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with strong bimodal histograms, i.e., images containing
both very bright and very dark regions.

Another well known technique used for providing
dynamic range compression is the application of
nonlinear transforms such as gamma nonlinearity, a
logarithmic function, and a power law function to the
input image.1,2 These functions are typically biased
toward increasing visibility in dark areas by sacrificing
visibility in bright areas. However, the selection of
nonlinear transforms is dependent on the luminance
distribution in the input image, and the luminance in
bright areas tends to be saturated.

The following technique has also been proposed.
Bright and dark scenes are taken separately by a
different shutter speed and iris diaphragm in a DSC.
The middle tone is generated by the synthesis of these
images and a wide dynamic range is realized. This
technique generates blur and distortion in the output
image due to the time required to take at least two
images in sequence; it is impossible in principal to take
the same image twice.

The above-mentioned techniques are not always
effective for tone mapping because they utilize pixel-to-
pixel processing without consideration of the
surrounding scenes in an image. This means that it is
necessary to utilize spatial information in the image in
order to reproduce a visually natural and a good contrast
image as seen by human eyes.5

Recently,  theories which take human eye
characteristics into consideration are being given
attention, including the so-called Retinex theory that
was proposed by Land. It has been extended to space-
to-pixel conversion theory which takes into account the
surrounding pixels of a pixel under consideration.6,7

Introduction
It has recently been suggested that the image quality
of digital still cameras (DSCs) is close to the good im-
age quality of a silver halide photograph. However, the
issue of a narrow dynamic range has been pointed out
with respect to DSC images. This means that DSC im-
ages are poor in scene detail and color reproduction in
dark areas. Especially in the case of a scene that con-
tains both bright and dark areas, it is hard to obtain a
beautiful image, and some type of correction technique
is required.

Typical correction techniques such as gain/offset
correction1,2 and histogram equalization3,4 have already
been utilized for such images. Gain/offset correction is
linear processing to attain a wide dynamic range for DSC
images. This technique linearly creates a wide dynamic
range for images so as to expand the maximum
luminance range of the display medium. However, it
does not always provide good visual perception for the
original scene. Histogram equalization is based on the
idea of transforming an input image to an output image
that contains a uniform luminance distribution. This
technique works well for images with unimodal or weak
bimodal histograms, but does not work so well for images
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Hurlbert8 studied the properties of Land’s first Retinex
model and other lightness theories and found that they
share a common mathematical foundation but cannot
actually compute reflectance for arbitrary scenes. Moore
et al.9 took up Retinex as a natural implementation for
analog very large-scale integration (VLSI) resistive
networks and found that color rendition was dependent
on scene content – whereas some scenes worked well,
others did not. These studies also pointed out the
problems that occur due to color Mach bands and the
graying-out of large uniform areas of color.

McCann10 proposed a technique based on Retinex
theory; Funt et al.11 provided Matlab code for McCann’s
Retinex. These techniques create a multi-resolution
pyramid from the input by averaging image data. It
begins the pixel comparisons at the most highly
averaged, or top level of the pyramid. After computing
luminance on the image at a reduced resolution, the
resulting luminance values are propagated down, by
pixel replication, to the pyramid’s next level as initial
luminance estimates at that level. Further pixel
comparisons refine the luminance estimates at the
higher resolution level and then those new luminance
estimates are again propagated down a level in the
pyramid. This process continues until values have been
computed for the pyramid’s bottom level. To acquire an
output image with high quality, this technique needs a
suitable output lookup table function and a number of
iterations at each level of multi-level computation.

Moreover, Jobson and others have evolved Land’s
theory to Single-scale Retinex (SSR) and Multi-scale
Retinex (MSR).12  − 17 MSR is a technique combined with
several output images processed by SSR in order to
satisfy good dynamic range compression and good tonal
rendition. However, there are some issues in terms of
color correction of images having a different intensity
distribution for the RGB channel. In particular, the
following issues are involved in practical use: a) setting
many parameters, b) a decrease of luminance caused by
slight luminance deviation in a bright area, c) chromatic
unbalance in R, G and B channels, d) instability of the
logarithmic computation in MSR, and e) a blurred edge
and noise appearance in a dark area.18

In order to address these issues, Adaptive Multi-scale
Retinex (AMSR) for synthesizing the image processed
by MSR to the original image has been studied, and an
automatic contrast adjustment technique in accordance
with the input image has been developed.

In this article, experimental results regarding the
highly accurate color balance and high speed processing
of a new technique named NEW-AMSR are described in
comparison with conventional techniques, and the
effectiveness of AMSR is shown from the results visually
evaluated on the output images of each technique.

Overview of Retinex Theory
This section provides an overview of the SSR technique
based on Retinex theory as proposed by Jobson et al.
The technique is extended from SSR to MSR12−17 with
multiple kernel windows (scales) of different sizes.

