize the dif-
ference between the original and reconstructed multispectral
images. In the applications for color reproduction, it is valu-
able to utilize the characteristics of visual color perception,
but conventional compression methods do not take the ad-
vantage of colorimetry into consideration. In response to
this problem, Murakami used a method called weighted KLT
(WKLT) as the spectral transform for multispectral image
compression,” which is a special case of one mode analysis
(OMA).” In this method, the colorimetric error is decreased
as compared to conventional KLT based methods by incor-
porating a weighting matrix to KLT that accounts for the
color matching functions of human observer. Mase com-



Yu et al.: Multispectral image compression for high fidelity...

bined WKLT with JPEG2000 as the spatial compression
scheme for multispectral image compression and confirmed
the effectiveness of WKLT in the aspect to reduce color dif-
ference in CIE L*a*b* color space.®

However, the improvements in color reproduction for
OMA and WKELT based compression schemes are obtained
on the cost of poor spectral accuracy in certain wavelengths.
In some applications, multispectral imaging technology is
valuable for both accurate color reproduction and spectral
image analysis, for example, medical color imaging, textile,
and other merchandize imaging for electronic commerce
and digital archive of historical artworks. In those applica-
tions, spectral information is used for classification,’
recognition,'’ material identification,'’ and content-based
image retrieval.'> In addition, in printer industry, spectral
transmittance images are required for the spectral reproduc-
tion techniques.” In these occasions, the loss of spectral
accuracy is not expected. In this paper, we show that the
preservation of spectral accuracy and the reduction of colo-
rimetric error is a tradeoff, which can be controlled by add-
ing a diagonal matrix that is composed of a scalar multiple
of an identity matrix to the weighting matrix of KLT. It is
also demonstrated that spectral accuracy can be improved
without substantial colorimetric degradation if the scalar is
chosen appropriately.

In order to evaluate the performance of the addition of
diagonal matrix to the weighting matrix, we use the follow-
ing spectral transforms for multispectral image compression:
KLT, WKLT with and without the addition of diagonal ma-
trix to the weighting matrix, and for comparison, we also
introduce another special case of OMA, and we call it re-
vised WKLT (RWKLT), which considers both the color
matching functions of human observer and the influence of
a predetermined illuminant set in the weighting matrix. In
order to utilize these transforms for spectral decorrelation of
multispectral images, we adopt the following process: first,
the spectral reflectance is estimated from the multispectral
data by certain estimation method such as Wiener estima-
tion, and the estimated spectral reflectance is transformed by
different transforms, followed by JPEG2000 as the spatial
compression scheme.

SPECTRAL TRANSFORMS FOR MULTISPECTRAL
IMAGE COMPRESSION FOR BETTER COLOR
REPRODUCIBILITY

Some spectral transforms for multispectral image compres-
sion in purpose of better color reproducibility have been
proposed, including OMA, WKL, etc., which are shortly
outlined in the Appendix, as well as the celebrated KLT.
OMA is a general concept that incorporates a weighting ma-
trix in KLT and WKLT is a special case of OMA, where in
the weighting matrix of WKLT, the color matching functions
of human observers are considered.

Besides OMA and WKLI, we also introduce a revised
version of WKLT (RWKLT) in this section, which is another
special case of OMA. RWKLT can consider the influence of
a predetermined illuminant set as well as the color matching
functions of human observer in its weighting matrix.
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Figure 1. Diagonal coefficients for the weighting matrices of WKLT and
RWWKILT.

As stated in the Appendix, WKLT is based on the as-
sumption that the number of illuminants L is towards infi-
nite so that different kinds of illuminants can be considered
as independently and identically distributed at each wave-
length. In practice, we can limit the set of illuminants that
are frequently used for real applications of color reproduc-
tion. In such cases, recalling the weighting matrix for WKLT:

W\ZNKLT = Tg(yz = T?( + TZY + Té) (1)

where Ty, Ty, T, are diagonal matrices whose diagonal ele-
ments indicate the color matching functions of human ob-
server, such as CIE 1931 XYZ color matching functions, it is
reasonable to substitute Wiy by Wiwirr to take the in-
fluence of the illuminants into consideration:

Wiwkrr = Txyy = TxRTx + TyRTy + T,RT,,  (2)

where
R=EE". (3)
Here we use the normalized illuminant set E=(e|e;
=e;/|le]), i=1,2,...,L, to equalize the influence of different
illuminants e;(i=1,2,...,L). In order to distinguish from

WKLT, we call the transform that incorporates the weighting
matrix of Wyywgrr as RWKLL.

