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bstract. The surface reflectance functions of natural and man-
ade surfaces are invariably smooth. It is desirable to exploit this

moothness in a multispectral imaging system by using as few sen-
ors as possible to capture and reconstruct the data. In this paper
e investigate the minimum number of sensors to use, while also
inimizing reconstruction error. We do this by deriving different
umbers of optimized sensors, constructed by transforming the
haracteristic vectors of the data, and simulating reflectance recov-
ry with these sensors in the presence of noise. We find an upper

imit to the number of optimized sensors one should use, above
hich the noise prevents decreases in error. For a set of Munsell

eflectances, captured under educated levels of noise, we find that
his limit occurs at approximately nine sensors. We also demon-
trate that this level is both noise and dataset dependent, by provid-

ng results for different magnitudes of noise and different reflectance
atasets. © 2006 Society for Imaging Science and
echnology. �DOI: 10.2352/J.ImagingSci.Technol.�2006�50:1�45��

NTRODUCTION
he information contained in a black and white image is

nsufficient to reproduce the scene’s spectral information.
or example, it is not possible to know if a shirt which
ppears gray in the image is red, green, blue, or yellow. This
eans that surfaces with different reflectance properties are

ikely to integrate to the same gray shade. This phenomenon,
hereby spectrally different surfaces integrate to the same

amera response, is known as metamerism.1,2

It is possible to reduce metamerism by increasing the
umber of channels in the device. For example, most com-
ercially available cameras employ three channels, which are

ommonly chosen to be red, green, and blue. Three channel,
r trichromatic, cameras significantly reduce the degree of
etamerism encountered in black and white cameras. Un-

ortunately, trichromatic cameras are not able to fully eradi-
ate metamerism.2 Thus, like in the example of a gray shirt
n a black and white image, many surfaces might integrate to
he same trichromatic response, making surface separation
n impossible task.

To further decrease the degree of metamerism it is nec-
ssary to make cameras with more than three color channels,
uch cameras are known as multispectral cameras.3–6 Unfor-
unately, the drive to increase the number of sensors is re-
tricted by the increased cost and memory requirements as
ell as manufacturing limitations. In light of these con-
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traints and the need for an increased number of channels
e are faced with the question that we address in this paper,
amely, what is the minimum number of sensors needed in
multispectral imaging device such that the error in recov-

ring the reflectances is minimal.
As a first approximation we might assume that the

umber of channels needed in a multispectral camera is
imited, and relates to the underlying dimensionality of the
aptured data. Such an assumption is supported by a large
ody of research in spectral data dimensionality where it is
greed that a small number of basis functions is adequate to
ully represent large data sets. From analyzing 150 out of 433

unsell chips Jozef Cohen7 concluded that their reflectance
epends on three components. Among later studies of the
unsell colors, Eem et al.8 proposed four, Maloney9 pro-

osed five to seven, Burns3 proposes five to six, Lenz et al.10

se six, Parkkinen et al.11 and Wang et al.12 argue that eight
omponents are necessary, and in a recent study Hardeberg13

emonstrated that as many as 18 basis functions may be
eeded. The reason behind the discrepancies between these
tudies is that different authors use different thresholds for
he required similarity between the original and recon-
tructed data.

There are two main drawbacks with basing our estimate
or the number of sensors needed in multispectral imaging
evices on the aforementioned studies. Firstly, the basis

unctions derived in those studies do not correspond to
hysically feasible sensors.14 Secondly, the data is assumed to
e noise-free; an assumption which is not justified in an
ctual imaging system where many types of noise are known
o corrupt the response data.15 Hence, in this paper we
resent two methods to derive physically feasible sensors
uch that they are optimised to record and reproduce the
pectral data. Using the spectral curves of these sensors we
re able to synthesize their responses to a database of Mun-
ell reflectance spectra.11 Doing so allows us to add educated
evels of quantization and shot noise,15 which makes it pos-
ible to study the efficacy of increasing the number of sen-
ors in the imaging device without having to assume perfect
oise-free conditions.

Finally, the sensor design methods presented in this pa-
er are derived such that, in the absence of noise, an increas-

ng number of sensors is guaranteed to improve the reflec-
ance estimates. Choosing sensors with this property allows
s to concentrate on the question of the minimum number
eeded rather than the spectral properties of the sensors. In
45
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ther studies that include variable numbers of sensors,
mong other factors, the sensors are often chosen to have
rbitrary characteristics.4,16 As a result the effect of sensor
umber is confounded by the particular sensor characteris-

ics chosen.
In the first section of this paper we review the principles

f reflectance recovery. The argument in this section is based
pon existing theory that appears in previous treatments
e.g., Wandell17). We outline the argument here with specific
mphasis on choosing the number of sensors in an imaging
ystem. In the next section we introduce methods for deriv-
ng physically feasible sensors that are optimized for spectral
ecovery. We use these sensors in computational experiments
escribed in method to assess the effect of sensor number on
eflectance recovery in the presence of noise. In Simulation
esults and Discussion we present results that suggest that

ensor noise provides a natural limit to decide the best num-
er of sensors.

