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Multispectral Imaging: How Many Sensors Do We Need?
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Abstract. The surface reflectance functions of natural and man-
made surfaces are invariably smooth. It is desirable to exploit this
smoothness in a multispectral imaging system by using as few sen-
sors as possible to capture and reconstruct the data. In this paper
we investigate the minimum number of sensors to use, while also
minimizing reconstruction error. We do this by deriving different
numbers of optimized sensors, constructed by transforming the
characteristic vectors of the data, and simulating reflectance recov-
ery with these sensors in the presence of noise. We find an upper
limit to the number of optimized sensors one should use, above
which the noise prevents decreases in error. For a set of Munsell
reflectances, captured under educated levels of noise, we find that
this limit occurs at approximately nine sensors. We also demon-
strate that this level is both noise and dataset dependent, by provid-
ing results for different magnitudes of noise and different reflectance
datasets. © 2006 Society for Imaging Science and
Technology. [DOI: 10.2352/J.ImagingSci.Technol.(2006)50:1(45)]

INTRODUCTION

The information contained in a black and white image is
insufficient to reproduce the scene’s spectral information.
For example, it is not possible to know if a shirt which
appears gray in the image is red, green, blue, or yellow. This
means that surfaces with different reflectance properties are
likely to integrate to the same gray shade. This phenomenon,
whereby spectrally different surfaces integrate to the same
camera response, is known as metamerism. "

It is possible to reduce metamerism by increasing the
number of channels in the device. For example, most com-
mercially available cameras employ three channels, which are
commonly chosen to be red, green, and blue. Three channel,
or trichromatic, cameras significantly reduce the degree of
metamerism encountered in black and white cameras. Un-
fortunately, trichromatic cameras are not able to fully eradi-
cate metamerism.” Thus, like in the example of a gray shirt
in a black and white image, many surfaces might integrate to
the same trichromatic response, making surface separation
an impossible task.

To further decrease the degree of metamerism it is nec-
essary to make cameras with more than three color channels,
such cameras are known as multispectral cameras.”® Unfor-
tunately, the drive to increase the number of sensors is re-
stricted by the increased cost and memory requirements as
well as manufacturing limitations. In light of these con-
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straints and the need for an increased number of channels
we are faced with the question that we address in this paper,
namely, what is the minimum number of sensors needed in
a multispectral imaging device such that the error in recov-
ering the reflectances is minimal.

As a first approximation we might assume that the
number of channels needed in a multispectral camera is
limited, and relates to the underlying dimensionality of the
captured data. Such an assumption is supported by a large
body of research in spectral data dimensionality where it is
agreed that a small number of basis functions is adequate to
fully represent large data sets. From analyzing 150 out of 433
Munsell chips Jozef Cohen’ concluded that their reflectance
depends on three components. Among later studies of the
Munsell colors, Eem et al.® proposed four, Maloney’ pro-
posed five to seven, Burns® proposes five to six, Lenz et al.'’
use six, Parkkinen et al.'"' and Wang et al.'* argue that eight
components are necessary, and in a recent study Hardeberg"
demonstrated that as many as 18 basis functions may be
needed. The reason behind the discrepancies between these
studies is that different authors use different thresholds for
the required similarity between the original and recon-
structed data.

There are two main drawbacks with basing our estimate
for the number of sensors needed in multispectral imaging
devices on the aforementioned studies. Firstly, the basis
functions derived in those studies do not correspond to
physically feasible sensors."* Secondly, the data is assumed to
be noise-free; an assumption which is not justified in an
actual imaging system where many types of noise are known
to corrupt the response data."” Hence, in this paper we
present two methods to derive physically feasible sensors
such that they are optimised to record and reproduce the
spectral data. Using the spectral curves of these sensors we
are able to synthesize their responses to a database of Mun-
sell reflectance spectra.'’ Doing so allows us to add educated
levels of quantization and shot noise,”” which makes it pos-
sible to study the efficacy of increasing the number of sen-
sors in the imaging device without having to assume perfect
noise-free conditions.

Finally, the sensor design methods presented in this pa-
per are derived such that, in the absence of noise, an increas-
ing number of sensors is guaranteed to improve the reflec-
tance estimates. Choosing sensors with this property allows
us to concentrate on the question of the minimum number
needed rather than the spectral properties of the sensors. In
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other studies that include variable numbers of sensors,
among other factors, the sensors are often chosen to have
arbitrary characteristics.*'® As a result the effect of sensor
number is confounded by the particular sensor characteris-
tics chosen.