Figure 1 shows the diagonal values for the weighting
matrices of WKLT and RWKLI, where the illuminant set
used in RWKLT is shown in Fig. 2 and will be further dem-
onstrated in the experimental section. It can be seen that the
weighting matrices decrease at long visible wavelength for
both WKLT and RWKLI' by the influence of the spectral
shape of the color matching function. In addition, we can
also observe the effect of the predetermined illuminant set in
the case of RWKLI. That the magnitudes for the weighting
matrix of RWKLT are smaller compared to that of WKLT is
caused by illumination normalization in RWKLT.

Besides, as OMA, WKLT, and RWKLT are all KLT based
transforms, they are image-dependent and the pertinent sta-
tistics information of the image data is needed for the cal-
culation of KLT vectors. In this paper, the correlation matrix
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Figure 2. Spectral radiances of the illuminants that are used as the illumi-
nant set for the weighting matrix of RWKLT.
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Figure 3. Comparison of PSNR resulis for each band image of a 16
band multispectral image using KLT and WKLT as the spectral transform.
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that is used to obtain the basis functions of KLT is generated
from the spectral reflectance, which is estimated from the
original multispectral image. The image-independent
scheme for the simplification of calculating the correlation
matrix is our future issue.

ADDITION OF DIAGONAL MATRIX TO WEIGHTING
MATRIX

WKLT and RWKLT based methods are superior in color
reproducibility compared with KLT based multispectral im-
age compression scheme.® However, the improvement in
color accuracy is on the cost of poor spectral accuracy. Fig-
ure 3 compares the peak signal-to-noise ratio (PSNR) as the
measurement for spectral accuracy for each band of a 16-
band multispectral image, respectively, using KLT and WKLT
based compression methods. We can observe the shape of
the WKLT result is similar to the shape of the weighting
matrix of WKLT in Fig. 1, where the magnitudes of diagonal
elements of the weighting matrix are small in long wave-
lengths. When multiplied by such a weighting matrix, the
spectral reflectance estimated from the multispectral image
will also become small in the corresponding wavelengths. In
the viewpoint of image compression, this process equals to
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quantize the spectral reflectance of the corresponding wave-
length range by larger quantization step-sizes, which will re-
sult in bigger quantization error and degradation in spectral
accuracy for the corresponding wavelengths range, as is
shown in Fig. 3.

In order to improve the spectral accuracy, let us recall
the cost function for KLT' (in the Appendix), which aims to
minimize the spectral error and we can take the weighting
matrix for KLT as an identity matrix. Namely, the improve-
ment of spectral accuracy in WKLT can be achieved by a
compromise of WKLI' and KLT. Thus we define a modified
cost function to take both the colorimetric and spectral ac-
curacies into consideration

e=|WE-DP + -, (4)

Here, the first item W(f—f) is according to the colorimetric

accuracy while the second item (f—f) to spectral accuracy
reproduction and « determines the balance of colorimetric
and spectral accuracies. We can further write Eq. (4) into

e=(|W(E- 1) + a(f- D)

) =5(l(W+al)(f- D

%),
(5)

which means that the minimization of the cost function in
Eq. (Al) can be realized by substituting W in Eq. (A4) by
W+ al. Therefore, it can be said that by adding a scalar
multiple of an identity matrix to the weighting matrices of
WKLT or RWKLIT, the spectral accuracy can be taken into
account as well as the colorimetric accuracy. In this case, the
near zero values can be lifted up and thus the quantization
errors can be reduced in the corresponding reconstructed
multispectral image channels. At the same time, the feature
of weighting matrices for WKLT and RWKLT can also be
preserved if the scalar « is small and properly chosen.

