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Simulation of large-scale neural models results in the
generation of significant amounts of time-varying data
for analysis and interpretation. While computational
expense and resources were a major issue in the past,
the availability of powerful desktop workstations has
made it possible to handle not only more realistic models
of neurons (containing thousands of compartments and
multiple channels), but also networks of neurons. Over
the years, a number of software systems have been
developed to model and analyze neurons and networks
of neurons, as illustrated by the survey in Ref. 3. Existing
packages such as AXONTREE,4 NEURON5 and
NEMOSYS6 model and analyze single neurons, while
GENESIS7 and NODUS8 can accommodate networks of
neurons. Most of these packages support 2D graph plots,
and in some instances (such as AXONTREE), 3D neuron
structure representations. However, the number of
system variables, neuron populations and scalability to
multiple muscles or joints makes analysis tasks laborious,
and has thus motivated our use of interactive
visualization tools9 that can best deal with the large
spatio-temporal datasets.

Many experiments involve manipulation of spatially
organized inputs, such as stimulation of a particular
sensory or motor nerve. Anatomical representation of
such inputs provides spatial context and facilitates
relating simulation to experimental results. This was
the motivation to add anatomical model representations
within NVIZ, which also makes it easier to communicate

Introduction
Tools for system level investigation of nervous system
function include imaging techniques (functional MRI,
PET), MEG, EEG and large-scale simulation. An under-
standing of how the nervous system produces movement
requires the spatial resolution of functional MR imaging
and the temporal resolution of EEG. Simulation can be
used to satisfy these competing demands. The variety of
behaviors the nervous system may produce, coupled with
its interneuronal complexity, makes it difficult to con-
ceptualize the relationship between circuit and dynam-
ics. Movement is not represented in a simple way in any
region of the nervous system.1,2 Although much of the
experimental data on spinal neural function comes from
studies of single cells, observable behaviors are produced
by coordinated interactions among neuronal populations.
The population view leads us in the direction of seeing
how individual neurons interact to form collective units
of function. Large-scale simulation helps us understand
how the spinal cord produces movement by bridging the
gap between neurophysiological data collected one cell
at a time and the population view, which shows how in-
dividual neurons interact to form collective units.
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NVIZ provides a set of numerical analysis tools such as histograms, and a variety of 2D plots that permit both population and
cell level analysis within the software system. Movement of a visualized limb segment is generated from activity of motoneurons,
using a novel new algorithm called Net Neural Drive. The linked visualizations in NVIZ provide a powerful means to comprehend
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interest. We demonstrate the application of NVIZ to understanding locomotion of a single limb joint, using a central pattern
generator model.
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with colleagues.10 We are aware of only one other
dynamic spatio-temporal visualization of spinal motor
activity, the recent work of Yakovenko et al.11; in that
work, locations of 27 populations of hind limb
motoneurons were digitized using published data (36
sections of Fig. 28 in Ref. 12). Activity of cells during
locomotion was animated using EMG data, generated
from the literature of normal cat locomotion. Note that
cells in their visualizations were animated from “output
data” (EMG) rather than from a model of the central
pattern generator, as is the case in NVIZ.

A considerable body of work has contributed to
understanding the spatial topography of brain
function.13-15 Accurate localization of brain function can
help understand the flow of information among the
different cortical regions, fusion of information,16 and
thus illuminate the complex relationships between
structure and function. In many of these studies, neural
tracers were injected into specific brain regions followed
by analysis of the labeled elements.16,17 The anatomical
component of the present study used multiple 2D slices
from Ref.  12, containing locations of labeled
motoneurons of cat spinal cord. From this dataset, we
assembled the three-dimensional representation of the
outline of spinal grey matter and discarded locations of
individual neurons. Instead we used their dataset to
construct bounding boxes within the visualized cord to
contain randomly placed cells. 3D reconstruction from
2D images brings up additional issues, such as accurate
registration, and, for across-animal comparisons, use of
common coordinate systems.18

Just as accurate visualization of brain activity aids
understanding of brain function topography, we expect
that visualization of spinal cord anatomy will aid
understanding the spinal cord function. It should be
noted that data for constructing the cell and population
level spinal visualizations (unlike the brain) can be
assembled, at least in part, from physiological data sets,
because of the known strict segmental, i.e., sequential,
arrangement of sensory inputs and motor outputs in the
spinal cord.

In this article, we describe the development and
application of NVIZ, a software system that combines
simulation, visualization and analysis within a single
computing platform for  efficient interactive analysis
and understanding of neuronal dynamics in cat spinal
cord. The large scale model simulator developed by
Bashor19 forms the core of NVIZ. The interactive
environment has been expanded from our multilevel
visualization work presented in Ref. 9. NVIZ now
supports the following new capabilities, (1) anatomical
model reconstruction of cat spinal cord, with neurons
located within and controlled by the simulation, (2) ball
and stick views for limb movement, (3) statistical
analysis functions (referenced, but not described in Ref.
9), and (4) linking the new anatomical capabilities with
the previously existing visualizations. In summary,
NVIZ provides a powerful combination of 2D and 3D
visualization tools  that are t ightly coupled to
simulation and analysis capabilities, all controlled by
the same clock. Our system provides an efficient means
to explore and analyze large-scale neural models, and
currently represents f ive levels  of  biological
organization, from ion channels to generated behavior.

Methods
NVIZ System Design

Figure 1 illustrates the major components of NVIZ. The
following sections describe each of the components of this

diagram. Input to NVIZ is a neural circuit description
(in the form of a data file) that includes cellular and
synaptic biophysical properties and connection patterns
among populations. The neural circuit simulator has been
adapted and extended from the work of Bashor.19 That
work was based on MacGregor’s20 SYSTM20 population
descriptions, PTNRN10 cell algorithms, and SYSTM11
synaptic mechanisms. The present work uses a more
complicated cell algorithm, PTNRN21, a two-
compartment model, including multiple ionic currents.
Data resulting from the simulator are stored in
simulation data structures. The interactive visualization
and analysis sub-systems use the simulation data. A
graphical user interface provides interactive access and
control to all the simulation, visualization and analysis
features of NVIZ. The interface allows easy switching
between the different views (height fields or anatomical)
supported in NVIZ, as well as interactive selection of cell/
population level analysis, geometry layout, and view
manipulation.