In the first section of this paper we review the principles
of reflectance recovery. The argument in this section is based
upon existing theory that appears in previous treatments
(e.g., Wandell'’). We outline the argument here with specific
emphasis on choosing the number of sensors in an imaging
system. In the next section we introduce methods for deriv-
ing physically feasible sensors that are optimized for spectral
recovery. We use these sensors in computational experiments
described in method to assess the effect of sensor number on
reflectance recovery in the presence of noise. In Simulation
Results and Discussion we present results that suggest that
sensor noise provides a natural limit to decide the best num-
ber of sensors.

BACKGROUND

By assuming that all surfaces are Lambertian, and that there
is no fluorescence, the response of a digital camera at a
single pixel can be modeled by

q9i= f Qi(NMEN)R(N)dN, (1)
A

where g; is the response of the ith sensor (i=1,...,P), Q;(\)
is the ith sensor response function, E(\) is the spectral
power distribution of the illuminant and R(\) is the surface
spectral reflectance function. Note that we are neglecting
noise for the time being.

These continuous functions can be sampled at a num-
ber of discrete wavelength intervals n without a significant
loss of accuracy, providing that the interval is sufficiently
small."® In this work we sample functions on the range from
400 to 700 nm at 10 nm intervals, thus n=31. With this in
mind Eq. (1) can be rewritten as:

3= 2 QNEMNRMNAN. )
A

This discrete sum is more conveniently expressed in terms of
matrix-vector notation, thus we write:

q=Q'r, (3)

where q is a p X 1 vector of sensor responses and r is an n
X1 reflectance vector. For compactness we represent the
product of each sensor response function Q;(\) and the il-
luminant E(\) as a single vector which forms the ith column
of the n X p sensor matrix Q.

The problem of recovering reflectance from camera re-
sponses can now be expressed as the problem of estimating
the 7 X 1 vector r given the p X 1 vector of camera responses
q and the matrix Q. This is a system of p linear equations in
n unknowns. For an exact solution it is sufficient to set the
number of knowns equal to the number of unknowns, i.e.,
to use p=31 independent sensors in the imaging system.
However, such a large number of sensors may not be neces-
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sary for reflectance recovery. Real reflectance spectra are
known to be strongly constrained and may be represented
accurately with fewer than 31 parameters.”” A convenient
way to express this is to write reflectance as the weighted
linear sum of a small number of basis vectors,” i.e.,

r= E biwi’ (4)
i=1

where b; are the basis vectors, w; are the respective weights
and m <<n. This relation can be expressed in matrix vector
notation thus:

r=Bw, (5)

where the columns of B are the basis vectors and w is a
vector of weights. Replacing Eq. (5) into Eq. (3) we obtain

q9=Q'Bw. (6)

This is a system of p equations in m unknowns. To solve
uniquely for @, and therefore r, it is sufficient to set the
number of independent sensors p=m. Providing that Q”B is
invertible we can solve for the e as follows:'**"

»=(Q'B)'q. (7)

The principal problem with this approach is that it is not
straightforward to determine an objective value for m and,
therefore, p. In order to understand this it is necessary to
consider how to derive m from a statistical analysis using the
singular value decomposition.

We can represent a set of k reflectance spectra as the
columns of an n X k matrix R. The singular value decompo-
sition of R is given by

R=UV', (8)

where the matrices U and V are both orthonormal, i.e.,
UTU=VTV=I, and ¥ is a matrix whose leading diagonal
contains the singular values of R with zeros elsewhere. The
columns of U are the eigenvectors of the matrix RR” and are
referred to as characteristic vectors. The characteristic vec-
tors are a set of basis vectors for the columns of R that are
ordered such that the first vector accounts for the most vari-
ability in the data, the second accounts for the most variabil-
ity in the residual from the first vector, and so on. Thus by
increasing the number of characteristic vectors in the linear
model we are guaranteed to improve the reflectance estimate
progressively. Furthermore, the first m characteristic vectors
give the closest possible fit of any linear model for a given
value of m.

Although, by increasing the number of bases m in the
linear model, the approximation can always be improved,
the inherent smoothness of reflectance spectra determines
that there is a point when increasing m results in very small
improvements in accuracy. Generally m is estimated as the
point when the small improvement drops below some arbi-
trary threshold. However, if we intend to use m to determine
the number of sensors in a multispectral imaging system,
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Figure 1. The first four characteristic vectors of the Munsell reflectance
dota. The data are plotted at 10 nm intervals and interpolated linearly.

then we must consider the point when the improvement in
the accuracy of the linear model is cancelled by the detri-
mental effect of imaging noise. In order to assess the role of
noise we need to make a real set of sensors to capture the
data in typical noise conditions. This requires that we choose
the sensor functions carefully, according to objective
criteria.®! Different sensor characteristics capture different
information, and hence result in different reflectance esti-
mates for the same sensor number. By not choosing care-
fully, the effect of increasing the number of sensors, and
hence parameters in the linear model, will be confounded
with the sensor characteristics. We would, therefore, like to
choose sensors that are optimised for spectral recovery and
thus guarantee that, in the absence of noise, increasing the
number of sensors results in decreasing error. In order to do
this we should choose sensors Q whose columns span the
same vector space as the first m characteristic vectors.”