Retinex Theory
Retinex theory6,7 is the basis of SSR and MSR. The basic

principle is shown schematically in Fig. 1. The diagram
presents an explanation of the reflectance change for a
gray-step image, but it is possible to extend it to color
images. In Figs. 1(a), 1(b), and 1(c) we show the
reflectance intensity of the gray-step image, the intensity
of inverse continuous illumination in accordance with the

gray-step image, and the resultant reflectance intensity
superimposed on both the reflectance intensities of Figs.
1(a) and 1(b), respectively. The signal of the superimposed
reflectance intensity is not the same as the intensity
shown in Fig. 1(a), but the appearance to human vision
is the same as that of the gray-step image. It is a fact
that even if the reflectance intensity is the same signal,
a small difference in reflectance intensity between
adjacent gray images is perceived as a relative ratio of
the adjacent reflectance for human vision. Moreover, the
relative difference of lightness and darkness between two
spatially separated pixels could be computed as the chain
of the relative ratio between the adjacent reflectance
according to the course. This model was extended to a
technique computing the relative ratio of reflectance
between the gazing point (Center) and the surrounding
pixels (Surround), and it is called the Center/Surround
or C−S technique.

Single-Scale Retinex
Single-scale Retinex (SSR) was the technique

proposed by Jobson et al., and it was the technique used
for extension to the C−S technique. Figure 2 shows a
diagram of SSR. The Retinex output SRi(x,y) of SSR is
given by

    SR x y I x y F x y I x yi i i( , ) log ( , ) log{ ( , ) ( . )}= − ∗ (1)

    F x y Ke x y c( , ) ( ) /= − +2 2 2 (2)

    F x y dxdy( , ) =∫∫ 1 (3)

where Ii(x, y) is the image distribution in the i-th spec-
tral band for each coordinate position (x, y); symbol “*”
denotes the convolution operation. F(x, y) is the surround-
ing function applying to each coordinate position (x, y)
and given by Eq. (2). The coefficient c in Eq. (2) repre-
sents the standard deviation for the surrounding field or
the scale. K is the normalized constant coefficient deter-
mined so as to satisfy the condition in Eq. (3).

From Eqs. (1) and (3), the second term in Eq. (1) is
equivalent to a weighted average value of the intensity
of the surrounding pixels for a pixel under consideration.
F(x, y) is given by a Gaussian function in order to take
into account global contributions at each position of the
pixels. In addition, the surrounding function F(x, y)
enhances the characteristics of the regional contributions.

Multi-Scale Retinex
SSR is strongly influenced by the surrounding function

F(x,y) with the scale value c, so it is necessary to consider
a suitable scale value c in accordance with the dynamic
range of the pixel value in input images.

Multi-scale Retinex (MSR) was also proposed by
Jobson et al. as an advanced SSR. The Retinex output
MRi(x,y) of MSR is given by Eq. (4), (5), and (6).

    
MR x y w I x y F x y I x yi s i s

s

nn

i( , ) (log ( , ) log{ ( , ) ( , )})= ⋅ − ∗
=

−
∑

0

1

(4)

    F x y K es s
x y cs( , ) ( ) /= − +2 2 2

(5)

    F x y dxdys ( , ) =∫∫ 1 (6)

where nn is the number of scales, ws is the weight coef-
ficient associated with the output by SSR with the scale
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Figure 1. Diagram of Retinex Theory

Figure 2. Diagram of SSR Technique

cs. The Retinex output MRi(x, y) is calculated by the
weighted sum of several SSR-outputs in the various
scales. Since MSR can give an arbitrary amount of dy-
namic range compression, it offers stable contrast con-
version without dependency of the scale value. The
weight ws is satisfied by Σsws = 1 .

Figure 3 shows a diagram of SSR expanded to MSR.
Furthermore, since a chromatic unbalance might be
caused by Eq. (4), (5) and (6), Jobson proposed the
technique using Retinex output MRi

’ (x, y) given by
Eq. (7).

  
    
MR x y MR C I x y

I x y Ci i
i

i

' ( , ) ( ( , )
( , )),= ⋅ + ⋅ =∑1 125 (7)

However, MSR still includes the following concerns:18

• Proposed Retinex output MRi (x, y) includes the loga-
rithmic computation as shown in Eq. (4). Therefore,
the Retinex output level is unstable with respect to
both noise in a dark area and the deviation for the
offset level of the input devices being a zero signal.

• Chromatic unbalance in R, G and B channels oc-
curs in output images.

• Since clipping of the highest and lowest signal in
the histogram signal of Retinex output is applied
in Eq. (7), the selection of the clipping points be-
comes important. First, the upper and lower lev-
els of the Retinex output MRi (x, y) are clipped,
then the gain/offset correction is carried out to the
clipped Retinex output. This means that it is hard
to set gain/offset levels and also hard to control
suitable gain/offset parameters for a number of
input images.

