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The high quality and resolution which is achievable
by modern printing and scanning devices enables the
application of digital watermarking techniques in
printed structures. This development gives new
opportunities for protection of security documents such
as IDs, drivers licences etc. Instead of employing
special optical devices or measurement systems,
authentication or identification can be performed on
the basis of a recording or scan of the document, i.e., a
digital picture. Features can be extracted and verified
from this picture by image processing techniques,
which are invisible to, or unrecognizable by the
observer. Applying such “covert image coding” in
security documents also has some advantages for the
producer:
• No special inks or printing technologies are needed.
• Embedding into an arbitrary (raster) design is pos-

sible as the visual appearance is not (or is hardly)
affected.

In this article, a coding method is developed that is
specially tailored to graphical applications. Using
general principles of spectral signal analysis, the method
is made, to some extent, resistant to the kind of
information loss occurring in practical processes.

Definitions
Encoding Method

A frequency coded signal is composed of two real
signals (time series, images etc.)

f(x) = a(x) + b(x), (1)

Introduction
As a consequence of considerable improvements and
common availability of digital graphical systems, the
authenticity, (copyright) ownership and integrity of digi-
tal data are of major concern. This is not only true for
image data, but also for video, sound, text, technical
drawings etc. Therefore protection of al this digital con-
tent is an important and rapidly growing field of re-
search. Many of the techniques which have been
developed in this field can be comprised by the collec-
tive term digital watermarking.1–6 A possible definition
is:6 “Digital watermarking is the practice of (impercep-
tibly) altering a work to embed a message about that
work.” Here: a work pertains to any kind of content (in
the graphical case an image) and the message contains
some annotation about (the owner, status, etc. of) the
content. In the graphical case it will mostly be a mark
of authenticity or an ID confirmation. Notice the simi-
larity with a “real” banknote watermark: there also the
watermark is thematically related to the printed image
and it should be checked (in this case visually) to dem-
onstrate that they correspond. There is a wide range of
conceivable applications, e.g.,
• Proof of ownership and copyright enforcement: of vast

importance for digital documents, ranging from art-
work to scientific papers, for example on the internet.

• Copy control: preventing content to be copied by
equipping copying devices with a watermark detector.

• Tracking: distribution of different copies to be able
to identify the source of piracy in a later stage.
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where a(x) is the original signal containing the “overt
information” and b(x) is the added signal containing
“hidden information,” which may depend on a(x). The
description is given in one dimension here, but can di-
rectly be extended to 2D signals. The signal b(x) should
be detectable but not disturbing. Following information
hiding terminology1–8 a(x) is the cover signal, f(x) is the
coded or marked signal and b(x) is the stego signal. Many
methods exist to hide information into signals (images)
using transform domain embedding. The general for-
malism9 is

f(x) = T −1CT a(x), (2)

where T is a signal transform and C represents the op-
eration that embeds the code.

In the present implementation, the following approach
is used: A signal c is constructed of which the Fourier
transform C(ω) is a real-valued signal, which is itself
regarded as a detectable “pattern.” Because C(ω) is real,
its inverse transform c(x) is even. Conversely, we de-
mand c(x) to be real, which makes C(ω) even. Then the
modulus of the Fourier transform of the original signal
is modulated by C(ω):
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where φ(ω) := ∠A(ω) (the phase) and µ is a real positive
constant and the symbol := denotes as asymmetric op-
erator. Note that the phase factor is undetermined when
A(ω) vanishes. Comparing with Eq. (1) we see that
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The Fourier transform of the stego signal b(x) = f(x) −
a(x) has modulus µ C(ω), whereas its phase is equal to
the phase of the Fourier transform of the original signal
a(x). In terms of the formalism of Eq. (2), the transform
T is the Fourier transform F and the code operation C is
adding µ C to the modulus of A.