ACKGROUND
y assuming that all surfaces are Lambertian, and that there

s no fluorescence, the response of a digital camera at a
ingle pixel can be modeled by

qi = �
�

Qi���E���R���d� , �1�

here qi is the response of the ith sensor �i=1, . . . ,P�, Qi���
s the ith sensor response function, E��� is the spectral
ower distribution of the illuminant and R��� is the surface
pectral reflectance function. Note that we are neglecting
oise for the time being.

These continuous functions can be sampled at a num-
er of discrete wavelength intervals n without a significant

oss of accuracy, providing that the interval is sufficiently
mall.18 In this work we sample functions on the range from
00 to 700 nm at 10 nm intervals, thus n=31. With this in
ind Eq. (1) can be rewritten as:

qi = �
�

Qi���E���R����� . �2�

his discrete sum is more conveniently expressed in terms of
atrix-vector notation, thus we write:

q = QTr , �3�

here q is a p�1 vector of sensor responses and r is an n
1 reflectance vector. For compactness we represent the

roduct of each sensor response function Qi��� and the il-
uminant E��� as a single vector which forms the ith column
f the n�p sensor matrix Q.

The problem of recovering reflectance from camera re-
ponses can now be expressed as the problem of estimating
he n�1 vector r given the p�1 vector of camera responses

and the matrix Q. This is a system of p linear equations in
unknowns. For an exact solution it is sufficient to set the

umber of knowns equal to the number of unknowns, i.e.,
o use p=31 independent sensors in the imaging system.
owever, such a large number of sensors may not be neces- t

6

ary for reflectance recovery. Real reflectance spectra are
nown to be strongly constrained and may be represented
ccurately with fewer than 31 parameters.13 A convenient
ay to express this is to write reflectance as the weighted

inear sum of a small number of basis vectors,9 i.e.,

r = �
i=1

m

bi�i , �4�

here bi are the basis vectors, �i are the respective weights
nd m�n. This relation can be expressed in matrix vector
otation thus:

r = B� , �5�

here the columns of B are the basis vectors and � is a
ector of weights. Replacing Eq. (5) into Eq. (3) we obtain

q = QTB� . �6�

his is a system of p equations in m unknowns. To solve
niquely for �, and therefore r, it is sufficient to set the
umber of independent sensors p=m. Providing that QTB is

nvertible we can solve for the � as follows:19,20

� = �QTB�−1q . �7�

he principal problem with this approach is that it is not
traightforward to determine an objective value for m and,
herefore, p. In order to understand this it is necessary to
onsider how to derive m from a statistical analysis using the
ingular value decomposition.

We can represent a set of k reflectance spectra as the
olumns of an n�k matrix R. The singular value decompo-
ition of R is given by

R = U�VT , �8�

here the matrices U and V are both orthonormal, i.e.,
TU=VTV= I, and � is a matrix whose leading diagonal

ontains the singular values of R with zeros elsewhere. The
olumns of U are the eigenvectors of the matrix RRT and are
eferred to as characteristic vectors. The characteristic vec-
ors are a set of basis vectors for the columns of R that are
rdered such that the first vector accounts for the most vari-
bility in the data, the second accounts for the most variabil-
ty in the residual from the first vector, and so on. Thus by
ncreasing the number of characteristic vectors in the linear

odel we are guaranteed to improve the reflectance estimate
rogressively. Furthermore, the first m characteristic vectors
ive the closest possible fit of any linear model for a given
alue of m.

Although, by increasing the number of bases m in the
inear model, the approximation can always be improved,
he inherent smoothness of reflectance spectra determines
hat there is a point when increasing m results in very small
mprovements in accuracy. Generally m is estimated as the
oint when the small improvement drops below some arbi-
rary threshold. However, if we intend to use m to determine

he number of sensors in a multispectral imaging system,

J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
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hen we must consider the point when the improvement in
he accuracy of the linear model is cancelled by the detri-

ental effect of imaging noise. In order to assess the role of
oise we need to make a real set of sensors to capture the
ata in typical noise conditions. This requires that we choose

he sensor functions carefully, according to objective
riteria.21 Different sensor characteristics capture different
nformation, and hence result in different reflectance esti-

ates for the same sensor number. By not choosing care-
ully, the effect of increasing the number of sensors, and
ence parameters in the linear model, will be confounded
ith the sensor characteristics. We would, therefore, like to

hoose sensors that are optimised for spectral recovery and
hus guarantee that, in the absence of noise, increasing the
umber of sensors results in decreasing error. In order to do

his we should choose sensors Q whose columns span the
ame vector space as the first m characteristic vectors.22