Figure 3. Diagram Expanded into MSR Technique

• In case intensity change is small over a wide area,
a drop in luminance occurs over the wide area of
the output image.

• Color noise in dark areas tends to be emphasized.

As indicated above, Jobson’s MSR output image quality
is strongly influenced by the adjustment of many pa-
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rameters. Therefore, suitable empirical parameters are
needed.

Adaptive Multi-Scale Retinex (AMSR)
Adaptive Multi-scale Retinex (AMSR) solves the MSR
issues described above. AMSR is an algorithm that syn-
thesizes the image processed by MSR to the original
image. The algorithm is presented by Eqs. (8), (9), (10)
and (11). Figure 4 shows a schematic diagram of the
AMSR technique process.

    
AR x y w I x y

Ak x y ci s
i

ss
( , ) ( , )

( , , )= ∑ (8)

    Ak x y c k x y F x ys s( , , ) ( , ) ( , )= ∗ (9)

    

Deki x y

w eBaisu I x y
Ak x y c Adk x y cs

s

i
s

s

( , )

( , )
( , , ) . ( , , )

=

⋅ ⋅ −⎛
⎝

⎞
⎠ ×∑ 1 0 (10)

    
u x y u k x y

TH
( , ) exp ( , )

max= × −
⎛
⎝⎜

⎞
⎠⎟

2

2 (11)

    O x y u x y I x y u x y E x yi i i( , ) ( ( , )) ( , ) ( , ) ( , )= − × + ×1 (12)

A. The maximum and minimum luminance values
THHigh and THLow are set when the weighted av-
erage luminance Ak(x,y,cs) in the scale window cs of
the image is calculated and the luminance of a pixel
in the surrounding field is set between THHigh and
THLow. Using this process, an abrupt drop of
Retinex output ARi(x,y) in a bright area where lu-
minance changes a little can be suppressed by set-
ting the maximum luminance value. An abrupt rise
of Retinex output ARi(x, y) in a dark area with a
little change can be suppressed by setting the mini-
mum luminance value.

B. The Retinex output ARi(x, y) is calculated by the
ratio of each component for the weighted average
luminance Ak(x, y, cs) in the scale window cs of the
image as shown in Eq. (8). k(x,y) is the luminance
for the pixel coordinate position (x, y). The surround-
ing function Fs(x, y) in Eq. (9) is calculated by Eqs.
(5) and (6). Eq. (8) is equivalent to two steps: 1) cal-
culation of the ratio of each component for lumi-
nance, and 2) multiplication of the ratio of the
luminance for the weighted average luminance Ak(x,
y, cs) to the ratio of each component for the lumi-
nance. The chromatic unbalance in the output im-
ages is suppressed by this technique, and an
unstable output image due to logarithmic conver-
sion is also suppressed. MSR has two merits: com-
pression for the Retinex output range and easy
extraction to the middle tone. However, unstable
states are easily caused by noise in the brightness
level of the image. Therefore, in order to offset this
influence, the linear computation model shown in
Eq. (8) has been adopted.

C. The emphasis image in Fig. 4 is acquired by using
Ak(x, y, cs). Ei(x, y) in the emphasis image is the
image distribution in the i-th spectral band for each
coordinate position (x, y). Ei(x, y) is calculated by
multiplication of the transform value Ct to ARi(x,
y). Ak(x, y, cs) in the scale window cs is calculated by
Eq. (9). This processing is to reduce the effect of the

device calibration to transform the Retinex output
ARi(x, y) to the intensity of the pixel. Ct is a con-
stant value to transform ARi(x, y) to the intensity
of the pixel in the emphasized image. The value near
the center value in the dynamic range of the inten-
sity of the pixel is generally selected as Ct.

D. As shown in the process (E), the image emphasized
by process (C) and the input image are synthesized.
As a result of process (E), a blurred edge tends to
occur. In order to retain fine edges, edge empha-
sized components are added to Retinex output ARi(x,
y). Adk(x, y, cs) is defined as the average value of
the absolute luminance change in the surrounding
pixels for the luminance of the pixel under consid-
eration. Retinex output ARi(x, y) in process (B) is
corrected by using the edge emphasis component
Deki(x, y). A edge component of the i-th spectral band
Ii(x, y) is connected with to the relative value of Ii(x,
y) for the weighted average luminance Ak(x, y, cs)
at each coordinate position (x, y). And when Ii(x, y)
is nearly equivalent to Ak(x, y, cs), the edge compo-
nent of the i-th band become small. Therefore,
Deki(x, y) is calculated by Eq. (10) to emphasize this
edge component. eBaisu in Eq. (10) is a positive con-
stant between 0.0 and 1.0. An edge component of
the i-th band is emphasized according to the aver-
age value of the absolute luminance change, so that
the intensity of i-th spectral band Ii(x, y) is larger
than the weighted average luminance Ak(x, y, cs)
for each coordinate position (x, y). On the contrary,
an edge component of the i-th band is suppressed,
so that the intensity of the i-th spectral band Ii(x,
y) is smaller than the weighted average luminance
Ak(x, y, cs).