Alternative Schemes
Sometimes, instead of Eq. (3), the “additive magnitude

modulation” (AMM), a “multiplicative modulation”
(MMM) is proposed10,11: |F(ω)| = |A(ω)|[1 + ν C(ω)]. In
MMM notation, we observe that B(ω) = ν C(ω)A(ω). This
means that b(x) = ν c(x) * a(x), i.e., the stego signal equals
the convolution of c(x), the inverse transform of the code
C(ω), with the cover signal a(x). Hence, for Fourier based
encoding, the operation performed by MMM can be
considered as a convolution filter f = h * a where the
impulse response is the possibly the very complicated
signal, h(x) = δ(x) + νc(x), which is independent of a(x).
This method may be vulnerable to deconvolution
techniques.

Similar reasoning can be applied to a second alterna-
tive proposed in literature, “exponential magnitude
modulation” (EMM). Here |F(ω)| = |A(ω)| exp[ν C(ω)].
Using the series expansion of the exponential function,
it can be seen that, for νC << 1, EMM is equivalent to
MMM. EMM also has an interpretation in the space
domain, using the the cepstrum, by definition9

        
�
a x A( ) log ( ).F⎯ →⎯ ω

This operation has special theoretical application in sig-
nal processing because it transforms a convolution into an
addition. For EMM, the cepstrum of f is

      
� �
f a c= + ν .

In the example below, and in the remainder of this
article, only the AMM case will be considered.

Example
The Security ID is an example document containing a
Full Spectrum (FS) code image. A page of it is shown
in Fig. 1. The background of the map of the Nether-
lands (blue in a color reproduction) carries the FS
structure.

The  cyan  pr int ing  phase  o f  the  four-co lor
separation, the gray value image Nederland-C, has
been used to embed the code. A 256 × 256 sub-image
thereof is the cover image, see Fig. 2 (left panel). Its
location in the document is demarcated by a square
frame in Fig. 1.

The code image is the 256 × 256 image Eye, see Fig. 2
(center panel). This image is already even in the DFT
sense. Using AMM, it has been embedded with strength
µ = 1/4, yielding the marked image, see Fig. 2 (right
panel). This value is based on the DFT notation with
“symmetric normalization” as in Ref. 13 for example. In
the graphic display, the optical notation is used, mean-
ing that the origin of the coordinate system is in the
center of the picture.

The marked CMYK image Nederland has been printed,
in various techniques, at 120 pixels/cm (approximately
305 dpi), which means that the actual size of the images
shown here is 21.3 × 21.3 mm.

Properties
Full Spectrum coding can be seen as a digital
watermarking method, possessing some useful math-
ematical properties with respect to the two basic char-
acteristics6, 12 for any such coding scheme:
• fidelity/transparency, the “imperceptibility” of the

code,
• invariance/robustness, the extent in which the code

survives alterations of its “carrier.”

Using only general properties of the Fourier transform
(FT), it will be shown that the (amplitude of the) “noise”

Figure 1. Security ID
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introduced by the FS coding, as represented by the
fluctuation of the stego signal, can be expressed in, and
hence controlled by, the input parameters, i.e., the
embedding strength and the code signal.  This
relationship follows from the direct correspondence
between the lowest statistical moments (the mean and
the variance) of the stego signal and the input.
Furthermore, the characteristic frequency of the stego
signal is closely related to the (scale of the) code signal.
The noise amplitude and frequency determine the
transparency of the code.

Besides these properties pertaining to the signal
values (gray or luminance levels for images), the theory
of Fourier transformation also provides expressions for
the influence on the FS code signal of “geometrical”
operations performed on the marked signal. It is an
advantage for a feature that is intended to be
automatically detectable, that the code turns out to be
invariant to the basic operations of shifting (translation)
and cropping (cutting), and that the influence of many
other operations is predictable from the theory. The
behavior of the code with respect to these operations
determines the (detection) robustness.

Statistical Properties of Stego Signal
It follows from the definition of the Fourier transform

that

    B b x dx b( ) ( ) : ,0 = =∫ (5)

the “average value” of the stego signal, using Eq. (4) this
equals µ C(0). Again, the symbol =: denotes an asymmet-
ric operator. Hence, if we choose the central value of the
code C(0) to be zero, which we will preferably do in order
not to affect the low frequencies in f(x), the added stego
signal has zero mean. Parseval’s relation14 gives
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Using Eqs. (4) and (5), we obtain an expression for the
“variance” or “energy” of the stego signal:
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For the special case that C(ω) is a binary signal with
finite support which does not include the origin, i.e.,
C(0) = 0, we get E = µ2S /(2π), where S is the measure of
the support of C(.), “the white area” for a b/w image.