Neural Circuit Simulator
Although the neural circuit simulator is a general-

purpose tool, it has been configured in the present
application for investigating the spinal motor system.
That is, the choice of cell types, interneuronal populations
and interconnections are specific to the cord. Other
regions of the nervous system could be represented as
well, by our system, with appropriate choices of cells,
synapses, and population interconnections. Thus, it
combines a system-level perspective and the single-unit
perspective common in electrophysiological investi-
gations. Motivated by Getting,21 the model limits the
number of unconstrained variables by specifying first cell
input/output characteristics, then synaptic properties,
and finally, network connections and appropriate driving
inputs. Individual cells (neurons) are grouped into
functionally different populations. A circuit diagram, such
as that shown in Fig. 2, defines how populations are
related to each other.

Figure 1. NVIZ System Architecture.
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Figure 2 is a hypothetical central pattern generator
for walking,22 consisting of 12 populations (10 cell
populations and 2 fiber populations). Populations at the
bottom of the diagram, 13 and 14, are composed of
pacemaker cells. Populations 5, 6 and 9–12 are composed
of generic interneurons, and populations 1 and 2 are
motoneurons. Each cell type has its own biophysical
properties. Excitatory connections are shown by open
rectangles, while inhibitory connections are shown by
shaded circles and represent tens to hundreds of
terminals per sending cell. Fiber populations provide
input to the circuit, as indicated by filled and grey
rectangles. Operation of this circuit is explained more
fully in the Results section. Each population nominally
consists of 100 cells, laid out in a 10 × 10 square grid. To
avoid edge effects, a wrap-around algorithm joining the
left and right edges, and the top and bottom edges, makes
this layout a circular torus. Synaptic connections are
defined as the number of terminals and synaptic type
from each cell in a source population to cells in a target
population. In addition there is a synaptic strength
parameter and parameters describing the distribution of
the terminals over the receiving population. Figure 2
(right) illustrates a sending cell projecting its terminals
to a restricted portion of the target population. System
level parameters include the number of populations,
number of elements in each population, width and height
of the population (which helps define cell location) and
the number of synaptic types. A synaptic type is defined
by an equilibrium potential and decay time constant. For
further details of the connection algorithm and synaptic
types, refer to Ref. 19.

The neuron model is based on the potential (E) across
two unit-area membrane patches, one representing the
neuron soma, the other the dendrite, MacGregor ’s
PTNRN21.20,23 The principal properties of the neuron
model are membrane time constant, parameters used to
determine the refractoriness following a spike, time-
varying threshold, and accommodation properties
describing long-term response to input. Details of the two

compartment algorithm and the five neuron types
currently in use are described in Ref. 24. The five types
of neurons are motoneurons, Renshaw interneurons,
generic interneurons, pacemaker interneurons and
plateau-producing neurons. Three of these types are
illustrated in this study (see Fig. 9 and 10).

The length of a simulation is user-specified; for the
walking model, simulation was run for 3-5 sec. of real-
time, in steps of 1 ms. At each time step, we recorded the
cell soma membrane potential, threshold potential,
potassium conductance, spike production and the identity
of each firing cell. In the dendrite we recorded dendritic
potential, calcium conductance, calcium concentration
and potassium conductance. In NVIZ, all of these system
variables are held in data structures (memory) for the
simulation interval of interest.

Visualization
The types of visualization supported in NVIZ range

from single neuron to population views,9 to anatomical
model reconstructions. Both 2D and 3D visualizations are
supported, and more importantly, are linked, to facilitate
easy switching from one to the other. An important design
consideration was to view dynamically changing
properties of neuron and system variables.

Dynamic Height Field Views
Height fields were the earliest form of visualization

used in NVIZ.9 Height fields, in combination with
animation, permit system variables to be viewed as a
function of time. By spatially distributing multiple
interacting populations, it is then possible to visually
assess variability among the cells in individual
populations, as well as temporal relationships among
the different neuron populations. Figure 3 illustrates a
height field visualization of the central pattern
generator circuit of Fig. 2.  10 cell  populations
representing a total of 1000 cells are shown. For each
population of neurons, three height fields (in gray, green
and tan) were defined, and represented geometrically

Figure 2. (Left) Central Pattern Generator Circuit for Walking (Right) Synaptic connections from source to target population.
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as a 10 × 10 grid. They correspond to three cell state
variables, membrane potential (E), threshold potential
(TH) and spike production (S). With the use of our two
compartment model, the membrane potential can
represent either the soma or dendritic potential.
Alternately, using a pulldown menu, the user can choose
to display calcium conductance and calcium
concentration, along with spiking. Each neuron was
represented by the same grid node in each height field.
Thus, as the visualized function values change over the
grid, the mesh vertices rise and fall to reflect the changes
in the function.

The green field is membrane potential, the excitability
level of each cell, updated at each millisecond. The
membrane potential of each cell varies with (a) synaptic
conductance changes (input) arriving at each time step
from other cells or fibers, and (b) time since the last
spike in that cell. Thus, the level at which the green
field is located represents the probability of spike
production. The roughness of the field represents the
extent to which cells in the population are in different
states of readiness to produce a spike, i.e., the roughness
represents the amount of fragmentation in the
population. The tan field represents the threshold, that
is, the readiness for spike production; when the
membrane potential is equal to or greater than the
threshold potential, a spike is produced. The threshold
for firing depends on the time since the last spike in
that cell.24 When the green field touches or crosses the
tan field, we know that a spike has occurred. However,
spike occurrence is such an important event that it has
its own representation, as the gray (lowest) field, an
arrangement which most rapidly conveys this
information.

Figure 3A shows a particular frame of an animation
(time step 2.268 s), with population 2 fragmented, while
cells in population 1 are at about the same potential
level, but are neither active nor fragmented. The activity
in population 2 is generated by activity in population
10 (see Fig. 2), which in turn is produced by activity in
population 14, as can be seen in the second column of
height fields in Fig. 3A. Other populations that are
active in this half cycle are populations 6 and 12, shown
in the fourth column.