E. The image emphasized by process (C) and the origi-
nal image are synthesized. Since an abrupt rise in
luminance results  from this synthesis ,  the
weighted coefficient applied to the emphasis im-
age is controlled by the input luminance value for
the pixel under consideration. The synthesis coef-
ficient u(x, y) in the emphasized image is presumed
by Eq. (11). The synthesis coefficient u(x, y) has a
value between 0.0 and 1.0. TH in Eq. (11) is a posi-
tive constant. umax in Eq. (11) is the maximum value
of u(x, y), and umax is controlled by the luminance
value synthesized in this process. When the lumi-
nance in the input image is low, u(x, y) is set to
large value. On the contrary, when the luminance
in input image is high, u(x, y) is set to a small value.
In Fig. 4, Oi(x, y) and Ei(x, y) show the image dis-
tribution in the i-th spectral band for each coordi-
nate position (x, y) in the synthesized image and
that in the emphasized image respectively. Oi(x,
y) is calculated by synthesizing Ii(x, y) and Ei(x, y)
using Eq. (12). These equations show that the ef-
fect of an emphasis image is strengthened for the
intensity of the pixel in the output image when the
luminance in the input image is low. On the con-
trary, when the luminance in the input image is
high, the effect of an emphasis image is weakened
in the output image.

F. When comparing the input luminance value with
the luminance value of the image synthesized by
process (E), in case the luminance of the synthe-
sized image is lower than the input luminance value,
the luminance synthesized in process (E) is trans-
posed to the input luminance, and it correspond-
ingly changes in the R, G and B channels.
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Processes (A), (C) and (E) are intended to suppress both
a drop in luminance in the area of the high uniform lu-
minance level and color noise generated by an abrupt
rise in the low uniform luminance level. Furthermore,
color saturation generated in the near edge area in the
emphasis image can also be suppressed by synthesiz-
ing both the input image and the emphasized image, as
shown in process (E).

Simulation Results
Simulation Conditions and Experiments

Images taken with a commercial DSC, an Epson CP-
920Z, were simulated. Figure 5 shows samples of the
original images used for the simulations. The sample
images are constructed with three spectral bands − red,
green and blue. Each band is 8 bits. The sample images

were reduced by Adobe Photoshop 6.0 software from an
original size of 2048 × 1536 pixels to 450 × 338 pixels.
Gain/offset correction, histogram equalization, MSR and
AMSR were simulated and AMSR was evaluated com-
pared to these techniques.

For AMSR and MSR, a scale number of nn = 3 was
selected. The size of the scales was c0 = 126, c1 = 30 and
c2 = 6. Ct in AMSR shows the fundamental value
transforming the Retinex output to the intensity of the
pixel, and Ct = 128 was selected. THHigh was set to
200, and THLow was set to 20.

Evauations
We visually evaluated AMSR compared with the

convent ional  techniques .  F igure  6  shows the
resultant  images s imulated  by  (a )  ga in /o f f set

Figure 4. Schematic Diagram of AMSR Technique

Sample 1 Sample 2

Figure 5. Original Images for Simulation Experiments
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correction, (b) histogram equalization, (c) MSR, and
(d) AMSR, respectively.

In the case of the night scene shown in Fig. 6, the
image for (a) gain/offset correction shows almost no
improvement. The image for (b) histogram equalization
is much too bright in all areas. The dark area is clearly
rendered in the image for MSR shown in (c), but color
noise has appeared in the night scene image. Color noise
cannot be avoided in principle because it is included in

the signal of the DSC’s CCD imaging sensors. In the
original image (a) shown in Fig. 5, the color noise in the
dark areas is not conspicuous since the background area
is in the low luminance level. However, color noise is
more conspicuous in the MSR image. Comparing the
resultant images of (a), (b) and (c), the visibility of the
image for (d) AMSR is clearly improved and it maintains
good color balance that is similar to the atmosphere of
the original image.

Figure 6. Output Images Processed by (a) Gain/Offset Correction; (b) Histogram Equalization; (c) Jobson MSR Tech-
nique; and (d) AMSR Technique.
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For the portrait images in Fig. 6, the same result as
that of the night scene image was recognized visually.
Compared to the original image in Fig. 5(b), the image
for (a) gain/offset correction shows little improvement
in terms of contrast. With (b) histogram equalization,
there is a noticeable drop in luminance. In the image
for (c) MSR, contrast detail is excessively enhanced, and
visible “halo” artifacts, i.e., an overflow of intensity close
to the boundary of trees and people, can be observed.

