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are printed to measure the physical dot area for each of
the digital dot areas. These measurements are the
values required for the dot gain.

There are two distinct phases in this process which may
be formulated as machine learning problems: (1) predict
the developer voltage and corresponding ink optical
density at 100% coverage per ink given the current
machine state, and (2) predict the dot gain table values
for each digital dot area of interest for each ink given the
current machine state, developer voltage, and ink optical
density at 100% coverage. A related problem, predicting
the dot gain table given one or more measured dot values
without any state information, is also examined here. A
large number of machine learning regression algorithms
are applicable to these problems. We evaluate the
accuracy of three common methods: artificial Neural
Networks (NN), Support Vector Machines (SVM), and
linear regression. Neural networks are a well-known
technique for machine learning. Both Bishop1 and Ripley2

give an excellent and readable treatment of theory and
methods. Support vector machines are a kernel-based
approach to machine learning. A good tutorial
introduction to SVM was written by Burges.3

If a method is found to supply sufficiently accurate
predictions, we can replace or augment the calibration
procedure with a prediction-based process that has much
less impact on customer workflow and consumable
usage. The minimal requirements for the HP Indigo
press are that the absolute difference between the
predicted dot area and the printed dot area is less than
2 at least 67% of the time.

Introduction
Color consistency is crucial for both photo and com-
mercial printing applications. Look up tables (LUTs)
for estimating dot gain values are currently updated
on demand when the operator notices color consistency
problems, and between updates colors can shift due to
process drift in the press. The goal of the work pre-
sented in this article is to dynamically control the dot
gain table and developer voltage to ensure more con-
sistent color control while minimizing waste and cali-
bration measurements.

Currently the dot gain table and developer voltage
are controlled by printing special calibration test
patterns on demand which are measured internally by
the press. The calibration process begins by printing one
or more test patterns with 100% ink coverage to
determine a developer voltage setting for each ink such
that the ink thickness at 100% coverage is within
specification. Once the developer voltage is set, the
actual ink thickness or optical density at 100% coverage
is measured. Finally one or more sheets of test patterns
with monochromatic swatches of uniform digital dot area
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The dot gain is defined as follows:

  
dot gain

observed dot area
digital dot area

= (1)

Both the digital dot area and observed dot areas are
expressed as a percentage of the area that is covered,
where 100 means that the whole area is covered with
ink. The printed dot gain values are calculated using
the densitometer measurements and the Murray–Davies
equation.

Figure 1 shows an example dot gain curve. The dot
gain curve is approximated from the physical dot area
values of 15 digital dot area values by a piecewise linear
function. The function is made up of 14 linear segments
which connect between the known dot area values. While
the dot gain curve is typically modeled from a smaller
number of points, e.g., 4, by the gamma function or by
two or three linear segments. In the case of the Indigo
Press the curve usually has an S-shape which is not
easily approximated by a parametric function nor by a
small number of linear segments. Using fewer points
affects the accuracy of the overall model. We will refer
to the dot gain lookup table (LUT) which contains the
printed dot area value, used in Eq. (1), for each of the
fifteen points.

The calibration process uses an inline optical
densitometer to read the printed dot areas from a swatch
of uniform density in a single color. The current physical
constraints of the system allow up to fifteen such
swatches on a single sheet. Since the presses can have
up to seven separations (inks), this implies that we may
measure up to two digital dot areas for each separation
in a single sheet.

The densitometer used for LUT calibration
approximates the true dot area with a small
measurement error. The practical accuracy of any model-
based predictions is limited by the accuracy of the

densitometer. In some cases, the models suggested here
approach this accuracy limit.

As an alternative to the full calibration process (fifteen
points), we consider a “fast calibration” process that
measures one, two or more points per color separation,
and then uses the measured information and the
machine state to predict the rest of the dot gain lookup
table values. This method does not change the
underlying model used for the dot gain curve; the model
remains a piecewise linear function with fourteen
segments.

We analyzed a dataset of dot gain LUT’s collected by
HP Indigo. Our results for this dataset are promising
in that the models give predictions within the required
limits. It is important, however, to keep in mind that
this dataset is small by machine learning standards –
approximately 130 samples for each ink separation and
halftone screen.

HP Indigo Dataset
The various parameters registered in the HP Indigo
dataset are best understood by a brief introduction to
the printing process of the HP Indigo Press.