The magnitude of the scalar a can be determined ac-
cording to the different applications of the multispectral im-
age and the intent for compression system design. Too large
value of a will diminish the effects of the weighting matrices
for WKLT and RWKLT and cause colorimetric degradation,
while too small & will result in little improvements for spec-
tral accuracy.

Let us rewrite Eq. (5) as

e = {|WIP + o}|Af], (6)
where Af=f—f and if Af is constant for all wavelength, || Afi]*
can be written as

IAf? = N+ Aet, (7)

where N refers to the number of spectral samples in the
wavelength range of the narrow visual band (380—780 nm)
of the spectral data for color reproduction and Ag; is the

difference between f and f under a single wavelength. Then
Eq. (6) can be written as

J. Imaging Sci. Technol. 50(1)/Jan.-Feb. 2006
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e {[WIP + AP = (W] + &/INAe. (8)

From Eq. (8), we can find the weighting factor & is inversely
proportional to the wavelength range of the spectral data N
when & is constant. That is to say, « is inversely proportional
to the square root of the range of spectral data

kit =1/ \/ﬁ =1/ \/wavelength range of the spectral data.
©)

For RWKTI, the influence of the illuminant set is also
considered, along with the number of samples in of the
range of the spectral data. apywyr is defined as

arwirr = VV|IL, (10)

where L is the number of the illuminants used in the weight-
ing matrix of RWKLT and k is the dimension of the spectral
data f. Here, the functionality of |[TI]| is the same as that of N
in Eq. (9).

COMPRESSION SCHEME

In order to implement the multispectral image compression
based on the proposed method to preserve both colorimetric
and spectral accuracy, in this section, we will introduce the
total compression scheme, which is shown in Fig. 4: First,
the spectral reflectance f is obtained by Wiener estimation
pixel by pixel from the original multispectral image g, then
spectral transform is performed on the estimated spectral
reflectance. These spectral processes can be done by vector
matrix product. Suppose the numbers of channels in the
multispectral image g and the spectral reflectance f are j and
k, respectively, where the rank of f is j, and kX ;j matrix M
represents the Wiener estimation matrix, and k X k matrix R
with the rank j is the spectral transform matrix, then the
spectral transform coefficient vector a with the size k and
rank j can be expressed by

a=R-f=R-M-g. (11)

The proposed spectral transform method can be used in
combination with different spatial compression schemes.
Among them, JPEG2000 is suitable for multispectral image
compression, because it can deal with both gray-scale and
multichannel images. Meanwhile, JPEG2000 can integrate
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Figure 5. Spectral sensitivity of the 16-band multispectral camera used in
experiments.

both lossless and lossy compressions under the same
framework."” Furthermore, although it is not the definitive
reason to choose the format, the supplementary information
needed for the color reproduction can be stored in metadata
in JPEG2000 format.'® All these merits of JPEG2000 make it
a good candidate to serve as the spatial compression scheme
in our multispectral compression system.

For the implementation of JPEG2000, the software
LuraWave.jp2 by LuraTech company is used."” Because the
spectral transform coefficients are all real numbers, we must
quantize them into integers for the input of JPEG2000. The
following quantization method is used in the experiment.®

Suppose ag,, be the maximum of the absolute value in
all transform coefficient channels, the coefficients inside the
interval (—a,ps,a,,s) Will be linearly quantized to the g-bit
integer values by
a = Qapys

a =

(27-1), (12)

Aabs

where g is the bit depth of the transformed coefficient and
the operation | | denotes to round the real number towards
the nearest integer to the minus infinity.

EXPERIMENT

Three multispectral images are used in the experiments,
which are captured by a multispectral camera with 16 nar-
row band color filters.” The spectral sensitivities of the mul-
tispectral camera color filters are shown in Fig. 5. Figure 6
shows one band for each of the three multispectral images,
respectively, all in the color filter central wavelength of
550 nm. Each band image consists of 512X 512 pixels with
16-bit dynamic resolution, which is downsampled from the
original 1024 X 1024 pixels’ image. For convenience of dem-
onstration, we name the three multispectral images in Fig. 6
toy, scarf, and flowers, respectively.