By default, all populations are laid out in a uniformly
spaced rectangular grid. Ideally, all of the populations
are visible, without any occlusion. With larger numbers
of populations, occlusion can be minimized by utilizing
the interactive viewing capabilities (rotate, pan, and
zoom) of NVIZ. In Fig. 3A, we see the 10 populations
laid out in three rows, four populations per row, with
the last row containing two populations. NVIZ allows
the user to customize the population layout by specifying
the number of rows and columns, the inter-population
spacing along the two dimensions, and selecting the
populations to be included in a view, from the list on
the left of the window. In Fig. 3A, we selected and
included the 10 cell populations corresponding to the
central pattern generator circuit of Fig. 2. NVIZ also
provides a picking capability (the Pick On/Off button
below the scrollable list in Fig. 3A); this permits the
populations to be individually selected and moved to
produce customized views, which can be saved and
restored for later use.

In order to make interactive measurements of system
variables, a measuring scale is provided with each
population. The measuring scale is centered with the
starting position of the potential field and its extent is
determined by the range of values reached during a

simulation. In Fig. 3B, the view zooms into populations
5 and 11, and their scales have been turned on. In this
view, one can see that the threshold potential level is
different for the two populations and at about 17 and
12 mV, while the membrane potentials are at about 11
and -5 mV, respectively. The physiological conclusion is
that while populations 5 and 11 are hyperpolarized
during this phase, cells in population 11 are
hyperpolarized to a much greater extent.

Anatomical Model Views
Visualizations constructed with height fields facilitate

neural circuit design and experimentation; however,
they tend to be abstract,  as they lack spatial
relationships with respect to the spinal cord. This makes
communication with colleagues difficult. In addition,
there is no visual representation of the motor output.
Thus, we enhanced NVIZ to support an anatomically
realistic model of the spinal cord, with neurons located
at their approximately known locations, and receiving
input from the neural circuit simulator. Since our
interest in the present work is study of hind limb
locomotion, we restricted our anatomical model to the
lumbar region of the cat spinal cord. Thus, we digitized
the drawings of spinal grey matter from Fig. 28 of
Vanderhorst and Holstege,12 the first 18 of these slices
are shown in Fig. 4. Mirror images of these half-slices
were then appended to the original slices (see Fig. 2,10)
to form full slices. Using the AC3D25 modeling tool, these
“full” image slices were imported as 2D textures and
their outlines extracted. Polyline segments were used
as the initial representation; each outline had 80 line
segments.

In order to construct a smooth model, Kochanek-
Bartels interpolating splines26 were used to resample
the polylines, as well as create additional slices between
the original slices. In this manner the original model of
81 × 36 voxels (first dimension forms a closed loop in
2D) was resampled to a size of 243 × 360 voxels. The
model is then scaled to the known physical dimensions
of cat spinal cord, roughly 3 mm wide, 2.24 mm high
and 35.1 mm deep, in this example.

Figure 5 shows several views of the constructed cat
spinal cord. The top left panel is a dorsal anatomic view
(from the “back” of the animal), with the front of the
lumbar enlargement toward the top of the panel. The
bottom panel is a view from above and to the right of
the cord; front of the enlargement is to the right. It can
be seen that there are bumps in the longitudinal views,
which are likely registration artifacts of the acquisition
process. The butterfly shaped cross-sectional view in the
top right panel shows two neuron populations in the
interior.

Our illustration focuses on two particular motoneuron
populations, Sartorius and Semimembranosus. The
approximate spatial extents of these two populations
were estimated from the work of Vanderhorst and
Holstege.12 Sartorius neurons extend anatomically from
slice 4 through 12 (in red, Fig. 7C), and, when active,
cause flexion of the hip. Semimembranosus neurons
extend from slice 17 through 22 (in green, Fig. 7A), and
when active, cause extension of the hip. Two oriented
bounding boxes were created within the cord,15,18 and
100 small colored cubes, representing neurons, were
placed randomly within the box. Each neuron has two
states, active or inactive. In the visualizations, the
neurons are either fully opaque (active) or transparent
(inactive), as can be seen in the top panels of Fig. 7. Labels
on the cord indicate the position of spinal roots (L5, L6,
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Figure 3. Height Field View (A) 10 cell populations corresponding to the central pattern generator circuit of Fig. 2, time
step 2268, (B) Interactive Measurement of threshold and membrane potential for populations 5 and 11.

Figure 5. 3D Spinal Cord Model. Example views of reconstructed cat spinal cord model and neurons (colored cubes)
located within.
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L7) and relative lengths (as percent) of lumbar
enlargement (Level 20, etc.)

Neural Output Views
In addition to the height fields, NVIZ supports three

additional views to look at neural output, as illustrated
in the panels of Fig. 7, viz., (1) a time-varying output of
neural activity of populations represented in the

anatomical model, as seen in the upper parts of the 4
panels of Fig. 7, and (2) limb movement view, seen in lower
middle part of each panel, (3) time varying graph of flexor
and extensor motoneuron pool output, as smoothed curves
of numbers of cells active at each time step. These are
discussed in detail in later sections. The time-varying
graph view complements the anatomical views in
providing more precise temporal information, while the

Figure 6. NVIZ Software Architecture.

Algorithm 1: Population Interval Histogram Procedure

Input: population identifier(popi), thresholds (THlow, THhigh), histogram bin size(bsize)
Output: population interval histogram (pih), interval statistics
{

num bins = (THhigh – THlow)/bsize
for each time-step t {

for each cell c in popi {
if popi → Is Active (c) {

if c has not previously fired
record spike timestep t for cell c   // first spike for cell c

else {
isize = inter-spike interval   // t - c0s previous spike time step
record spike time step t for cell c
if (isize < THlow)

pih[0] = pih[0] + 1
else if (isize > THhigh)

pih[num bins – 1] = pih[num bins – 1] + 1
else {

bin = isize/bsize
pih[bin] = pih[bin] + 1

}
}

}
}

}
calculate interval statistics: mean, standard deviation, min, max, etc.