The quantity E  can be considered a measure of the
“code strength”.

The general form of the stego signal follows from the
Fourier transform relationship B(ω) ⎯⎯←F b(x). Using Eq.
(4) and the properties of C(.), this can be written as
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It must be borne in mind that the description here in
terms of continuous, infinite extent and infinite range
signals is an idealization. In the practice of (digital)
signal processing, the range of values that can be
attained will be finite and discrete, typically       f x( )

�
 ∈ {0,

1,…,Q}, where     
�
x  denotes a discrete coordinate pair and

Q = 2k − 1. Hence the signal that is in fact digitally stored
is clipped and quantized: fd() = Q(f()), where
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Of course Fd, the DFT of fd, will differ somewhat from
F, the DFT of f.

It can be concluded that the amplitude of the stego
signal is only governed by the volume, or integral, of
the squared code image. Moreover, the shape of the code
image, i.e., the location of its nonzero values, will
determine the characteristic frequency of the stego
signal fluctuations. We can define the (mean square)
radial frequency ωc as
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where vector notation is used to express the validity in
2D. (Note that the mean square radius can be seen as
the “moment of inertia” of the code image).

Example
The stego image for the Security ID is shown in Fig. 3.
It has been calculated by subtracting the cover image

Figure 2. Left-to-right: Cover image (a); code image (C); and marked image (f).
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Fig. 2 (left) from the marked image, Fig. 2 (right). As b
has both positive and negative values, an offset of 128
has been added to each pixel value, to keep the gray
values in the range {0,…,255}.

The lower right part of the cover image is saturated.
In this white area only negative modulation is possible,
the positive values of the stego signal are clipped, which
causes many zeroes (pixels with gray value 128) in this
area. This is reflected by the large spike in the gray
value histogram, Fig. 4. The average gray value is
approximately 126, indicating that the mean of the
stego image is −2, slightly smaller than the expected
value 0, following from the code image. The standard
deviation is 23. The expected value can be calculated
from Eq. (7). For binary digital images this becomes
  E  = µQ  S  where S ∈ (0, 1) is the relative area of the
foreground (the ratio between the number of pixels
where C = Q = 255 and the total number of pixels). For
the code image of Fig. 2 (center), S ≈  0.216 and hence
  E  ≈  30. The error in the estimation of the mean and
the variance is a consequence of the digitization, Eq.
(9). Figure 5 shows the magnitude of the DFT of the
marked image (a contrast stretch was applied to enhance
visibility). The digitization effects can be clearly
discerned. Finally, Eq. (10) gives the characteristic
frequency of the stego signal generated by the code image
C. Expressed in cycles/pixel, it equals ωc /(2π) ≈  0.317;
using a print resolution of 120 pixels/cm (see the first
example above), this means that the actual mean square
frequency in Fig. 3 is approximately 38 pixels/cm.

Geometrical Properties
Assume that some digital recording f′ of the image f

is obtained. Because of the way (AMM) Full Spectrum
is built up, it should be possible to reconstruct the code
image by taking the modulus of the DFT of the input
image, I := |F′| and performing pattern recognition on
this “image.” However, the reconstruction will be
hampered by three causes:
• “Pollution” of I by the FT of the cover image. Since

the code extraction is required to be an oblivious (or
blind)6 procedure, subtraction of a is not an option.

• Quantization errors introduced by the digitization,
Eq. (9).

• Information loss due to D/A and A/D conversions, i.e.,
“process noise.”

Below, the effects of signal operations that can occur
in the reproduction and recording process will be
investigated from a theoretical point of view.

Shift Invariance
An advantage of the use of (Fourier based) magnitude

modulation as described here is the translation
invariance. Theoretically, the FT of a shifted image only
differs from that of the original image in phase.14 The
magnitude is the same:

      f x x e Fi x( ) ( ).− ⎯ →⎯ −
0

0F ω ω (11)

This means that in the reconstructed “image” I, no
searching is necessary. The image, although noisy, will
be at the same position.