The illuminant set used in RWKLT is shown in Fig. 2,
altogether 19 kinds of illuminants, including CIE A, B, C,
and 4 kinds of daylight with different color temperature (de-
noted by D50, D55, D65, and D75) and a set of fluorescent
(denoted by F1-F12). We assume the viewing illuminant for
the experiments is one of CIE D65, F2 and FLAT, where
FLAT indicates the spectral power is evenly distributed along

67



Yu et al.: Multispectral image compression for high fidelity...

Figure 6. One band image for each multispectral image used in the
experiments with 550 nm of central wavelength of the color filter. For
nofation, we name them (a) toy, (b) scarf, and (c) flowers.
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wavelength. Here D65 and F2 are inside the illuminant set of
RWKLT, while FLAT is not included in the predetermined
illuminant set.

For experimental evaluation, we use PSNR as the mea-
surement for spectral accuracy, which is expressed by

20— 1

PSNR = 20 log (13)

s~ &)l

where g and g denote the original and reconstructed multi-
spectral images, respectively, and b means the bit-depth of
the multispectral pixels. And for the evaluation of color re-
producibility, CIE 1931 L*a*b* color difference under a cer-
tain illuminant is used, which is denoted by AE,;*:

AE}, =[(AL")? + (Aa")? + (Ab")?]2, (14)

where AL*, Aa*, and Ab™ represent the differences of the
CIE L*a"b" color images restored from the original and re-
constructed multispectral images.

Moreover, in this paper, the compression ratio is defined
as

compressed data size
CR= — —. (15)
original data size

DETERMINATION OF THE MAGNITUDE OF THE
DIAGONAL MATRIX
In the experiments, we examine the effectiveness of the pro-
posed method to determine the scalar «, which indicates the
magnitude of the diagonal matrix that are added to the
weighting matrices of WKLT and RWKLT. Figure 7 shows
the relationship between PSNR and the magnitude of the
diagonal matrix added to the weighting matrix of WKLT and
RWKLT for image flowers under various compression ratios.
Figure 8 shows the relationship between average CIE L*a*b*
color differences and the magnitudes of the diagonal matrix
added to the weighting matrix of WKLT and RWKLT for
image flowers under different illuminants when CR=0.05.
awirr and agwirr in the figures are corresponding to the
magnitudes for the diagonal matrices that are determined by
Egs. (9) and (10). We can also get similar results from the
experiments of the other two multispectral images. From
these results, we can notice that in both cases of WKLT and
RWKLT, the PSNR always increase with the increase of a.
More specifically, PSNR is very sensitive and increase a great
deal when @< awr(arwkir), While a> aywxir(@rwrrr),
PSNR becomes not very sensitive to the variance of a. In the
case of color difference, the results in Fig. 8 show that the
color difference is much more sensitive to the increase of
and when o> aywgr(arwiir), although PSNR still in-
creases a little in Fig. 7, the color differences will get worse
rapidly. This means the calculated magnitude of the diagonal
matrix for WKLT and RWKLI by Egs. (9) and (10) can
reach a good balance between spectral and colorimetric ac-
curacies.

Moreover, the tendencies of PSNR and color difference
results in Figs. 8 and 9 appear to be similar for various

J. Imaging Sci. Technol. 50(1)/Jan.-Feb. 2006
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mined by Egs. (9) and (10).

magnitude of « under different illuminants for both WKLT
and WRKLT and a small deviate of @ will not change the
colorimetric results very much. That means the regularized
parameter « is robust for various illuminants, transforms, as
well as a mis-specified parameter a.

COMPARISON OF WKLT AND RWKLT WITH THE
ADDITION OF DIAGONAL MATRIX

In this section, we will compare the performance of WKLT
and RWKLT with the addition of diagonal matrix to the
weighting matrix as the spectral transform for multispectral
image compression. For comparison purpose, we will use
KLT, WKLT (with and without the addition of diagonal ma-
trix), and RWKLT' (with and without the addition of diago-
nal matrix) as the spectral transforms in the experiments.
Moreover, we will use Egs. (9) and (10) for the determina-
tion of the magnitudes for the diagonal matrices.
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Figure 9 is a comparison between the first four analysis
vectors for KLT, WKLT, and RWKLT, respectively, which are
obtained from the spectral reflectance estimation of multi-
spectral image toy. We can see compared with the vectors for
KLT, WKLT, and RWKLT can reflect the influence of the
spectral shape of the color matching function, and RWKLT
contains the information of the predetermined illuminant
set.