}

Algorithm 2: Population Cell Firings Procedure

Input: population identifier (popi), moving window size(mws)
Output: count of Cells firing at each time step (cell counts[])
{

for each time-step t {
cell counts[t] = 0
for each cell c in popi {

if (ActiveNeuron[t]!CellActive (c, popi) )
cell counts[t] = cell counts[t] + 1

}
}
if (mws > 1)     //moving window size > 1

for (t = mws; t < MaxTimeSteps; t = t + 1) {
sum cnts = 0
for (k = t – mws; k < t; k = k + 1) {

sum cnts = sum cnts + cell counts[k]
}
cell counts[t – mws] = sum counts/mws

}
}
Output cell counts[0..MaxTimeSteps-mws-1]

}
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Figure 8. Cell firing patterns of two of the three cell types in the simulation. Panels A1,A2 show records from two
extremes of motoneuron response, while B1,B2 are from pacemaker cells. Panels A1 and B1 show cell membrane potential
plots (CPP), while panels A2 and B2 show rate meter plots (RMP). Note that panel A2 presents firing rate data for four
cells, while A1 shows only two.

Figure 9. Population response measures. Panels A1,A2,A3 show population cell firing data for six populations in the
reference experiment. In panel A1, negative numbers are a plotting convenience only. Panels B1,B2,B3 show population
interval histogram data for a single cycle (marked with asterisks) from three of the populations. Downward (negative)
plots in A1 are a viewing convenience.
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Figure 10. Hip Movement Cycle: Height Field Views (A) Peak extension phase, population 2 (extensors) active; (B) Transi-
tion from extension to flexion, population 1 (flexors) active; (C) Maximum flexion; (D) Transition from flexion to extension.

limb movement provides an orientation to the phase, i.e.,
flexion vs. extension.

Analysis Tools
NVIZ supports a set of numerical tools for analyzing

results of a simulation, to compute cell and population
characteristics. Currently ten procedures are supported,
(1) Population Interval Histogram (PIH), (2) Population
Cell Firings (PCF), (3) Rate Meter Plot (RMP), (4) Cell
Potential Plot (CPP), (5) Cell Correlation Function (CCF),
(6-7) soma and dendrite potassium conductance, (8)
dendrite calcium conductance, (9) dendrite calcium
concentration and (10) dendrite potential. Functions 6
through 10 are variations of procedure 4 (CPP).

All of these functions may be instantiated from the
graphical interface to analyze a simulation. Alternately,
a batch file may be specified that contains multiple calls
to a particular function for analyzing properties of
multiple populations or cells. These functions access and
process the data recorded within the simulation data
structures.

Population Interval Histogram (PIH)
This function enables the interval between successive

cell firings in a population to be recorded and displayed
in the form of a histogram. The function expects 4
parameters: the population identifier, popi, histogram bin
size, bsize, and a pair of thresholds THlow and THhigh

between which the histogram is divided into bins of size
bsize, given by

num_bins = (THhigh –  THlow)/bsize (1)

All spike trains from active cells in the input
population are scanned and intervals between spikes
(isize) are tabulated. All intervals below THlow and above
THhigh are lumped together into two bins, kept at each
end of the histogram. Interval sizes between the two
thresholds are assigned to the appropriate histogram
bin, as shown in Algorithm 1. The procedure only counts
intervals that occur after the first cell firing. Thus a
cell has to fire twice to produce an interval. In addition,
the procedure reports the minimum and maximum
interval sizes, mean, variance and standard deviation
of the intervals, the total number of intervals and
number of cells that produced one or more spikes during
this part of the simulation. Algorithm 1 illustrates the
PIH procedure and Fig. 9B illustrates an example,
discussed in the Results section.

Population Cell Firings (PCF)
The Population Cell Firing (PCF) function reports the

number of cells that were active within a population at
each time step. As the simulation data structures
explicitly store a count of the active cells within each
population at every time step, this is extracted by
traversing the active cell list of the input population. If
this is found, then the number of active cells is output,
else there is no activity in the population.

As the PCF plot tends to be quite volatile, an option
is provided to compute a “moving window” average of
the plot. For this, a window size (in ms) is specified.
The total number of cells active within this window is
averaged over the window and then plotted. The PCF
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procedure is outlined in Algorithm 2. This is one of the
most frequently used functions, and is roughly
equivalent to the electroneurograms recorded from
spinal ventral roots. Examples are shown in Figs. 7 (2D
graphs), 3 and 9.

Rate Meter Plot (RMP)
The rate meter plot describes the firing frequency of a

cell in a population as a function of the simulation time.
A population identifier and a cell identifier (within this
population) are specified by the user. These are used to
search the simulation data structures for the cell’s firing
intervals. The cell’s firing intervals are calculated in a
manner similar to the PIH function, except that all of
the intervals are from a single cell. The reciprocal of the
interval (suitably scaled to spikes per sec.) is reported as
the frequency of cell firing. These values are plotted at
the time of second spike. In neurophysiology, this plot is
also called instantaneous frequency plot. In addition, the
procedure reports the minimum and maximum intervals,
minimum and maximum frequencies, mean interval and
frequency, and the variance and standard deviation of
the intervals. See Fig. 8 for examples.

Cell Potential Plot (CPP)
This is a plot of the membrane potential of a specific

cell with respect to time. As we retain the membrane
potential of every cell for the period of the simulation,
generating these data simply requires a table lookup at
each time step to retrieve the cell potential. See Fig. 8
for examples.

Cell Correlation Function(CCF)
This function determines the correlation between the

activity of two cells, within the same or different
populations. When the two cells are the same, we obtain
the auto-correlation function. Input to this function
involves specifying the two cells of interest and the
populations to which they belong. To compute the
correlation between any two cells, the firing times of
both cells are recorded for the interval of the simulation
that is of interest, c1(t) and c2(t). Cross-correlation is then
computed as follows:

)()(
1

)(2)( 21

1

0
1 mtcmc

M
tctc

M

m

+= ∑
−

=
o (2)

for t = 0, 1, 2, ....,M  – 1. This is equivalent to sliding
c2(t) under c1(t) and integrating the product of the two
functions, for each value of the displacement t.

To determine c1(t) and c2(t) from the simulation data
structures, we search the firing cell list at each time
step and create two lists, containing the time steps at
which the two cells are active. For each translate of
c2(t), the correlation is determined by integrating the
point-wise product of the two spike functions. The time
steps at which both cells are active contribute to the
sum. As the two lists are sorted in order of increasing
time, this procedure is equivalent to merging two sorted
lists (which can be performed in time proportional to
the sum of the list sizes). We maintain both c1(t) and
c2(t) as dynamically allocated lists of time steps
(keeping only those times the cells are active); as most
cells are generally active for only a small fraction of
the entire simulation period, this leads to an efficient
procedure, in terms of both memory and computation
time.