Crop Robustness
A quite remarkable property of FS coding is that it

exhibits, to some extent, cropping invariance. Due to
the properties of the Fourier transform, even a small
part of the FS image contains a complete, although
blurred, version of the code image. Cropping can be
modeled as multiplication of the signal by a window
pκ(x), which is unity for |x| ≤ κ and zero otherwise. The
modulation property of the FT gives14

      
f x p x F( ) ( )

sin
* ( ),κ

κω
πω

ωF⎯ →⎯ (12)

where the convolution kernel on the RHS “tends to δ(ω)”
for κ → ∞ . Although detail of the code image will be lost
due to this filtering, the global shape is contained in the

Figure 3. Stego image, i.e., stego signal (b) with +128 offset
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Figure 4. Gray value histogram of the stego image

Figure 5. Modulus of the DFT of the marked image
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image fragment. In information hiding terms, the code
is robust to cropping. If confronted with limited data ca-
pacity or computation speed, one could better scan a part
of the FS image at high resolution (crop) than the whole
image at low resolution (interpolate). The reason is that
the FT of the image fragment will yield a blurred code
image, whereas the interpolated image will reveal only
the central part of the code image.

Scaling Property
Scale invariance is usually not an important issue in

document processing. The size of a coded image is
generally known in advance, hence the size of the
recorded image f′ in pixels only depends on the scan
resolution, say Rs. The magnification factor is Rs/Ro, where
Ro is the resolution with which the image is printed.

An FS code image, however, exists in the frequency
domain. This means that scale in the code image is
related to frequency in the marked image and vice
versa. A dot at (relative) position ξ in the code image
results in a component with (normalized) frequency ξ
:= ω/(2π) in the FS image. When the FS image is printed
with resolution Ro, this component will be represented
by a spatial frequency ξRo, a constant. After scanning
with resolution Rs, satisfying the Nyquist criterion, i.e.,
Rs ≥ 2|ξ|Ro, this component will be observed as having
a normalized frequency ξR o/R s.  Hence the
“magnification factor” is inverted with respect to
spatial coding, which is intuitively understandable.
Formally the above follows from the reciprocal scaling
property of the FT14

      f x F( ) ( / ) / ,λ ω λ λF⎯ →⎯ (13)

where λ is the ratio of the resolutions here. In practice
one works with N-point DFTs (where N is usually but
not necessarily a power of 2) and the scaling formula
becomes
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where p is the discrete frequency ⎣Nξ ⎦ as used in the
DFT formalism and L = N/R is the physical size of the
recorded signal. It follows that the pixel position of a
point in the code image does not change if we scan the
same area with another resolution, i.e., change N and
R by the same factor.

Example
A scan of the Security ID will serve as a qualitative
example for the invariance properties. The document
has been recorded on a flatbed scanner with 305 dpi,
equal to the original printing resolution Ro. The red
channel of the RGB image is taken, as this contains
the information of the cyan color phase; see the first
example above. Shift invariance can be illustrated by
taking an arbitrary N × N (N = 256) sub-image, see
Fig. 6 (left panel), with physical size 21.3 × 21.3 mm.

Its DFT magnitude, shown in Fig. 6 (right panel),
clearly resembles the DFT magnitude of the original
marked image (Fig. 5). (A numerical way to compare
these to the original code image of Fig. 2 will be treated
in the following sections.)

Scanning the document with a resolution different
from Ro, for example Rs = 350 dpi, and considering again
an N × N sub-image as in Fig. 7 (left panel), produces
an example of scaling. As N is fixed, the image has also
been cropped by a factor Ro /Rs with respect to the
original size.

It follows from Eq. (14) that the associated code
image will scale (in this case shrink) by this same
factor. This can be verified from the right panel of Fig.
7, which shows the DFT magnitude.

After further cropping by a factor of two in both
dimensions, resulting in the 128 × 128 sub-image shown
in Fig. 8 (left), the appearance of the code image is still
reasonably preserved; see the DFT on the right.