NON-NEGATIVE SENSORS
To guarantee that we choose the sensors to be within a linear
transform of the basis vectors we must choose Q such that it
satisfies the following relation:

Q=BA, )

where A is a linear transformation and B contains the first m
characteristic vectors of R as columns. Initially, one might
consider using the characteristic vectors themselves as sen-
sors, ie., let A be the identity matrix. However, as can be
seen from Fig. 1, the characteristic vectors contain many
negative values, yet real sensors must be non-negative every-
where. Further, the modulation of the characteristic vectors
is proportional to their order, i.e., additional vectors have an
increasing number of peaks and troughs. It is therefore de-
sirable to transform these vectors into a non-negative vector
space, such that their individual sensitivities are concen-
trated in distinct regions of the visible spectrum. For ex-
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Figure 2. The first four characteristic vectors rotated by the varimax algo-
rithm to be maximally positive. The data are plotted af 10 nm intervals
and interpolated linearly.

ample, in a trichromatic camera system the sensors are com-
monly chosen to be red, green, and blue. Finally, the
transformed vectors should ideally span the same space as
the original.

Given these criteria, we would like to find the best
transform A to solve for the sensors Q. In this paper we
propose to solve this problem using the varimax rotation
algorithm described in Refs. 23 and 24. Starting from the
n X m bases matrix B, with elements by, the varimax crite-
rion is given by

1 1 2
V(B) =2, —Eb}i—(—Ebﬁ) : (10)
kLM n.;

Verbally, Eq. (10) is the columnwise variances of the squared
elements of B. Given the varimax criterion in Eq. (10), the
optimal transform A in Eq. (9) is any orthogonal rotation of
B that maximizes the varimax criterion among all other or-
thogonal rotations. Constraining A to be an orthogonal
transform means that the resultant sensors Q are themselves
orthogonal. Maintaining the orthogonality of the sensors is
important, as it makes the recovery of reflectance from their
output maximally robust to sensor noise.”> The sensors gen-
erated by this procedure are shown in Fig. 2.

The sensitivity of each sensor is clearly focused in a
different region of the visible spectrum. However, the rotated
vectors still contain some negative lobes, which means that
they cannot be used as sensors. We, therefore, choose every-
where non-negative sensors that are as close as possible to

the rotated sensors, denoted Q, but still within a linear trans-

form of B. Denoting (i)i as the ith column of Q, we can do
this sequentially for the ith sensor by solving the following
optimization problem:

min||Qi - f)igi||2 subject to (A)igl- =0, (11)
g

where g; is a p X1 vector and 0 is a vector of zeros. This
results in the sensors shown in Fig. 3, termed here the vari-
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Figure 3. Non-negative sensors formed by varimax rotation with added
positivity constraint. The data are plotted at 10 nm infervals and inferpo-
lated linearly.

max Sensors.

In earlier work Piché® generates non-negative combi-
nations of the characteristic vectors that explicitly maximize
the mutual orthogonality of the sensors. He points out that
the orthogonality of the sensors can be measured directly by
the condition number of Q, where the condition number is
given by

cond(Q) = [|Q|1|Q"]l,. (12)

Here ||-||* denotes the spectral norm of a matrix, which is
given by its largest singular value, and ' denotes the pseudo-
inverse operation. Given that the characteristic vectors are
guaranteed to be orthogonal, the condition number of Q is
determined solely by the condition number of A. Piché,
therefore, generates transformations of the characteristic
vectors that explicitly attempt to minimize the condition
number of A. That is, he minimizes the following objective
function

min||A|,]|A"[, subject to Q =BA =0, (13)
A

where 0 is now a matrix of zeros. This optimization problem
can be tackled directly using iterative nonlinear optimization
methods. Sensors generated using this procedure, termed
here Piché sensors, are shown in Fig. 4. Note the similarity
between the sensors in Fig. 4 and those generated by the
varimax procedure in Fig. 3. We also find that the varimax
and Piché procedures generate sensors with equally low con-
dition numbers, even though Piché minimizes condition
number explicitly.