Implementation
NVIZ has been implemented in C++ on Unix worksta-
tions (SGI/Linux).* All visualizations were generated
using the Visualization Toolkit27 and embedded within
the FLTK graphical interface.28 All features of NVIZ are
available from the graphical interface. Once the appli-
cation is started, the first step is to read in a neural
circuit description (currently from a disk file) followed
by specification of the simulation interval, to start the
simulation. Once the simulation is completed, the gen-
erated data stored in simulation data structures are
used for visualization and analysis.

Figure 6 shows the software architecture of NVIZ. The
Simulator class consists of neuron populations (cell and
fiber populations), synaptic types, and the ActiveNeuron
data structure, which holds the data generated by the
simulation. The neuron populations are defined by a
generic Population class from which cell and fiber
populations are derived. The ActiveNeuron data structure
is a list, and contains for each time step all system
variables computed in the two compartment model,
including the membrane potentials and conductances for
the soma and dendrite, calcium concentration and
conductance, and the membrane threshold.

The Visualization modules are housed in the
ViewInteractor class. Four views are currently supported:
Anatomic, Limb, Neuron and Statistic. Each of these
classes is derived from the View class. The anatomical
view displays the spinal cord model, with up to four
neuron populations (can be selectively turned on/off). The
Limb view is specific to the hip movement application.

The Graph view is used by the analysis functions and
may be either static 2D plots or dynamic (time-varying)
2D plots, used by the anatomical view. The ViewInteractor
class also contains a number of renderers, canvases and
interactor objects that provide the infrastructure for the
2D and 3D visualization, which is implemented by calls
to the Visualization Toolkit.27

The analysis functions are implemented within the Stat
class and include the Rate Meter Plot (RMP), Population
Cell Firings (PCF), Population Interval Histogram (PIH),
Cell Potential Plot (CPP) and Cell Correlation Function
(CCF). Each of these functions is available from the
interface and has dialog widgets to interactively analyze
at the population or cell level. Multiple cell or population
characteristics may be displayed in the accompanying
plots, and support is provided for batch level analysis.

All user interactions with the the three major
components of NVIZ, viz., Simulator, ViewInteractor
and Stat, are implemented using the GUI class, via
application callback functions, using the FLTK
Toolkit.28 NVIZ also provides a number of additional
features for interaction and analysis (not shown in Fig.
6). The height field view permits a user to specify the
populations to be viewed and supports simple
rectangular layouts. Measurement scales, which can
be toggled on or off,  are provided close to each
population, to rapidly convey the magnitude of the
presented variables. The anatomical view permits the
selection of populations to be included in the view.
Finally, simulation results can be reviewed (for both
anatomical and height field views) via a VCR style
interface (see bottom of panel in Fig. 3, and lower right
of the panels of Fig. 7), which permits animating the
simulation, or analyzing step by step. A time scale bar

*NVIZ uses open source tools that can easily be ported to a Microsoft
Windows platform as well.
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provides a direct means to move to a specific point in
the simulation.

Results
Example Application: Hip Joint Movement Cycle

We illustrate the use of NVIZ with a single hip joint
walking application.10,22,29 The experiment presented is
based on the circuit diagram shown in Fig. 2, a “half-
center”, or “reciprocal inhibitory” model of pattern and
rhythm formation in the spinal cord of cat or human.
The model includes multiple hypotheses:
 • Pacemaker neurons comprising populations 13

(arbitrarily called the “flexor rhythm generator”) and
14 (“extensor rhythm generator”) control the rate of
locomotor rhythm.

• Alternation of pacemaker activity is controlled through
a pair of inhibitory non-pacemaking interneuron
populations (11 and 12) arranged such that when cells
in 14 fire, they activate cells in 12, which in turn
prevent cells in 13 from firing. The burst of activity in
14 is self-terminating, so when cells in 13 stop getting
inhibition to oppose the continuing excitation from the
fibers (population 22), they fire and the half cycle is
repeated. Thus, alternation is the natural property of
this part of the network.

• The spinal central pattern generator network for
control of hip muscles of one leg consists of four
portions: (1) pacemaker kernel (interneuron
populations 11-13) is responsible for producing the
inherent alternating rhythm of locomotion, through a
coupled pacemaker reciprocal inhibitory network, (2)
distribution interneurons (populations 9, 10) control
the intensity of motor output, by exciting motoneurons
(populations 1 and 2). (3) postpacemaker interneurons
(populations 5 and 6), produce reciprocal inhibition to
the “inactive” population and (4) output elements are
motoneuron populations (1, hip flexor sartorius,
labeled SART, and 2, hip extensor semimembranosus
and anterior biceps, labeled SMAB).

No assumptions incorporated in the model are
contradicted by existing data in the literature, so we
may view this as a hypothetical spinal central pattern
generator for the alternating hip flexion and extension
occurring during walking. Activity in the circuit is
caused by a fiber population (grey rectangle labeled 22)
consisting of 100 fibers acting on two populations (13
and 14) of pacemaker type neurons. The pacemaker cells
respond by producing a self-terminating burst of spikes
(see Fig. 8,  Panel B1).  At the beginning of the
experiment, a “start-up” fiber population (grey rectangle
labeled 21) activates population 14, so that the
experiment always starts in the same “phase”, in this
case, in “extension”.