ON-NEGATIVE SENSORS
o guarantee that we choose the sensors to be within a linear
ransform of the basis vectors we must choose Q such that it
atisfies the following relation:

Q = BA , �9�

here A is a linear transformation and B contains the first m
haracteristic vectors of R as columns. Initially, one might
onsider using the characteristic vectors themselves as sen-
ors, i.e., let A be the identity matrix. However, as can be
een from Fig. 1, the characteristic vectors contain many
egative values, yet real sensors must be non-negative every-
here. Further, the modulation of the characteristic vectors

s proportional to their order, i.e., additional vectors have an
ncreasing number of peaks and troughs. It is therefore de-
irable to transform these vectors into a non-negative vector
pace, such that their individual sensitivities are concen-

igure 1. The first four characteristic vectors of the Munsell reflectance
ata. The data are plotted at 10 nm intervals and interpolated linearly.
rated in distinct regions of the visible spectrum. For ex- r

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
mple, in a trichromatic camera system the sensors are com-
only chosen to be red, green, and blue. Finally, the

ransformed vectors should ideally span the same space as
he original.

Given these criteria, we would like to find the best
ransform A to solve for the sensors Q. In this paper we
ropose to solve this problem using the varimax rotation
lgorithm described in Refs. 23 and 24. Starting from the
�m bases matrix B, with elements bjk, the varimax crite-

ion is given by

V�B� = �
k
� 1

n
�

j

bjk
4 − � 1

n
�

j

bjk
2 �2� . �10�

erbally, Eq. (10) is the columnwise variances of the squared
lements of B. Given the varimax criterion in Eq. (10), the
ptimal transform A in Eq. (9) is any orthogonal rotation of

that maximizes the varimax criterion among all other or-
hogonal rotations. Constraining A to be an orthogonal
ransform means that the resultant sensors Q are themselves
rthogonal. Maintaining the orthogonality of the sensors is

mportant, as it makes the recovery of reflectance from their
utput maximally robust to sensor noise.25 The sensors gen-
rated by this procedure are shown in Fig. 2.

The sensitivity of each sensor is clearly focused in a
ifferent region of the visible spectrum. However, the rotated
ectors still contain some negative lobes, which means that
hey cannot be used as sensors. We, therefore, choose every-
here non-negative sensors that are as close as possible to

he rotated sensors, denoted Q̂, but still within a linear trans-

orm of B. Denoting Q̂i as the ith column of Q̂, we can do
his sequentially for the ith sensor by solving the following
ptimization problem:

min
gi

	Q̂i − Q̂igi	2 subject to Q̂igi � 0 , �11�

here gi is a p�1 vector and 0 is a vector of zeros. This

igure 2. The first four characteristic vectors rotated by the varimax algo-
ithm to be maximally positive. The data are plotted at 10 nm intervals
nd interpolated linearly.
esults in the sensors shown in Fig. 3, termed here the vari-

47
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ax sensors.
In earlier work Piché26 generates non-negative combi-

ations of the characteristic vectors that explicitly maximize
he mutual orthogonality of the sensors. He points out that
he orthogonality of the sensors can be measured directly by
he condition number of Q, where the condition number is
iven by

cond�Q� = 	Q	2	Q†	2. �12�

ere 	 · 	2 denotes the spectral norm of a matrix, which is
iven by its largest singular value, and † denotes the pseudo-
nverse operation. Given that the characteristic vectors are
uaranteed to be orthogonal, the condition number of Q is
etermined solely by the condition number of A. Piché,

herefore, generates transformations of the characteristic
ectors that explicitly attempt to minimize the condition
umber of A. That is, he minimizes the following objective

unction

min
A

	A	2	A†	2 subject to Q = BA � 0 , �13�

here 0 is now a matrix of zeros. This optimization problem
an be tackled directly using iterative nonlinear optimization
ethods. Sensors generated using this procedure, termed

ere Piché sensors, are shown in Fig. 4. Note the similarity
etween the sensors in Fig. 4 and those generated by the
arimax procedure in Fig. 3. We also find that the varimax
nd Piché procedures generate sensors with equally low con-
ition numbers, even though Piché minimizes condition
umber explicitly.