METHOD

To generate each set of p sensors we choose the first p char-
acteristic vectors of a set of reflectance spectra and transform
them into non-negative sensors using both the Piché and
varimax procedures. We use the synthesized responses of
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Figure 4. Nonnegative sensors formed by Piché’s procedure. The dafa
are plottied af 10 nm intervals and interpolated linearly.

these sensors to assess the effect of increasing sensor number
on reflectance recovery performance in the presence of
noise. Synthetic camera responses are generated according to
the following camera model:

q= QTr + Do + nquant’ (14)

where the vectors n, denote sources of noise. Shot noise
Ny, arises from the inherent uncertainty in the generation,
reflection, and capture of light. This is a Poisson process,"”
thus the variance of the shot noise component increases with
increasing input intensity. This is modeled using multiplica-
tive Gaussian noise, thus

Dghot = [glql’ §2Q2) e ’gpqp]T) (15)

where each of the {; is a pseudorandom variable taken from
a Gaussian distribution with zero mean and variable stan-
dard deviation and q; represents the ith sensor response.
Quantization noise N,y is incorporated by directly quan-
tizing the simulated responses after the application of shot
noise. Other sources of noise, such as dark noise, are as-
sumed to be negligible or corrected for.

In all calculations the equal energy illuminant E is used
and the columns of Q all sum to 1, thus ensuring a camera
response of 1 to a perfect reflecting diffuser. Reflectance is
estimated from camera responses using Eqs. (5) and (7). The
difference between original and estimated spectra is mea-
sured in terms of absolute route-mean-squared error, given
by

(16)

rms =

where t is the reflectance estimate and r is the original.
Given that a pseudorandom variable is used to simulate
noise, the results of these simulations will vary from trial to

J. Imaging Sci. Technol. 50(1)/Jan.-Feb. 2006
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Figure 5. Effect of increasing sensor number with 12 bit quantization
and 1% shot noise on Munsell reflectance data.

trial. In order to discount this effect the simulations are re-
peated 10 times and the average is recorded.

SIMULATION RESULTS

In Fig. 5 we present results for a set of 1269 Munsell reflec-
tance spectra captured under 1% shot noise and 12 bit
quantization along with noise-free estimation results. This
shows the effect of increasing the number of sensors on
mean rms reconstruction error. When there is noise in the
sensor responses the recovery error does not decrease mono-
tonically with increasing sensor number as it does when
there is no noise. Minimum error is reached at 11 sensors
and nine sensors for the varimax and Piché methods respec-
tively, although the varimax sensors show little improvement
beyond nine sensors. The value of nine corresponds to pre-
vious estimates of the dimensionality of this dataset made
using different decision criteria by Parkkinen et al.'' and
Wang et al."?

Although we have made every effort to reduce the de-
pendency of the best number of sensors on external factors,
it is still both dataset and noise dependent. Figure 6 shows
the effect of increasing noise levels on the best number of
sensors. In the figure the number of sensors, generated for
the Munsell reflectance data using varimax rotation, is plot-
ted against mean rms error for increasing levels of shot
noise. As expected, increasing the level of noise increases the
overall reconstruction error. Furthermore, as the noise level
increases so does the variability in error for different sensor
numbers. Therefore, although the minimum error remains
at nine sensors for noise levels of 2% and above, for high
noise levels the advantage of increasing the number of sen-
sors above four could be outweighed by the potential for
increasing reconstruction error. Recent measurements of
noise levels in a trichromatic camera® suggest that realistic
levels of shot noise are between 1% and 2%, thus the best
number of sensors for a real system is likely to be close to
nine. In additional experimental data, not shown here, it was
found that quantization noise has a negligible effect.

J. Imaging Sci. Technol. 50(1)/Jan.-Feb. 2006

RMS error

0.005

8 9 10 11 12 13 14 15
Number of sensors

(&)
IS
o
o
~

Figure 6. Results for the Munsell reflectance data with different levels of
shot noise.

The sensors that are generated in each condition are
derived directly from the characteristic vectors of the data,
and are therefore, clearly data dependent. Figure 7 shows the
four-sensor sets of varimax sensors derived from four differ-
ent reflectance datasets; the Munsell data, the patches of the
Macbeth ColorChecker DC,* the patches of the Esser cali-
bration target® and a set of natural reflectance spectra, con-
sisiting of leaves, bark and flowers, measured by Owens.”
Only varimax rotation is used here, as Piché’s method took
too long to converge for some sets of sensors. The sensors
from the ColorChecker DC and Munsell reflectance data are
very similar to each other, since the characteristic vectors of
these sets are closely related. The sensors derived from the
Esser target differ slightly from those of the Munsell data,
while the natural sensors appear markedly different.