In the image for (d) AMSR, the contrast is adequately
enhanced, and “halo” artifacts around the boundary of
the people do not occur. The facial areas are also clearly
reproduced. On the other hand, in the image for (c) MSR,
there is a drop in luminance in the area with a high
uniform luminance level. This occurs, for example, in
the sky areas and the building wall areas. The AMSR
image shows that a drop in luminance for the sky areas
and the building walls has been suppressed.

From the above discussion, by visual evaluations we
found that the overall image quality of AMSR shows an
improvement over gain/offset correction, histogram
equalization and MSR techniques. In addition,
experiments have been conducted using many image
samples and various surrounding scales. Similar results
have been observed.

Improvement of Color Appearance and
Processing Speed
In this section, we discuss improvement of color appear-
ance and the processing speed of AMSR.

• In the case of considerable deviations between the
individual R, G and B channels of an image, the
deviations are emphasized more and the chromatic
unbalance between each spectral band is not
sufficiently suppressed.

• Both MSR and AMSR have a long processing time
because of the large size of the surrounding filter.

Improvement of Color Appearance
In AMSR, the ratio of each RGB component in both the

output image and the input image is equal. AMSR can thus

maintain the ratio of components against luminance in the
input image in comparison to conventional MSR.

However, when the RGB value in a dark area is
abruptly emphasized, it is possible to see a cyan color
in the dark area. Figure 9(b) provides an example of
poor color appearance. This is particularly noticeable
in the area within the red line. This effect could be
caused by strong emphasis of the differences between
the R, G and B channels of the image.

In general, the input image of a DSC is composed of
pixel values in the R, G and B channels. However, from
the human vision point of view, it may be said that in spite
of the component values in the input image, the impression
of color is influenced by color difference between each
component. Therefore, pixel values R, G, and B in the input
image are changed into luminance component k(x, y) and
two components of color difference Cr and Cb, which are
closely related to human vision. Next, improved processing
of the luminance k(x, y) in a dark area is calculated
according to the characteristics of human vision. This
processing is obtained by applying AMSR to enhancement
of the luminance component in the input image.

Then, the improvement ratio of the color difference
CRatio is controlled by the improvement ratio KRatio
between the output and input luminance. The control
function for the improvement ratio of color difference is
executed according to the diagram shown in Fig. 7. In
Eq. (13), CMax and CMin show the maximum ratio of
color difference and the minimum ratio of color
difference, respectively. In addition, outK(x, y) is the
improvement luminance at position (x, y).

    

CRatio
CMax if KRatio MaxR
CMin if KRatio MinR

KRatio MinR Keisu CMin otherwise
=

≥
≤

− × +

⎧
⎨
⎪

⎩⎪( )
(13)

As shown in Fig. 7(a), CRatio is set between the
minimum improvement ratio CMinR and the maximum
improvement ratio CMaxR, and it is linearly controlled
against KRatio between MinR and MaxR. MinR and
MaxR are positive constants.

Figure 7. Diagram of Control Function for Color Difference
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The slope Keisu of a linearly controlled region is
adjusted as shown in Fig. 7(b). ThresCrCb shows the
threshold value of improved luminance, and Keisu shows
the slope of the linear function between MinR and MaxR
given by Eq. (13). MaxK shows the maximum value of
Keisu and is a positive constant. As shown in Fig. 7(b)
and Eq. (14), the Keisu is a constant value in case outK
is smaller than ThresCrCb. In case outK is larger than
ThresCrCb, Keisu linearly decreases, because the human
eye is sensitive to a small amount of cyan color occurring
in a highlight area. Consequently, in case outK is larger
than ThresCrCb, the slope of Keisu linearly decreases
according to Eq. (14) due to improved appearance in a
highlight area.

Improvement in Processing Speed
The following three points are considered in order to

achieve higher processing speed: (1) reduce the number
of applied Gaussian functions, (2) simplify overall
processing and (3) reduce the scale size.

(1) Reduce the Number of Applied Gaussian Functions
As shown above, the Retinex output of luminance is

calculated instead of the Retinex output of each R, G
and B component by Eq. (8), and the color difference
signals are adjusted by the ratio of the improved
luminance to the input luminance. In addition, Ak(x, y,
cs) in Eq. (15) is defined by Eq. (16) instead of Eq. (9).
That is, Ak(x, y, cs) shows the average luminance of the

Figure 8. High-speed Calculation Process for Total Luminance within Surrounding Filter at Pixel p(x, y). (a) Calculation
process in horizontal direction of the total luminance within the surrounding filter; (b) Calculation process in vertical
direction of the total luminance within the surrounding filter.
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surrounding pixels relative to the pixel under
consideration. The surrounding field gs in Eq. (16) shows
the surrounding field with the scale size cs, and Ngs shows
the number of the surrounding pixels in the surrounding
field gs obtained by the process described below, reduces
the scale size. The variable kd(x, y) shows the luminance
at position (x, y), which is the value between minimum
luminance THLow and maximum luminance THHigh
as shown in Eq. (17 ).