ETHOD
o generate each set of p sensors we choose the first p char-
cteristic vectors of a set of reflectance spectra and transform
hem into non-negative sensors using both the Piché and

igure 3. Non-negative sensors formed by varimax rotation with added
ositivity constraint. The data are plotted at 10 nm intervals and interpo-

ated linearly.
arimax procedures. We use the synthesized responses of n

8

hese sensors to assess the effect of increasing sensor number
n reflectance recovery performance in the presence of
oise. Synthetic camera responses are generated according to

he following camera model:

q = QTr + nshot + nquant, �14�

here the vectors nx denote sources of noise. Shot noise

shot arises from the inherent uncertainty in the generation,
eflection, and capture of light. This is a Poisson process,15

hus the variance of the shot noise component increases with
ncreasing input intensity. This is modeled using multiplica-
ive Gaussian noise, thus

nshot = 
�1q1,�2q2, . . . ,�pqp�T , �15�

here each of the �i is a pseudorandom variable taken from
Gaussian distribution with zero mean and variable stan-

ard deviation and qi represents the ith sensor response.
uantization noise nquant is incorporated by directly quan-

izing the simulated responses after the application of shot
oise. Other sources of noise, such as dark noise, are as-
umed to be negligible or corrected for.

In all calculations the equal energy illuminant E is used
nd the columns of Q all sum to 1, thus ensuring a camera
esponse of 1 to a perfect reflecting diffuser. Reflectance is
stimated from camera responses using Eqs. (5) and (7). The
ifference between original and estimated spectra is mea-
ured in terms of absolute route-mean-squared error, given
y

rms =��r − r̂�T�r − r̂�

n
, �16�

here r̂ is the reflectance estimate and r is the original.
Given that a pseudorandom variable is used to simulate

igure 4. Non-negative sensors formed by Piché’s procedure. The data
re plotted at 10 nm intervals and interpolated linearly.
oise, the results of these simulations will vary from trial to

J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
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rial. In order to discount this effect the simulations are re-
eated 10 times and the average is recorded.

IMULATION RESULTS
n Fig. 5 we present results for a set of 1269 Munsell reflec-
ance spectra captured under 1% shot noise and 12 bit
uantization along with noise-free estimation results. This
hows the effect of increasing the number of sensors on

ean rms reconstruction error. When there is noise in the
ensor responses the recovery error does not decrease mono-
onically with increasing sensor number as it does when
here is no noise. Minimum error is reached at 11 sensors
nd nine sensors for the varimax and Piché methods respec-
ively, although the varimax sensors show little improvement
eyond nine sensors. The value of nine corresponds to pre-
ious estimates of the dimensionality of this dataset made
sing different decision criteria by Parkkinen et al.11 and
ang et al.12

Although we have made every effort to reduce the de-
endency of the best number of sensors on external factors,

t is still both dataset and noise dependent. Figure 6 shows
he effect of increasing noise levels on the best number of
ensors. In the figure the number of sensors, generated for
he Munsell reflectance data using varimax rotation, is plot-
ed against mean rms error for increasing levels of shot
oise. As expected, increasing the level of noise increases the
verall reconstruction error. Furthermore, as the noise level

ncreases so does the variability in error for different sensor
umbers. Therefore, although the minimum error remains
t nine sensors for noise levels of 2% and above, for high
oise levels the advantage of increasing the number of sen-
ors above four could be outweighed by the potential for
ncreasing reconstruction error. Recent measurements of
oise levels in a trichromatic camera27 suggest that realistic

evels of shot noise are between 1% and 2%, thus the best
umber of sensors for a real system is likely to be close to
ine. In additional experimental data, not shown here, it was

igure 5. Effect of increasing sensor number with 12 bit quantization
nd 1% shot noise on Munsell reflectance data.
ound that quantization noise has a negligible effect. m

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
The sensors that are generated in each condition are
erived directly from the characteristic vectors of the data,
nd are therefore, clearly data dependent. Figure 7 shows the
our-sensor sets of varimax sensors derived from four differ-
nt reflectance datasets; the Munsell data, the patches of the

acbeth ColorChecker DC,28 the patches of the Esser cali-
ration target29 and a set of natural reflectance spectra, con-
isiting of leaves, bark and flowers, measured by Owens.30

nly varimax rotation is used here, as Piché’s method took
oo long to converge for some sets of sensors. The sensors
rom the ColorChecker DC and Munsell reflectance data are
ery similar to each other, since the characteristic vectors of
hese sets are closely related. The sensors derived from the
sser target differ slightly from those of the Munsell data,
hile the natural sensors appear markedly different.