The Printing Process
The process of image production consists of three

stages (see Fig. 2). The first step is image generation in
which a latent image is created on the Photo Imaging
Plate (PIP) foil. The second step is image development.
During this stage the latent image is developed by ink
on the PIP. The last step is image transfer in which the
developed image is transferred from the PIP to the
Blanket that wraps the Intermediate drum (ITM). At
this stage, the developed image is transferred from the
Blanket to the substrate.

This process of converting a digital signal to a physical
dot on a piece of paper can be affected by any number of
system elements and interactions. Many key elements,
such as the PIP foil and blanket are regularly replaced
and each replacement part has its own characteristics.

Figure 1. Sample dot gain curve. This curve was defined
based on densitometer measurements of fifteen dot area
values. Figure 2. Indigo Press.
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Thus, it is likely that a full dot gain table measurement
will need to be taken after each major part replacement.
In addition, during normal operation, other parameters
such as temperature, vary continuously.

Dataset Information
An experiment was conducted to collect the HP Indigo

dataset from a single hp 1000 Press by a single operator.
Note that Fig. 2 actually refers to the more sophisticated
Series 2 press, but the essential printing process
remains largely the same between the two models.

The experiment took place over a one week period.
During this time the automatic dot gain calibration
process was repeated every 1000 impressions (about 15
minutes). The dot gain LUT from every calibration was
saved, i.e., fifteen printed dot area values for each of the
four separations Black, Cyan, Magenta and Yellow.
Associated with each dot gain LUT are a set of observed
press parameters which are measured by sensors on the
press. Twelve of these parameters are common across all
separations, such as the ITM temperature, and seven
others vary according to the current separation, e.g., ink
characteristics and the developer voltage. The resulting
dataset contains 269 dot gain tables in all. For a more
detailed description of the dataset refer to Ref. 4.

All the graphs shown are for the 175 lpi HDI-175 screen.
Similar results were obtained for the Sequin screen.

Developer Voltage Characteristics
The developer voltage for the HP Indigo Dataset is

adjusted in steps of 8 V, although the final recorded voltage
has some noise. A histogram of the total developer voltage
observations separated into 8 V bins is given in Fig. 3.
The distribution of the developer voltage values in this
dataset appears to be at least bimodal, with the main mode
occurring at –456, and a secondary mode at about –360.
The extreme values in the bin centered on –488 and the
bin centered on –344 are very under-represented, as are
the bins –384 and –376, between the two modes.

Note that the adjustment step for developer voltage on
Series 2 machines is significantly smaller that the 8 V
step for the Series 1 machine represented in this dataset.

Dot Gain Variation Over Time
In order to deploy dot gain prediction effectively, we

need to know how often the tables should be updated. If

the tables are updated too frequently, then the color
consistency can be reduced because the table values are
changing faster than the underlying physical process.
If the tables are updated too infrequently, then the press
can drift out of control and color consistency is again
reduced. The goal is to update the dot gain tables when
it is likely that the press is drifting out of control.

As a first step we must determine how fast the press
drifts as a function of the number of impressions.
Viewing the dataset as a time series, we compared the
measured dot gain values for each LUT with the same
values in each subsequent LUT. The resulting data can
be thought of as a function of LUT change versus the
intervening impression count.

Figure 4 shows how the LUT table entries vary
between measurements as a function of the number of
intervening impressions. More precisely, it shows the
standard deviation for changes in the LUT values. Since
LUTs were not taken at fixed intervals, in terms of
impressions, we binned the data into 500 impression
buckets. Clearly the system can drift fairly quickly, so
updating the LUTs as frequently as every thousand
impressions would likely improve the color constancy.

One caveat with the results in Fig. 4 is that the
developer voltage is adjusted as the first step in the
calibration process, so between each measurement the
develop voltage is updated. Thus this dataset is not
representative of normal machine operation. During
normal operation, the developer voltage would not be
updated so frequently, so the actual variation in LUT
values may be smaller than this graph indicates.

Developer Voltage Prediction
As noted in the introduction, the procedure for setting
the developer voltage is an iterative procedure that re-
quires significant consumable resources. Since our goal
is to reduce both consumable waste, and machine “down-
time”, we wish to either replace or reduce the time and
resources necessary for such procedures. In the case of
developer voltage prediction, all of the measurable pa-
rameters are available to us with the exception of the
optical density at 100% since this is measured as part
of the developer voltage calibration procedure, and is
thus dependent on the developer voltage.