Joint Motion: Net Neural Drive
The neural output from the simulator is used to

illustrate the motion of a hip joint using a simple ball
and stick (limb) display. Motoneuronal pool output is
represented as an Activity Index(AI).19 Activity index is
defined as the number of motoneurons firing one or more
spikes over a time interval, (say 100 ms), multiplied by
their mean frequency of firing, over that interval. Thus,
the flexor and extensor activity indices for a given
interval are represented as

AIf(t) = Nf (t).Vf(t) (3)

AIe(t) = Ne(t).Ve(t) (4)

where Nf(t), Ne(t) are the number of cells active over ∆t
for the flexor and extensors, and Vf(t), Ve(t) are the spik-
ing frequencies. The activity index represents “total
synaptic effect” of a pool of motoneurons on its muscle.
In practice, two procedures were used to calculate the
activity index. First, mean population frequency of fir-
ing is relatively constant in networks using the Hill-
Kernell-MacGregor algorithm, and so Vf and Ve can be
safely assumed to be constant for all times during a
“step cycle” when cells are active. Second, number of
cells active is smoothed across multiple time steps,
usually 100 ms, using the PCF analysis function of
NVIZ, giving us a time series of active cells. The time
series data are multiplied by the mean frequency to
give the activity indices as time series, AIf(t) and AIe(t).
We assume that the activity index is proportional to
motor pool force output. Force is proportional to angu-
lar acceleration, so, we must integrate neural output
twice to get angular displacement. The two smoothing
operations (on frequency and cell number) can be
viewed as integrations.

From the Activity index, we compute NND, the Net
Neural Drive, as

NND(t) = AIe(t) – AIf(t) (5)

Positive values of NND represent extension, and
negative values, flexion. Net Neural Drive is thus a new
way to specify joint position from neuronal signal. We
may think of joint movement, in the simplest case of a
single opposing pair of muscles, as depending on two
neural control signals (the activity indices, AIf(t), AIe(t)),
one for flexion and one for extension. Downstream from
the neural control signals are the force-producing muscle
cells, and biomechanical linkages providing the lever
arms through which force is applied to bone. Net neural
drive collapses all of these steps into a single metric,
representing the angular displacement.

To compute the joint angle from NND, we scale it to a
fractional variable, neural fraction, nf(t), by a linear
mapping between two chosen joint angle values, JAmin

and JAmax, the minimum and maximum joint angles,
using the following parametric form:

JA(nf(t)) = JAmin + nf(t) * (JAmax –  JAmin) (6)

with
nf(t) ∈ (0.0, 1.0)

The limb is animated between JAmin(100°) and
JAmax(130°) in a 2D plane, as can be seen from the panels
of Fig. 7.

Simulation Experiment
Motoneuronal outputs were recorded in a

representative simulation on the walking circuit of Fig.
2. The simulation was run for 3000 ms. Figures 7 and
10 show motoneuronal outputs (respectively anatomical
and height field views) at four different time steps,
corresponding to a cycle of extension and flexion.

At time step 1539 (panel A, Fig. 7), we see the peak of
the extension phase. The graph view (lower left part of
the panel) shows about 6 cells active per ms and the limb
visualization (lower middle part of the panel) is in an
extended (standing) position. The top part of the panel
shows the anatomical location of active motoneurons at
this time in the simulation. Six cells in the extensor
population are opaque. At time step 1789 (panel B), we
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see the transition from extension to flexion. The graph
view indicates that the output of the flexor population
(red curve) is increasing; the limb visualization shows
the thigh elevated. Cells active at this time step are
shown in the upper part of the panel. One cell in the flexor
population is opaque. At time step 2005 (panel C),
maximum flexion (lifting) of the thigh has been reached.
The graph view indicates the point of maximum activity
of the flexor population, and the limb view indicates
maximum flexion. Finally, time step 2267 (panel D) shows
the transition from flexion to extension. The graph view
(lower left part of panel D) shows the number of extensor
motoneurons (green curve) increasing.

The height field views of the hip movement cycle in
Fig. 10 illustrate the flexor and extensor output
(numbered 1 and 2 in our circuit) at the same four time
steps. Panel A shows the peak extension phase, with
population 2 highly active, panel B shows the transition
to flexion (decreasing extension and increasing flexor
activity), panel C illustrates maximum flexion and panel
D shows transition to extension. The height field views
permits us to simply look at the individual populations
and their state variables in isolation, while the
anatomical views provide spatial cues to the neurons in
the spinal cord.

Population and Cell Level Analysis
Figure 9 illustrates NVIZ population-level analysis

measures for this experiment. Figure 9A shows PCF time
series graphs (smoothed with a 25 ms moving box filter)
of flexor and extensor pacemaker (13, 14, panel A3),
distribution interneurons (9, 10, panel A2), post-
pacemaker interneurons (5, 6, panel A1) and motoneuron
(1, 2, panel A1) populations. The graphs are best read
from bottom to top, as a reflection of the arrangement of
the circuit diagram (Fig. 2), where the “generating”
populations are at the bottom. Note the differences in
shape of curves in the three panels, with pacemakers (13,
14, panel A3) sharply peaked, distribution interneurons
(9, 10, panel A2) with a more rounded profile, and
motoneurons (1, 2, panel A1) even more rounded. The
difference in shape reflects both cell properties and
operation of the circuit as activity flows from pacemaker
populations through distribution interneurons to
motoneurons. PCF curves for populations 5 and 6 are
included in panel A1, plotted downward as a convenience.
Quantification of an individual cycle (marked with an
asterisk) using the PIH function is presented in Fig. 9B.
Several things can be noted from the histograms and
accompanying data. First, a population producing the
largest PCF curves (9, panel A2) generates the largest
number of spikes (n = 2867, panel B2), and has the
shortest mean interspike interval (15.4 ms) of the three
populations shown. Second, each of the three populations
(pacemakers 13, generic interneurons 9, and motoneurons
1) has a characteristic histogram profile, which is
correlated with its biophysical properties, and the level
of synaptic drive it is receiving. Note that the maximum
number of intervals in panel B2 is twice that in panels
B1 and B3.