In Figs. 8—10 we plot sensor number versus rms error
for the three additional datasets, again deriving sensors using
the varimax method. In each case there is 1% shot noise and
12 bit quantization. For the Macbeth ColorChecker DC
(Fig. 8), the error has stopped decreasing monotonically at
nine sensors, with a minimum reached at 13 sensors. For the
Esser target (Fig. 9) the minimum is reached at 13 sensors,
although the error decreases monotonically up to 13 sensors
in this case. The natural data (Fig. 10) seems to show a
tailing off at around eight sensors, although by plotting up
to 25 sensors we can see that there is in fact a clear mini-
mum at around 17 sensors.

DISCUSSION
In these experiments we have used carefully chosen sensors
to find the minimum number of sensors such that they pro-
vide minimal reflectance reconstruction error. The number
that we find is dependent both upon the data set for which
the sensors are optimized, and on the noise level. This num-
ber is a theoretical limit but it is also based upon realistic
noise estimates.

In order to verify these results in a practical setting, one
might attempt to manufacture different sets of optimal sen-
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Figure 7. Sensors derived by varimax rotation for four different reflectance datasets. The data are plotted af

10 nm intervals and inferpolated linearly.

sors. However, any real sensors are sure to deviate from op-
timal sensors due to variability in the manufacturing pro-
cess. As such we expect that the best number of real sensors
would be different from the theoretical values presented
here. In most cases the best number is likely to increase
relative to the theoretical case, since more sensors would be
needed to capture the same amount of information as the
theoretical sensors. However, the best number may also de-
crease, e.g., if errors in manufacturing the sensors were to
increase sensitivity to noise as a function of sensor number.

As stated previously, the sensors we derive here are data
dependent. Therefore, the sensors are no longer optimal
when they are used to capture novel surfaces, i.e., surfaces
not used to derive the sensors. The best number of sensors
for the novel dataset will be determined by both the dimen-
sionality and the spectral characteristics of the two datasets.
For example, imagine that we have two surface sets, a deri-
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vation set for which the sensors are optimized and a novel
set. If the novel set has a lower dimensionality than the
derivation set, then it is likely that a smaller number would
suffice for that data. Similarly, if the novel set has a higher
dimension than the derivation set, or even a similar dimen-
sionality but with very different reflectance characteristics,
we expect the number of sensors required to increase.

In our experiments we make no distinction between the
underlying sensitivity of the sensor and the filter placed in
front of the sensor. However, practically these two processes
are often separated, since a given camera generally has a
single CCD chip, whose sensitivity is fixed, and the problem
of deriving optimal sensors is one of deriving optimal filters.
The way we approach the problem here can be seen directly
as optimizing filters with the assumption that the camera has
an equal sensivity at all wavelengths. However, even if this is
not the case, it would be straightforward to adapt our

J. Imaging Sci. Technol. 50(1)/Jan.-Feb. 2006
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Figure 8. Effect of increasing sensor number with 12 bit quantization
and 1% shot noise on Macbeth ColorChecker DC data.
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Figure 9. Effect of increasing sensor number with 12 bit quantization
and 1% shot noise on the Esser farget.

method, assuming that the underlying sensor sensitivity is
known, by incorporating that information into the spectral
data prior to performing the optimization, i.e., by simply
multiplying the sensor sensitivity by the spectral data at each
wavelength.

In addition to being data dependent, the results are also
dependent upon the validity of the noise model. Implicit in
the model that we employ is the assumption that image
independent noise, such as that introduced by the sensor
electronics or dark noise is minimal. Such an assumption is
valid for cooled CCD cameras, which are commonly used in
such applications (e.g., Ref. 31). However, for other imaging
systems we might expect this not to hold, and the number of
sensors therefore, to, be different.

CONCLUSIONS
In this work we have generated sensors for a simulated mul-
tispectral imaging device that are both optimized for recov-
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ering a particular set of reflectances and are maximally ro-
bust to noise. We have used these to find the minimum
number of sensors such that they provide minimal recon-
struction error. Using fewer sensors leaves potential room
for improvement, whereas using more sensors does not de-
crease rms error due to the effect of noise. In a typical noise
environment, with 1% shot noise and 12 bit quantization,
we find that the limit occurs at approximately nine sensors
for a set of Munsell reflectances, nine for the Macbeth Col-
orChecker DC, 13 for the Esser target and eight for a set of
natural data. For the Munsell data, the value of nine corre-
sponds to previous estimates of the dimensionality of this
dataset made using different decision criteria by Parkkinen
et al.'" and Wang et al.”?
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