    
AR x y w k x y

Ak x y ci s
ss

( , ) ( , )
( , , )= ∑ (15)

    
Ak x y c kd x y Ns

i gs
gs( , , ) ( , ) /=

∈
∑ (16)

    

kd i j
THLow if k i j THLow

THHigh if k i j THHigh
k i j others

( , )
( , )
( , )

( , )
=

≤
≥

⎧
⎨
⎪

⎩⎪
(17)

(2) Simplify Overall Processing
Additional processing of the edge emphasis component

Deki(x, y) in AMSR was simplified. Instead of additional
processing of the edge emphasis component, the
transform value Ct in process (3) of AMSR is controlled
according to the luminance of the pixel under
consideration. Eq. (18) shows the transform value
function Ct = CtFunc(k(x, y)).

    Ct CtFunc k x y Ctc dCt k x y Kc= = + ⋅ −( ( , )) ( ( , ) ) (18)

Figure 9. Image Quality Comparison of AMSR, Thinning Mode of AMSR and NEW-AMSR. (a) Original images; (b) AMSR
technique; (c) Thinning mode of AMSR; and (d) NEW-AMSR.
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where Ctc, dCt and Kc denote the fundamental value of
the transform value Ct, the changed value of transform
value Ct and the fundamental luminance, respectively.

(3) Reduce the Scale Size
Improved processing speed was attempted by

combining thinning out along the horizontal direction
and serial processing to calculate total luminance
within the surrounding filter. The ratio of thinning out
in the horizontal direction for each scale size Cs is
shown in Table I(b). Figure 8 provides an outline of
the serial processing to calculate the total luminance
within the surrounding filter. P(x, y) shows an object
pixel at position (x, y) and 2cs + 1 shows the surrounding
filter size to calculate surrounding luminance. W and
H present the number of pixels along the horizontal
direction in the input image and the number of pixels
along the vertical direction in the input image,
respectively.

[a] Firstly, total luminance s(x, y) of kd(x, y) at posi-
tion (x, y) along the vertical direction in the sur-
rounding filter is calculated up to (0 ≤ x ≤ W  − 1).
Here, kd(x, y) shows the luminance obtained by
Eq. (17) at position (x, y) and the values are used
when calculating the average luminance in the
surrounding filter.

Then, the calculation process for the total lu-
minance value Ak(x, y) of the surrounding pixels
to the pixel under consideration can be classi-
fied by four patterns according to the value of x
(0 ≤ x ≤ W  − 1). Ak(x, y) in each pattern can be
calculated by the following formulas.

[a-1] At x = 0, the total luminance value Ak(0, y) is
calculated as the total value of s(t,y) for z (0 ≤ t ≤
cs). Eq. (19) and Fig. 8 (a-1) show the case of
Ak(0,y).

    
Ak y c s ts

t

Cs

( , , ) ( , )0 0
0

=
=
∑ (19)

[a-2] Figure 8 (a-2) shows an outline of the surround-
ing filter in the case that x is in the region (1 ≤ x
≤ cs). The area of the surrounding filter is ob-
tained by adding the (x + cs) column to the area
of the surrounding filter at (x − 1, y). Therefore,
total luminance Ak(x, y) within (1 ≤ x ≤ cs) is cal-
culated by adding the luminance sum s(x + cs, y)
at position (x + cs,y) to Ak(x − 1, y) at the previ-
ous column (x − 1, y).

    Ak x y c Ak x y c s x c ys s s( , , ) ( , , ) ( , )= − + +1 (20)

[a-3] Figure 8 (a-3) shows an outline of the surround-
ing filter in the case that x is in the region (cs + 1
≤ x ≤ W − 1 − cs). The area of the surrounding
filter is obtained by adding the (x + cs) column to
the area of the surrounding filter at position (x −
1, y) and subtracting the column (x − (cs + 1), y)
from the area of the surrounding filter at posi-

tion (x − 1, y). Therefore, the total luminance
Ak(x, y) in the region (cs + 1 ≤ x ≤ W − 1 − cs) is
calculated by adding the luminance sum s(x + cs,
y) at position (x + cs, y) along the y direction to
Ak(x − 1, y), and subtracting the luminance sum
s(x  − (cs + 1), y) at position (x  − (cs + 1), y) to the
total luminance Ak(x − 1, y).