In Fig. 10, PSNR versus different compression ratio is
shown as the measurement of the spectral accuracy of the
reconstructed multispectral image using different spectral
transforms As the measurements for color reproducibility,
the average and the maximum E[a*b] versus the compres-
sion ratio under viewing illuminant F2 are shown in Fig. 11.
In those results, test image is flowers. From the results, it is
confirmed that in the aspect of PSNR, adding a suitable
diagonal matrix to the weighting matrix of WKLIT or
RWKLT can greatly improve the spectral accuracy; And in
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Figure 9. First four analysis vectors of KLT, WKLT, and RWKILT obtained
from the spectral reflectance esfimated from multispectral image toy.

the aspect of colorimetric error, the results for WKLT or
RWKLT methods, with and without the addition of the di-
agonal matrix, are almost the same in a wide range of com-
pression ratio, which in turn proves the effectiveness of our
proposed method to determine the magnitude of the diago-
nal matrix. Specifically, the results for RWKLI based method
can get the best color accuracy results in a large range of
compression ratio, except at low bit rates. That is caused by
the normalization for the illuminants used in the weighting
matrix of RWKLT, which reduced the dynamic range of the
RWKLT coefficients, thus made them more sensitive to the
quantization errors at low bit rates.

The results of the other two multispectral images under
various illuminants are summarized in Tables I and 11, Table
I shows the results for image scarf under illuminant F2 while
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Table II is for image toy under illuminant D65. From those
results, we can conclude that although there are some differ-
ences according to different test images or viewing illumi-
nants, the tendency of the results are almost the same.
Moreover, still in the case of RWKLI, adding a suitable
diagonal matrix to the weighting matrix has good generali-
zation ability even when the viewing illuminant is not in-
cluded in the presumed illuminant set. Figure 12 shows an
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Figure 11. Comparison for color difference using different spectral trans-
forms for image flowers under illuminant F2 (a) average E[axb] (b)
maximum E [a#*b].
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Table 1. Results for image scarf under illuminant F2.

(R 0.01 0.05 0.25

PSNR 41.10 52.48 71.63

KLT ave E[a*b] 2.67 0.77 0.14
max E[a*b] 51.16 15.56 1.89

PSNR 36.20 40.77 51.04

WKLT ave E[a*h] 216 0.48 0.09
max E[a*b] 36.65 15.41 1.24

WKLT with PSNR 39.43 48.25 65.57
diagonal ave E[a*b] 214 0.50 0.10
matrix max E[a*b] 315 15.00 1.45
PSNR 31.20 40.32 50.98

RWKLT ave E[a*h] .41 0.32 0.03
max E[a* b] 48.54 10.65 0.50

RWKLT with PSNR 37.00 47.85 58.74
diagonal ave E[a*h] 249 0.34 0.03
matrix max E[a*b] 52.09 10.77 0.49

Table I1. Results for image toy under illuminant D65.

(R 0.01 0.05 0.25

PSNR 42.48 52.95 71.83

KLT ave E[a*b] 342 1 0.18
max E[a*b] 49.07 2041 1.91

PSNR 34.40 §1.72 50.14

WKLT ave E[a* b] 2.64 0.71 0.13
max E[a*b] 40.54 13.26 1.53

WKLT with PSNR 40.99 48.93 65.84
diagonal ave E[a* b 2.65 071 0.13
matrix max E[a*b] 39.29 10.20 1.67

PSNR 33.45 41.25 49.86

RWKLT ave E[a* b] 2.98 0.49 0.05
max E[a*b] 46.56 8.28 0.72

RWKLT with PSNR 38.13 48.74 56.66
diagonal ave E[a*b] 3.01 0.52 0.06
matrix max E[a*b] 4540 8.42 0.70

example for image flowers, when the viewing illuminant is
FLAT, which is not included in the presumed illuminant set
for RWKLT. In this example, we can observe that RWKLT
without the addition of diagonal matrix will have little effect
to colorimetric error reduction at high bit rates. The degra-
dation of color reproducibility of RWKLT is related to the
number and the kinds of illuminants that are used in the
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Figure 12. Comparison for color difference using RWKLT with and with-
out the addition of diagonal matrix when the viewing illuminant is FLAT,
which is not included in the presumed illuminant set for RWKLT. (a) Aver-
age E[axb] (b) maximum E[a#b].