The developer voltage observations were denoised
before fitting models. That is, each observation was

Figure 3. Histogram of Developer Voltage Values
Figure 4. Standard Deviation of Printed Dot Area Differ-
ences for the Cyan separation.
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Figure 5. Developer Voltage for HDI-175 and Black Ink.

Figure 6. Prediction Error Histograms for Different Models.

the predictors, i.e., the press parameters, is sought that
predicts the rank of the developer voltage in the range
of possible developer voltages. In the case of this data,
there are nineteen classes, the lowest rank (class 1)
being –488 V, and the highest rank (class 19) being –344
V. There are known linear and nonlinear techniques for
solving this sort of problem (see, for example Ref. 5),
however they generally require that all classes be well
represented in the dataset. This is not the case with the
dataset under consideration.

Therefore, we treat the problem as a simple regression
problem, and then take the class nearest the model
prediction as the predicted developer voltage. The fitted
models interpolate in the under-represented regions and
can therefore still provide predictions that should be
sensible.

The data for developer voltage prediction, then, is the
measured press parameters (excluding the optical density
at 100% coverage). The developer voltage value is the
desired output for the regression, and the remaining
parameters are input. Prediction was evaluated in a ten-
fold cross-validation experiment. Each combination of
screen and ink comprised a separate experiment. We
obtained developer voltage predictions for each of the
statistical learning methods: linear regression, neural
networks and support vector machines. The linear
regression models included a stepwise parameter
selection based on the AIC (see, for example, Ref. 6). The

allocated the value of the nearest 8 V increment. This
helps prevent the model from fitting noise artifacts.

Figure 5 shows an example of the developer voltage
values for a single screen (HDI-175) and separation
(Black) after this denoising operation.

The statistical learning problem associated with the
prediction of developer voltage is an ordinal regression
problem. In this problem formulation, a function of
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Figure 7. Prediction Error 67% Confidence Interval.

neural network models had a single hidden layer with 5
hidden nodes and a nonlinear output node. The support
vector machine models used a radial basis function
kernel, with hyper-parameters set by the parameter
selection algorithm described by Staelin.7

As stated above, the resulting predictions are rounded
to the nearest 8 V class. We then consider the
discrepancy in number of classes between the predicted
and actual values. That is, if a prediction of 432 is made
when the actual class is 416, the reported error is on
predicted – true = –2. The histograms of the resulting
prediction errors for each statistical learning method
are given in Fig. 6. In all cases the predicted voltage
class is within 2 classes of the correct class for at least
99% of the predictions. For the linear regression models,
the predicted class is within 1 class of the correct class
at least 90% of the time, and both the nonlinear methods
(neural networks and SVM) achieve a prediction within
1 class of the correct class at least 95% of the time, with
neural networks slightly more accurate. The results are
fairly consistent when broken down by separation.

Dot Gain Prediction Results
There are a variety of sub-problems under the general
problem of dot gain LUT prediction that are appropri-
ate for different usage models. The sub-problems we con-
sider here fall into four general categories: (1) dot gain
LUT predictions using only machine state measure-
ments, i.e., no consumables are required; (2) parameter
ranking/relevance for problem (1) models; (3) dot gain
LUT predictions using the measurement of one or more
dot gain values, i.e., without measuring any machine
state variables.

For the prediction problems, the prediction errors are
the difference between the true printed dot area and the
predicted print dot area. The prediction errors were
analyzed using a Chi-squared goodness of fit test and
found that they are approximately normally distributed.
Therefore, we can use the normal distribution multipliers
for computing confidence intervals. The results are
presented on graphs with the x axis giving digital dot
area, and the y axis the difference of means. For a given
model, a confidence “envelope” is plotted on this axis. That
is, points corresponding to the upper limits of the
confidence intervals for each digital dot area are joined
to form a line, and the lower limits form a second line.
This is simply for readability, since we often wish to
compare multiple models on a single graph axis.

The graphs in Fig. 7 show the 67% prediction error
confidence intervals for each of the three machine
learning methods: linear regression, neural networks,
and support vector machines as a function of the digital
dot area. The null model prediction for each separation
is also included for comparison. The Black and Cyan
separations are shown. Note that each separation
behaves slightly differently.