    

Ak x y c

Ak x y c s x c y s x c y
s

s s s

( , , )

( , , ) ( , ) ( ( ), )

=
− + + − − +1 1 (21)

[a-4] Figure 8 (a-4) shows an outline of the surround-
ing filter in the case x is included in the region
(W −  cs ≤ x ≤ W −  1). A new area for the surround-
ing filter is presented as the area obtained by
subtracting column (x −  (cs + 1)) from the area
of the surrounding filter at position (x  −  1, y).
Consequently, the total luminance Ak(x, y) in the
region (W  −  cs ≤ x ≤ W −  1) is calculated by sub-
tracting the luminance sum s(x −  (cs + 1), y) at
position (x − (cs + 1), y) along the y direction from
Ak(x  −  1, y) at the previous column (x −  1, y).

      Ak x y c Ak x y c s x c ys s s( , , ) ( , , ) ( ( ), )= − − − +1 1 (22)

[b] On the other hand, total luminance kd(x, y) in
the surrounding filter at position (x, y) along the
vertical direction s(x, y) is classified into four
cases. This is shown in Fig. 8(b) in the case of x =
0. Outlines of each case, y = 0, y in the region (1
≤ y ≤ cs ), y in the region (cs + 1 ≤ y ≤ H − 1 − cs)
and y in the region (H − cs ≤ y ≤ H − 1) are shown
in Fig. 8 (b-1), (b-2), (b-3), and (b-4), respectively.

[b-1] Total luminance kd(x, y) in the surrounding fil-
ter at position (x, 0) along the vertical direction
s(x, 0) is calculated by Eq. (23) as the total value
of kd(x, u) for k(x, u) in the region (0 ≤ u ≤ cs).

    
s x kd x u s x s x

u

Cs

( , ) ( , ), ( , ) ( , )0 1 0 0
0

= + =
=
∑ (23)

[b-2] In the case of y being in the region (1 ≤ y ≤ cs), s(x,
0) can be calculated as the value added to the con-
version luminance value kd(x, y + cs) at position
(x, y + cs) to s(x, y − 1) at position (x, y − 1).

 
    

s x y s x y kd x y c

s x y s x y
s( , ) ( , ) ( , ),

( , ) ( , )

= − + +
+ =

1

1
(24)

[b-3] In the case of y being in the region (cs + 1 ≤ y ≤ H
− 1 − cs), s(x, 0) can be obtained by adding the
luminance value kd(x, y + cs) at position (x, y +
cs) to s(x, y − 1) at position (x, y − 1), and sub-
tracting the luminance value kd(x, y − (cs + 1)) at
(x, y − (cs + 1)) as shown in Eq. (25).

    

s x y s x y kd x y c

kd x y c s x y s x y
s

s

( , ) ( , ) ( , )

( , ( )), ( , ) ( , )

= − + +
− − + + =

1

1 1 (25)

[b-4] In the case of y being in the region (H − cs ≤ y ≤ H
− 1), the processing step is shown by Fig. 8 (b-4).

Then, s(x, 0) is obtained by subtracting the lumi-
nance value kd(x, y − (cs + 1)) at position (x, y −
(cs + 1)) to s(x, y − 1) at position (x, y − 1).

TABLE I. Ratio of Thinning Out of Surrounding Pixels for Each
Scale Size

c0 = 126 c1 = 30 c2 = 6

(a) Thinning mode of AMSR19 1/36 1/9 1
(b) NEW-AMSR 1/2 1/2 1/2
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s x y s x y kd x y c

s x y s x y
s( , ) ( , ) ( , ( )),

( , ) ( , )

= − − − +
+ =

1 1

1 (26)

The sum of luminance s(x, 0) at position (x, 0) in the
region (0 ≤ x ≤ W − 1) is first calculated. The total luminance
value Ak(0, 0) in the luminance of the surrounding filter
at position (0, 0) is then calculated using s(x, 0). Next, total
luminance Ak(x, y) at the remaining position (x, y) in the
surrounding filter (1 ≤ x ≤ W − 1, 0 ≤ y ≤ H − 1) can be
obtained by several addition and subtraction calculations.

Therefore, the number of calculations needed to
determine total luminance in the surrounding filter for
each pixel in the input image can be greatly reduced by
the serial processing indicated above.

Experimental Results
Efforts to improve color balance and processing speed

were made as described below.
A comparison of experimental results for AMSR, the

thinning mode of AMSR presented in a Ref. [19], and
NEW-AMSR as described in above was carried out. The
original image was taken with a DSC, and the
experimental conditions were the same as described
above. The rate of thinning out presented in Table I is
defined as the ratio of the number of pixels used to
calculate average luminance Ak(x, y, cs) to the number of
pixels within scale size cs. When calculating Ak(x, y, cs),
the number of object pixels decreases according to the
rate of thinning out and faster processing can be achieved.

Table I(a) shows the rate of thinning out applied in the
Ref. [19] and Table I(b) shows the rate of thinning out to
achieve the high speed processing as described above.