Influence of Image Operations on Magnitude
Spectrum

We have seen that, theoretically, an FS code image is
shift and, more or less, crop invariant. Furthermore,
linear scaling (resampling) of the image results in
scaling of the FT and hence of the code image by the
inverse factor. To address the last basic operation in
image processing, rotation, we have to drop the
description in 1D and consider 2D functions. If g(x, y) is
the same image as f(x, y), but rotated by an angle α and
scaled by a positive constant factor λ, g(x, y) = f(λ(x cos
α + y sin α), λ(−x sin α + y cos α)), then the Fourier
transforms F(u, v) and G(u, v) are related by15

G(u, v) =

F((u cos α + v sin α)/λ, (−u sin α + v cos α)/λ)/|λ|2.(15)

In most cases, when scanning the image to be detected,
these operations do not need to be considered because

Figure 6. Sub-image of 305 dpi scan (red channel) of the Security ID (left) and its DFT modulus (right).
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the orientation of the document and the resolution are
fixed, i.e., there is no rotation and the scaling factor
follows from the ratio of Rs and Ro, see Eq. (14). It is
possible, however, that these parameters are not known,
for example when inspecting a document positioned
obliquely with respect to the image recording device or
when recording an image with unknown magnification.
Many articles have been written on the subject of
recognition with invariance to one or more of these (and
many other) operations. In practice some of these
operations will depend on each other: a trivial example
is that translation and scaling will induce cropping when
the recorded area remains unchanged. For the sake of
simplicity, however, they are treated separately here.
In practice, image operations or alterations will occur
frequently, whether deliberately or inadvertently. Table
I lists the theoretical influence of commonly used image
operations on the modulus of the Fourier transform of
the image f. Assuming the image f contains a Full
Spectrum code image, this determines also the influence
on this code image C. A question mark in the second
column of the table indicates that no easy expression
for this influence can be found.

The following notation is used: As before, f is the
original image and F its Fourier transform,     f F→F  and g
is the image after undergoing the operation. The
argument of f, “time” or “position”, is regarded as a 1D
variable x and, equivalently, the argument of F, the
circular frequency ω. Only when it is relevant, vector
notation       

� �
x, ω  is used, to denote higher dimensional

variables. In 2D, the components are denoted by (x, y),
(u, v) respectively. Mathematically, f can be considered
as a map from the set of pixel positions P to the set of
(gray) values Q, so f : P → Q. Roughly, the common image
operations can be categorized as:
• geometrical operation: a map v: P → P. It involves

only the position of the pixels. Because y = v(x), g(y)
is only well-determined if v is invertible: g(y) = f(x) =
f(v–1(y)). For an actual pixel image, values are only
available for a discrete set of positions. In most cases
interpolation will be necessary to obtain g(y) from the
values of f in the neighborhood of x = v–1(y).

• histogram or gray value operation: a map w: Q → Q.
It involves only the pixel values. The function w is
not necessarily invertible.

General operations are maps on the whole set of pixel
values “QP”.

Detection Method
Full Spectrum coding aims at automatic detection, i.e.,
machine readability. This means that the reconstructed
image I = |F′| should be compared to the reference im-
age (the code image to be found) in a numerical way,
without human intervention (visual judgment). Usually
such a comparison is carried out by evaluating a match
score, a statistic which is large if the signals are “close”
and small if they are “distinct.” If, in a specific detec-
tion case, the score exceeds a certain value, the thresh-
old, the signals are assumed to match.

Figure 7. Sub-image of 350 dpi scan (red channel) of the Security ID (left) and its DFT modulus (right).

Figure 8. 128 × 128 pixel sub-image of 350 dpi scan (left) and its DFT modulus (right).
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Table I. Influence of Image Operations on FS Code Image

The invariance properties of the FS code considered
above are very well suited for a machine readable
feature, as, at least theoretically, the operations for
which I is invariant should have no influence on the
match score. For other operations, however, the changes
made to I have to be found and compensated for before

the matching can take place. For geometrical operations,
this process is called registration.