Figure 8 shows cell potential profile (CPP) graphs and
closely-related rate meter plot (RMP) graphs for a small
number of cells, to illustrate capabilities of NVIZ at this
level of analysis. Panel A1 shows CPP graphs for
motoneuron cell 1_5 (thin curve), a “heavily- driven” cells
in population 1, and cell 2_89 (thick curve), a “lightly-
driven” cell. Panel A2 shows the corresponding rate meter
plot; note that cell 1_5 (filled squares) fires at a fairly
high frequency (around 60 Hz), but that the frequency

gradually increases and decreases over the cycle. A
companion cell 1_89 (filled circles), with a lower more
regular firing frequency, is also represented in the RMP,
but not in the CPP graph. Visual inspection of Panel A1
indicates that cell 2_89 is firing at a much lower frequency
than cell 1_5; the RMP graph quantifies the difference.
It is interesting to note that the PIH data for population
1 (Fig. 9, Panel B1) indicate that the standard deviation
of interspike intervals in population 1 approaches the
mean. Examples of pacemaker population 13 CPP graphs
are shown in Fig. 8, panel B1, with the corresponding
rate meter plots in panel B2. Note the sharply-peaked
profile of firing frequency exhibited by this cell type.
Compare this cell-level firing profile with the shape of
the PCF graph in Fig. 9, panel A3. From this comparison,
we can draw the conclusion that the “peaked” form of the
PCF graph arises mainly from the “peaked” form of the
firing frequency of individual cells in the population.
Resting membrane potential of MacGregor type neurons
is arbitrarily set to 0 mV in the absence of input, in
contrast to “real” neurons, where membrane potential is
typically about -70 mV. In addition, spike potential in
the MacGregor type neuron is not directly represented
in the CPP plots. These examples illustrate the power of
having multiple analysis functions available within the
simulation environment.

Discussion
The overall design goal of NVIZ was to use interactive
visualization and animation to facilitate efficient simula-
tion and analysis of large numbers of neuron populations
within a single integrated environment. Simulation and
analysis are indeed performed within a tightly coupled
environment, assisted by 2D and 3D visualizations. In
combination with the numerical analysis subsystem, this
integrated environment promotes efficient experiment
design and hypotheses testing, and incorporates the nec-
essary means to handle models of arbitrarily large size.

NVIZ supports dynamic height field and anatomical
spinal cord representations to view neuronal activity in
3D. Though somewhat abstract, animations of height field
views, by virtue of their simple (matrix) geometry, provide
the ability to visualize critical state variables of every
neuron in the simulation, and, in addition, promote easy
comparisons among populations. Approximate
measurement of cell variables is also facilitated by scales
provided adjacent to the height fields. As the individual
populations are separated in the visualization, occlusion
is not an issue. With larger numbers of populations,
occlusion is possible, but usually can be resolved by
interactively manipulating the layout with the pick
function and interactive viewing tools. The layout
features permit scalability to larger models and
simulations, by allowing users to focus on selected
populations, neurons and system variables of interest.
This feature becomes increasingly important for scaling
the system to larger models.

Viewing dynamic neuron activity in the context of an
anatomical representation contributes to the physical
realism of the visualizations, and promotes
communication among researchers. The only other work
we know of that projects a dynamic data presentation
on an anatomical representation of the spinal cord is
the work of Yakovenko et al.11 In that work, locations of
27 populations of hind limb motoneurons were digitized
from the same data set used here (36 sections of Fig. 28
in Ref. 12). Activity of cells during locomotion was
animated using an extensive library of
electromyographic (EMG) recordings (muscle activation
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patterns) they generated from the literature of normal
cat locomotion. The EMG record of a single step, i.e.,
flexion-extension cycle, was divided into 100 piecewise-
constant segments, each corresponding to about 7 ms of
real time. Their visualization generated two main
findings, (1) greater extensor activity than flexor, a
reasonable result, given that there are a greater total
number of extensor motoneurons than flexor
motoneurons, and (2) the visualization of a front-to-back
wave of neural activity in flexion and extension of a
single step was not necessarily expected, since some
motoneuron pools are distributed throughout the entire
visualized region. Note that cells in their visualization
were animated from “output data”, i.e., EMG, of cats
walking on a treadmill, rather than from a model of the
central pattern generator, as in NVIZ. In other words,
NVIZ generates movement from hypotheses constructed
from first principles. The hypotheses concern biophysical
properties of cells, synapses and population connections,
as stated in the Results section.

In summary, the different visualizations in NVIZ
provide the means to comprehend and analyze complex
spatiotemporal data, arising from realistic large-scale
simulations of cat spinal cord. The visualization tools
were created in two windows, each containing 2D and
3D components. The first window, shown in Fig. 3,
contains the height field view and most of the numerical
analysis modules. The second window, shown in Fig. 7,
contains the 3D anatomical view, dynamic time-varying
2D plot of cell firings, and representation of limb
movement. Both windows contain VCR controls and time
stamps, and access the same underlying data structures.

Conclusions
We have described the goals, design and implementation
of NVIZ, a new system that integrates simulation, visu-
alization and analysis within a highly interactive envi-
ronment for understanding complex neuronal dynamics
of the spinal cord. NVIZ encompasses five biological lev-
els of organization: ion channels, neurons, populations,
Net Neural Drive (in lieu of musculoskeletal activation),
and observed behavior. We have demonstrated many of
the features of NVIZ (circuit design, simulation, visual-
ization and analysis) using a single hip joint movement
experiment. Notably, the inclusion of an anatomical
framework for the data was found to be a powerful means
to communicate experimental results. Limb movement
was generated by a novel algorithm, Net Neural Drive,
which circumvents the computational complexity of bio-
mechanical representation.

The use of modern interactive visualization and
animation tools and access to the features of NVIZ from
a graphical user interface makes it an attractive
environment for analyzing large scale neuron models of
the spinal cord. In the future, we hope to address the
following avenues for development and improvement of
NVIZ:
• Interactive graphical specification and editing of

neural circuit descriptions.
• Inclusion of additional interneuronal populations in

the anatomical visualization.
• Extension of NVIZ to larger models: multiple joints

containing larger numbers of populations.
• Validation of the Net Neural Drive algorithm against

animal and human joint angle data.
• Expansion the two compartment neuron model to an

arbitrary number of dendrites and compartments, with
appropriate visual representations.

• Optimization of the software for larger models.    

Acknowledgment. A number of students have contrib-
uted to different parts of NVIZ in earlier versions, in-
cluding William Hasty,30 James Harrison,31 Chris
Driggers,32 and Haiping Pan.33 Anatomical model was
constructed with the help of Fig. 28 in Ref. 12. DB thanks
Larry Jordan, Dave McCrea and Katinka Stecina for
helpful discussions. This work was supported in part
by a grant from the University of North Carolina at
Charlotte.

References
  1. G. M. Edelman, Neural Darwinism: The Theory of Neuronal Group

Selection. Basic Books, New York, NY, 1987.
  2. E. E. Fetz, “Are movement parameters recognizably coded in the

activity of single neurons?”, Behavioral Brain Science, 15: 679–690
(1992).