For the processing directed towards improved color
appearance, ThresCrCb = 223, CMax = 2.0, CMin = 1.0
and MaxK = 0.5 were used. For the processing directed
toward improved processing speed by simplification of
overall processing, dCt = 0.2, Kc = 128 and Ctc = 120
were used.

The experimental results are shown in Fig. 9. The
cropped images given in (a), (b), (c), and (d) show the
original image, the output image from AMSR, the
thinning mode of AMSR, and NEW-AMSR, respectively.
As shown in Fig. 9, (b), (c) and (d) have been improved
visually so that the detail in the dark area is clearer
than the original image in (a). Comparing (b) and (c), in
spite of the calculation of average luminance Ak(x, y, cs)
by applying a high rate of thinning out of the
surrounding pixels, there is visually no significant
difference in image quality.

However, the appearance of a difference in cyan color
caused by a slight color unbalance in the R, G and B
channels can be observed in the area within the red line
in the dark area of (b) and (c). On the contrary, such a
color unbalance cannot be observed in (d). Such a color
unbalance was not observed in any output image
processed by AMSR or the thinning mode of AMSR.
Regarding the improvement of color appearance, it was
confirmed that NEW-AMSR was more effective than
AMSR and the thinning mode of AMSR based on our
examination of a large number of images.

In accordance with the above results, it was concluded
that NEW-AMSR can enhance visibility in dark areas
while maintaining both color balance and saturation,
in comparison with conventional histogram
equalization, MSR as proposed by Jobson, and AMSR
proposed in the Ref. [19].

Next, we compared the processing time of AMSR, the
thinning mode of AMSR19 and the NEW-AMSR. Table II

shows the observed results. Here, the processing time
was measured by computer simulation using a PC-AT
personal computer with a Pentium 4 (2.0GHz) CPU, 768
MB of RAM and Windows XP.

As shown in Table II, the processing time for the
thinning mode of AMSR is about fifty times faster than
that of AMSR, while the processing time for NEW-AMSR
is about thirty times faster than that of the thinning
mode of AMSR. It is evident that the number of
processing steps for NEW-AMSR is smaller than that
for the thinning mode of AMSR. Moreover, this result
shows that the processing time of NEW-AMSR
represents a significant improvement over the much
slower performance of AMSR and conventional MSR.

From the above results, the NEW-AMSR proposed in
this paper can be achieved by combining a low ratio of
thinning out in the horizontal direction with serial
processing in the calculation of total luminance in the
surrounding filter.

Conclusions and Future Work
The human vision system almost effortlessly performs
the tasks of dynamic range compression and color con-
stancy. This is a very challenging issue for electronic
imaging systems because dynamic range is limited by
the CCD device characteristics of a DSC. In order to
improve dynamic range, Land, McCann, and Jobson
studied various techniques based on the Retinex theory.
A representative technique is Multi-scale Retinex
(MSR). This technique, however, raises issues concern-
ing color correction of images printed with a different
RGB density distribution. In this paper we have pro-
posed Adaptive Multi-scale Retinex (AMSR) to address
the issues associated with MSR. The AMSR technique
is characterized by linear computation and synthesis of
both the original image and the image processed by
MSR. With the simulation of printed DSC images, we
have shown that AMSR enhances visibility in dark ar-
eas while maintaining both color balance and satura-
tion. This compares very favorably with both
conventional histogram equalization and the MSR tech-
nique proposed by Jobson.13–16 AMSR suppresses both
the appearance of noise in dark areas and the decrease
of luminance in the highlight areas.

Moreover, we attempted to improve the level of
chromatic unbalance in dark areas, and to reduce AMSR
processing time. In order to improve the level of chromatic
unbalance, improvement of luminance in the input image
was carried out using AMSR and two color differences
were controlled by improved luminance without
enhancement of each R, G and B channel. To reduce
processing time, we proposed NEW-AMSR that combines
a low ratio of thinning out in the horizontal direction
with only serial processing in calculation of the average
within a surrounding filter. Simulation results showed
that a color unbalance in dark areas could be suppressed
more efficiently with NEW-AMSR. We also showed that
the processing speed of NEW-AMSR was about fifty times
faster than the thinning mode of AMSR and about one
thousand times faster than AMSR and MSR.

TABLE II. Comparison of Processing Time for Each Technique

Processing time (sec)

(b) AMSR technique 327.51
(c) Thinning mode of AMSR19 7.00
(d) NEW-AMSR 0.20
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Regarding future work, we will further investigate
AMSR high speed processing and the reduction of memory
capacity requirement. As another issue, it is said that
printed DSC color images are not generally consistent
with the visual color perceived by human eyes. This
phenomenon is due to the observation of a scene under
different illumination conditions (a color constancy
problem). A practical next step is to address this color
constancy issue for a variety of application purposes, and
we will be extending NEW-AMSR to include color
constancy under various illuminant conditions.    
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