From the results in Fig. 7, it is apparent that the
behavior of all the machine learning methods is similar.
This means that the prediction of “hard” points is
invariant of the learning method. Since linear regression
performs comparably to the more complex nonlinear
methods, all further analysis was done using linear
regression. Note that the null model does not supply
acceptable predictions.

Parameter Ranking and Selection
Some of the parameters used in the dot gain prediction

models may be redundant. That is, we may find smaller
models that fit the data equally well by removing some
parameters. This has a two fold advantage – smaller
models are more efficient computationally, and they are
less prone to over-fitting. Furthermore, by analyzing the
input parameters, we can gain some insight into the
machine operation that may help the manufacturer
identify other issues with parameter control etc.

The importance of a parameter may be measured by
the effect of removing that parameter from the model.
If the predictive power of the model is unaffected (or
even improved) we may conclude that the parameter is
not significant. On the other hand, if the model has a
significant degradation in performance without a
particular parameter, we may conclude that this
parameter is significant and should be retained.

To implement this method we proceeded in the
following manner. First model predictions were obtained
for the entire dataset using the whole set of predictors.
The predictions were obtained using the 10-fold cross
validation technique.

The sum of squared errors (SSE) of these predictions
was computed on each of the digital dot values of the
LUTs, where both screens and all separations were
included in this sum. Then similar predictions and SSE
computations were made for models fitted excluding
each of the input parameters in order.

We repeated this experiment 20 times and from this
we were able to estimate the mean and standard
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Figure 8. Difference of means 95% confidence intervals for depleted versus full linear regression models.

deviation of the SSE value for each of the table entries.
Using these estimates we can generate confidence
intervals for the differences of means between the
original (full) model and each of the depleted models,
for each DDA value.

Figure 8 summarizes these results. The error bars give
the 95% confidence interval for the mean of the relevant
depleted model SSE minus the mean of the full model
SSE. If the confidence interval does not include the zero
line in a particular case, then we can conclude (at the
0.05 level) that the parameter under consideration is
relevant for the dot gain LUT prediction. From the
graphs in Fig. 8, we can determine which parameters
are significant to the prediction and which parameters
are not significant. Note also that the significant
parameters are effective at different DDA values. For
example, the blanket.counter variable is effective mostly
at the lower DDA values, while vdeveloper has the
biggest effect at the high range of DDA values. We can
also use this technique to obtain a ranking of the
importance of each input parameter.4

Prediction with One or More Measured Points
The results in the previous section suggest that we

can predict the dot gain LUT to within specification
requirements by measuring the machine state. An
alternative to eliminating the calibration process is
reducing the waste due to calibration with a “fast
calibration” where some digital dot area patches are

printed and the printed dot area measured. In this
section we quantify the prediction quality when using
both one and two measured points.

This prediction problem immediately raises the issue
of which points to add. From prior figures, such as Fig.
7 we can see that the error distribution tends to be bi-
modal, with the smaller points, e.g., 2–16 covering one
regime, and the middle points, e.g., 27–50 covering
another regime.

Figure 9 shows the results of fitting models using a
single measured LUT value, and predicting the
remainder of the LUT based on this single value. For
this case we used neural network models rather than
linear regression models to add some nonlinearity to the
predictions. The measured points in Fig. 9 are those that
gave the best prediction results. These results suggest
that such models can meet the accuracy requirement
almost all the time.

Figure 10 shows the results of fitting models from two
measured LUT values. Two sets of points are shown {27
& 50}, which gave the best single point prediction, and
{16 & 40} which appear to give the best two point
prediction. As expected, two point prediction gives better
prediction results than one point and compares well to
the prediction results using the machine state.

Cross-Screen Prediction
The machine operator may exchange a printing screen

for a different screen during printer operation. Generally
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Figure 10. Prediction Error Confidence Intervals for Neural Network Predictions using Two Measured Points and No
Machine State.

this process requires recalibration of various aspects of
the machine, one of which is the dot gain LUT. If the
machine state (temperatures, ink characteristics etc)
does not change significantly during the screen exchange
operation, then we may hope to discover a mapping
between the dot gain LUTs for the two screens that will
save some or all of the manual LUT calibration.