  3. E. de Schutter, “A consumer guide to neuronal modeling software”.
Trends in Neurosciences, 15(11):462–464 (1992).

  4. Y. Manor, J. Gonczarowski, and I. Segev, “Propagation of action po-
tentials along complex axonal trees, model and implementation”. Bio-
physics Journal, 60, 1411–1423 (1991).

  5. M. L. Hines and N. T. Carnevale, “The neuron simulation environ-
ment”. Neural Computation, 9(6), 1179–1209 (1997).

  6. F. E. Theunissen F. H. Eeckman and J. P. Miller,  “NeMoSys: An ap-
proach to realistic neural simulation”. In Neural Systems: Analysis
and Modeling, F. H. Eeckman, Ed., (Kluwer Academic, Boston, MA,
1993) pp. 121–136.

  7. D. Beeman and J. M. Bower, The Book of Genesis. (Springer Verlag,
1993).

  8. E. De Schutter, “NODUS, A User Friendly Neuron Simulator for
Macintosh Computers”. In Neural Systems: Analysis and Modeling,
F. H. Eeckman, Ed., (Kluwer Academic, Boston, MA, 1993).

  9. K. R. Subramanian, D. P. Bashor, W. V. Hasty, and S. M. Merkel, “Multi-
level visualization of spinal reflex circuit simulations”. IEEE Comp.
Graphics Appl. 17(3) (1997).

10. K. R. Subramanian, D. P. Bashor, M. T. Miller, and J. A. Foster, “Visu-
alizing the spinal neuronal dynamics of locomotion”. Proc. SPIE,
5295, 286 – 295 (2004).

11. S. Yakovenko, V. Mushahwar, V. Vanderhorst, G. Holstege, and A.
Prochazka, “Spatiotemporal activation of  lumbosacral motoneurons in
the locomotor step cycle”. J. Neurophysiology, 87(3), 1542–1553 (2001).

12. V. G. Vanderhorst and G. Holstege, “Organization of lumbosacral
motoneuronal cell groups innervating hindlimb, pelvic floor, and
axial muscles in the cat”. J. Comparative Neurology, 382, 46–76
(1997).

13. G. A. Ascoli, Ed., Computational Neuroanatomy: Principles and Meth-
ods. (Humana Press, Totowa, NJ, 2002).

14. J. G. Bjaalie, Ed.,  “Three-dimensional computer reconstructions in neu-
roanatomy”. in Quantitative Methods in Neuroanatomy, M.G. Stewart,
Ed.,  (John Wiley and Sons, New York, NY, 1992) pp. 249–293.

15. J. G. Bjaalie, “Localization in the brain: new solutions emerging”. Na-
ture, 3, 322–325, April 2002.

16. T.B. Leergaard, K.D. Alloway, T.A.T. Pham, I. Bolstad, Z. S. Hoffer, C.
Petterson, and J.G. Bjaalie, “Three-dimensional topography of
corticopontine projections from rat sensorimotor cortex: comparisons
with corticostriatal projections reveal diverse integrative organization”.
J. Comparative Neurology, 478, 306–322 (2004).

17. T. B. Leergaard and J. G. Bjaalie, “Architecture of sensory map trans-
formations”, in Computational Neuroanatomy: Principles and Methods,
G. A. Ascoli, Ed., (Humana Press, Totowa, NJ, 2002) pp. 199–217.

18. A. Brevik, T. B. Leergaard, M. Svanevik, and J. G. Bjaalie,  “Three-di-
mensional computerized atlas of the rat brain stem precerebellar sys-
tem: approaches for mapping, visualization, and comparison of spatial
distribution data”. Anatomy and Embroyology, 204(4),  319–332 (2001).

19. D. P. Bashor, A large-scale model of some spinal reflex circuits. Bio-
logical Cybernetics, 78, 147–157 (1998).

20. R. J. MacGregor, Neural and Brain Modeling (Academic Press, NY, 1987).
21. P. A. Getting,  “Reconstruction of small neural networks”, in Methods in

Neuronal Modeling, C. Koch and I. Segev, Eds., (MIT Press, Cambridge,
1989).

22. D. P. Bashor, “One leg walking: A model of rhythm and pattern genera-
tion in cat lumbar spinal cord”, Society for Neuroscience Abstracts, 26,
747.5 (2000).

23. R. J. MacGregor and R.M. Oliver, A model for repetitive firing in neu-
rons. Kybernetik, 16, 53–64 (1974).

24. D. P. Bashor, “Hill-Kernell-MacGregor two-compartment neuron mod-
els for use in spinal network” Biological Cybernetics, 2004. Submitted.

25. A. Colbourne. Ac3d. http://www.fltk.org.
26. D. H. U. Kochanek and R. H. Bartels, “Interpolating splines with local ten-

sion, continuity and bias control”. Comp. Graphics, 18(3), 33–41 (1984).
27. W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit: An

Object-Oriented Approach to 3D Graphics. 3rd ed., (Prentice Hall Inc.,
Clifton Park, NJ, 2002).



NVIZ: An Integrated Environment for Simulation, Visualization and Analysis of ...  Vol. 49, No. 5, September/October 2005  519

28. B. Spitzak, The fast light toolkit. http://www.fltk.org.
29. D. Bashor, Y. Dai, D. Kriellaars, and L. Jordan, “Pattern generators for

muscles crossing more than one joint”, in Annals of the New York Acad-
emy of Sciences, 680, 444–447 (1998).

30. W. V. Hasty, An integrated graphical environment for the simulation and
analysis of spinal motor circuits. Senior Thesis (The University of North
Carolina at Charlotte, Charlotte, NC, 1996).

31. J. A. Harrison, SPSIM: An integrated visual simulation environment for
analyzing spinal reflex circuits. Senior Thesis, (The University of North
Carolina at Charlotte, Charlotte, NC, 1997).

32. C. Driggers, Visualization tools. Senior Thesis, (The University of North
Carolina at Charlotte, Charlotte, NC, 2001).

33. H. Pan, Improvements to NVIZ. Senior Thesis, (The University of North
Carolina at Charlotte, Charlotte, NC, 2003).