In Figs. 8–10 we plot sensor number versus rms error
or the three additional datasets, again deriving sensors using
he varimax method. In each case there is 1% shot noise and
2 bit quantization. For the Macbeth ColorChecker DC
Fig. 8), the error has stopped decreasing monotonically at
ine sensors, with a minimum reached at 13 sensors. For the
sser target (Fig. 9) the minimum is reached at 13 sensors,
lthough the error decreases monotonically up to 13 sensors
n this case. The natural data (Fig. 10) seems to show a
ailing off at around eight sensors, although by plotting up
o 25 sensors we can see that there is in fact a clear mini-

um at around 17 sensors.

ISCUSSION
n these experiments we have used carefully chosen sensors
o find the minimum number of sensors such that they pro-
ide minimal reflectance reconstruction error. The number
hat we find is dependent both upon the data set for which
he sensors are optimized, and on the noise level. This num-
er is a theoretical limit but it is also based upon realistic
oise estimates.

In order to verify these results in a practical setting, one

igure 6. Results for the Munsell reflectance data with different levels of
hot noise.
ight attempt to manufacture different sets of optimal sen-

49
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ors. However, any real sensors are sure to deviate from op-
imal sensors due to variability in the manufacturing pro-
ess. As such we expect that the best number of real sensors
ould be different from the theoretical values presented
ere. In most cases the best number is likely to increase
elative to the theoretical case, since more sensors would be
eeded to capture the same amount of information as the

heoretical sensors. However, the best number may also de-
rease, e.g., if errors in manufacturing the sensors were to
ncrease sensitivity to noise as a function of sensor number.

As stated previously, the sensors we derive here are data
ependent. Therefore, the sensors are no longer optimal
hen they are used to capture novel surfaces, i.e., surfaces
ot used to derive the sensors. The best number of sensors

or the novel dataset will be determined by both the dimen-
ionality and the spectral characteristics of the two datasets.

Figure 7. Sensors derived by varimax rotation for
10 nm intervals and interpolated linearly.
or example, imagine that we have two surface sets, a deri- n

0

ation set for which the sensors are optimized and a novel
et. If the novel set has a lower dimensionality than the
erivation set, then it is likely that a smaller number would
uffice for that data. Similarly, if the novel set has a higher
imension than the derivation set, or even a similar dimen-
ionality but with very different reflectance characteristics,
e expect the number of sensors required to increase.

In our experiments we make no distinction between the
nderlying sensitivity of the sensor and the filter placed in

ront of the sensor. However, practically these two processes
re often separated, since a given camera generally has a
ingle CCD chip, whose sensitivity is fixed, and the problem
f deriving optimal sensors is one of deriving optimal filters.
he way we approach the problem here can be seen directly
s optimizing filters with the assumption that the camera has
n equal sensivity at all wavelengths. However, even if this is

ferent reflectance datasets. The data are plotted at
four dif
ot the case, it would be straightforward to adapt our

J. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
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ethod, assuming that the underlying sensor sensitivity is
nown, by incorporating that information into the spectral
ata prior to performing the optimization, i.e., by simply
ultiplying the sensor sensitivity by the spectral data at each
avelength.

In addition to being data dependent, the results are also
ependent upon the validity of the noise model. Implicit in

he model that we employ is the assumption that image
ndependent noise, such as that introduced by the sensor
lectronics or dark noise is minimal. Such an assumption is
alid for cooled CCD cameras, which are commonly used in
uch applications (e.g., Ref. 31). However, for other imaging
ystems we might expect this not to hold, and the number of
ensors therefore, to, be different.

ONCLUSIONS
n this work we have generated sensors for a simulated mul-

igure 8. Effect of increasing sensor number with 12 bit quantization
nd 1% shot noise on Macbeth ColorChecker DC data.

igure 9. Effect of increasing sensor number with 12 bit quantization
nd 1% shot noise on the Esser target.
ispectral imaging device that are both optimized for recov-

. Imaging Sci. Technol. 50�1�/Jan.-Feb. 2006
ring a particular set of reflectances and are maximally ro-
ust to noise. We have used these to find the minimum
umber of sensors such that they provide minimal recon-
truction error. Using fewer sensors leaves potential room
or improvement, whereas using more sensors does not de-
rease rms error due to the effect of noise. In a typical noise
nvironment, with 1% shot noise and 12 bit quantization,
e find that the limit occurs at approximately nine sensors

or a set of Munsell reflectances, nine for the Macbeth Col-
rChecker DC, 13 for the Esser target and eight for a set of
atural data. For the Munsell data, the value of nine corre-
ponds to previous estimates of the dimensionality of this
ataset made using different decision criteria by Parkkinen
t al.11 and Wang et al.12
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