Using the existing dot gain LUT dataset, which
contains roughly equal LUT values for the Sequin and
HDI-175 screens, we were able to extract a subset of 84
paired LUT measurements, in which the LUT
measurements for the two screens correspond to
approximately the same machine state. Each
measurement includes four separations, giving a total of
336 paired LUT samples. Since the goal here is to discover
a mapping between a LUT of one screen type and a LUT
of the other screen type, we treated all separations
together. Figure 11 gives a plot of the printed dot area
(PDA) values for one screen against the other, where each
subplot corresponds to the digital dot area (DDA) given
in the plot title. The apparent structure in these plots
does suggest there is some relationship between the two
screen LUTs, although it is quite weak in some cases.

In this investigation we shall only consider neural
network models (two hidden nodes, skip layer
connections, linear outputs, weight decay 0.001) and
attempt to predict the PDA for each DDA on one screen
based on the whole LUT for the corresponding other
screen. Thus to predict the HDI-175 LUT (for example)
from the Sequin LUT requires training seventeen
networks on the learning dataset. The same number of
networks is required to perform the reverse mapping.
Since we are interested in finding a direct mapping
between LUTs from two different screens we do not
include any extra machine state parameters in the
models; only the LUT values from the “source” screen
are supplied as inputs.

The 67% confidence intervals for both comparisons
(HDI→Sequin and Sequin→HDI) are show in Fig. 12.
In both cases the predictions fall within an absolute
difference of 2 at least 67% of the time. This meets
Indigo’s accuracy requirement for LUT prediction.

Conclusions
From the initial dataset it appears that given the mea-
surable press parameters we can predict the various dot

Figure 9. Prediction Error Confidence Intervals for Neural Network Predictions using One Measured Point and No
Machine State.
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gain values with acceptable accuracy using linear re-
gression. This should allow HP Indigo to greatly improve
the color consistency for their presses, while reducing
both the consumable waste and work-flow disruption.

We are surprised to see linear regression obtain
results equivalent to the nonlinear learning methods
(neural networks and SVM). It is possible that the

Figure 11. Scatterplots of PDA values from the Sequin Screen against PDA values from the HDI-175 Screen.

Figure 12. Prediction Error 67% Confidence Intervals for
Cross-screen Prediction Using Neural Networks.

relatively small dataset favors a simpler model, and that
nonlinear models will perform better on a larger dataset.
In future we plan to run more experiments using all
three methods as we collect more data.

We suggested a method for assessing parameter
importance. With this method we were able to conclude
that some parameters do not significantly affect the
performance of the model, and may, therefore, be
eliminated. We also ranked the importance of the input
parameters with respect to their effect on dot gain.

The results of dot gain LUT prediction based only on
one or two measured points, suggest that there may also
be opportunity to reduce consumable usage in some
circumstances by printing a reduced LUT set “fast
calibration”, or relying on existing values. It does appear
that there is a strong enough relationship between points
in a dot gain LUT to be exploited by these simpler models.

This introductory study of the developer voltage
prediction problem suggests that we are able to predict
the developer voltage given the machine state
parameters with a high degree of accuracy. In particular,
if an error of at most one 8 V step is acceptable, then
statistical learning methods can supply acceptable
predictions more than 95% of the time. On the other
hand, if an exact value is demanded, the models
investigated here can give a starting point that will be
accurate approximately 60% of the time, at most one
step off approximately 95% of the time, and at most two
steps off approximately 99% of the time. This may yield
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significant savings in consumables and calibration time
for users of the Indigo press.

Once again, the developer voltage results are obtained
on a relatively small dataset, operated with only two
screens and a single substrate type. The conclusions
obtained here should be verified on a much larger data
sample, or alternatively as an experimental implement-
ation on a functioning press. Future work, based on a
larger dataset, may yield more accurate results as the more
appropriate ordinal regression models could be utilized.

A number of questions need to be addressed before
this can be sent to customers’ presses. For example, we
will need to evaluate the best update interval, e.g., how
often should the system update the dot gain tables using
model-based prediction with no printed measurements?
How often should we use the “fast calibration” (one or
more measured points) to get more accurate predictions?
How often do we need to do full calibrations?  How often
should we update or refit the models to incorporate
information from full calibrations? Other questions

regard cross-machine measurement and prediction. For
example, are individual presses idiosyncratic, or can we
use measurements from one machine to predict the
behavior of another machine?
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