illuminant set, and the similarity of the illuminant to those
in the illuminant set. This is similar to linear pattern match-
ing filter design, where the filter is sometimes designed from
a limited training set. Then if the training set is ill suited and
cannot represent a large range of dataset, the filter may be
only optimized to the training set, while for other test set,
the performance will get worse. The addition of diagonal
matrix to the weighting matrix of RWKLI can improve such
phenomenon to some extent, as is shown also in Fig. 12,
both the average and the maximum color difference are re-
duced in high bit rate range when the diagonal matrix is
added to the weighting matrix of RWKLT.

CONCLUSION AND DISCUSSION

The purpose of this paper is to propose a multispectral im-
age compression method for high fidelity color reproducibil-
ity with spectral accuracy preservation. We add a diagonal
matrix to the weighting matrix of WKLT and RWKLT and
determine the magnitude of the diagonal matrix by a novel
cost function. Experimental results that are performed on
three 16-channel multispectral images shown the advantage
of adding a suitable diagonal matrix, where spectral accuracy
is improved without substantial loss of color reproducibility.
Moreover, the addition of the diagonal matrix has generali-
zation effect for RWKLT in the case when the viewing illu-
minant is out of the predetermined illuminant set. Further-
more, it is valuable to integrate the propose method to
JPEG2000 for the compression of multispectral images and
the fact that fixed magnitude of the diagonal matrix works
well for various multispectral images are also fine for prac-
tical use.
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APPENDIX

In the Appendix, we will briefly introduce three spectral
transforms for multispectral image compression, where the
celebrated KLT is used for spectral accuracy reproduction
and one mode analysis (OMA) and weighted KLT (WKLI)
are proposed for better color reproducibility purpose.

KIT
KLT aims to minimize the error defined by

EKLT = <||f_ ﬂ

where f and f denote the k-dimensional vector representa-
tions of the spectral reflectance estimated from the j-channel

) (A1)
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original and reconstructed multispectral images. KLT for f
can be expressed by

A =Pf, (A2)

where A is the j-dimensional vector of the KLT coefficient,
and the transformation matrix

P: (Pl)pZ) )pj)T) (A3)

contains KLT analysis vectors p;(i=1,2,...j), which are the
eigenvectors of the correlation matrix ff! and the rank of the
correlation matrix is j.

OMA
OMA incorporates an k X k weighting matrix W to the spec-
tral reflectance and is proposed to minimize the following
error

goma = {|W(f - f)||2> (A4)

OMA can be expressed as:
B = Q(Wf), (A5)

where B is the j-dimensional vector of the OMA coefficient,
and the transformation matrix Q=(q;,q;,...q;) includes
the eigenvector q;(i=1,2,...,j) of the matrix W(ff\)WT.

WKILT

OMA is a general model and the weighting matrix W can be
defined for different purposes. WKLT is a special case of
OMA proposed by Murakami that aims to minimize the
error

ewker = ([Wwier (- D|?) = (F - i‘)TW\I;\;KLTWV\/KLT(f— £)

= ((f- §)"(TxEE'Tx + TyEE'Ty + T,EE'T,)(f - f)),
(A6)

where Ty, Ty, T, are diagonal matrices whose diagonal ele-
ments indicate the color matching functions of human ob-
server, such as CIE 1931 XYZ color matching functions and
the matrix E=(e;,e,,...,e;) represents the spectral radia-
tions of L kinds of illuminants e;(i=1,2,...,L). In order to
simplify the weighting matrix, WKLT assumes that L gets
closer to infinite and the correlation matrix of illuminants
EET is approximated by a scalar multiple of an identity ma-
trix. Thus the weighting matrix can be simplified as

Wikt = Txyy = Tx + Ty + T (A7)
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