Registration
To enable comparison of the reconstructed image I := |F′|

with the reference image, the problem of registration has



458  Journal of Imaging Science and Technology®           Oltmans

to be solved first. Here it is assumed that the possible
operations are limited to scaling and the basic rigid ones of
rotation, translation, and possibly, cropping. As
explained above, registration is required only with
respect to the first two operations, because, for FS
coding, the problems of translation and cropping are
more or less solved implicitly by the coding method. Of
course this is only true in practice for a limited range
of values: large shifts will take the coded image outside
the field of view of the recording device and extreme
small portions of the image will not contain enough
information to reconstruct the code image.

Several approaches are conceivable. It is possible to
use visible marking symbols in the document and
perform pattern recognition on the recorded image to
find their mutual position/orientation. Here, however,
we propose to start from the FS code itself and carry
out the registration in the frequency domain.

Log-Polar form of Spectrum
There exists a well-known coordinate transformation

which is rotation and scale invariant in the sense that
a rotation or scaling of an image f causes a translation
of the transformed image. Consider the expression for
the FT of a scaled and rotated image Eq. (15). In log-
polar coordinates,16

FLP (τ, ϕ) = F(eτ cos ϕ, eτ sin ϕ), (16)

scaling of the image (and thus its FT) transforms into a
linear shift of FLP along the τ-axis and rotation into a
circular shift, i.e., modulo 2π, along the ϕ-direction:

GLP(τ, ϕ) ∝ FLP (τ − log λ, ϕ − α). (17)

The polar angle ϕ naturally varies between 0 and 2π.
Because of the conjugate symmetry, however FLP(τ, ϕ +
π) = F(−u,−v) = F*(u, v) = F*LP(τ, ϕ), so |FLP| is π-periodic
in ϕ, which means that we only have to consider one
half of the frequency plane.

An elegant notation is obtained by regarding the
frequency vector  as a complex number w := u + iv. Then
the log-polar transformation is equivalent to taking the
complex logarithm χ := τ + iϕ = log w. Defining    ̃F (u + iv)
:= F(u, v), Eq. (16) can be written as     ̃FLP(χ) =    ̃F (eχ). In
this way, rotation and scaling is just a multiplication
by λeiα in the complex w plane and addition of log λ + iα
(modulo 2πi) in the complex χ plane (strip).

Sometimes it is proposed6,12 to convert this property
into an actual invariance by taking a second FT of the
log-polar image. As for the translation invariance of the
|F|, the translation of the |FLP| caused by the rotation
and scaling will only affect the phase of this second FT.
The magnitude should be invariant. A transformation
that combines the coordinate and Fourier transform is
the so-called Fourier-Mellin Transform, see Ref. 17, for
example. The combined invariance of a code with re-
spect to the three basic operations is denoted as RST
invariance.15,17

Register Mark
The log-polar transformation provides a method of

determining the rotation and scaling undergone by an
FS image. Because these operations are transformed
into simple translations, the values λ and α can
theoretically be found by linear cross-correlation.18,19

Imagine that a “marking signal” WLP := Z(τ, ϕ) is
incorporated into the log-polar transformed code image
C. We do not exactly specify the functional shape of Z

yet, but make it understood that it can “easily” be located
by correlation. For example, a separable pattern can be
implemented by taking Z(τ, ϕ) = νζ1(τ)ζ2(ϕ) where ν is
some constant and the functions ζj(.) are, possibly
identical, 1D “perfect correlation signals”: ζ(x) ⊗ ζ(x) :=
ζ(x) *ζ*(−x) → δ(x). After the reverse transformation
according to Eq. (16), the mark appears as a signal W(u,
v), located in an preferably “empty” part of both C(u, v)
and A(u, v), the spectrum of a (meaning that the reverse
transformed mark W is disjoint with F). The embedding
of the mark can be done by addition.

Consequently, the mark should be present, possibly
in rotated and scaled form, in the magnitude spectrum
of the recorded image I = |F′(u, v)|. It can be found by
matched filtering.9 The cross-correlation of ILP with Z

      

Ψ( , ) : ( , ) ( , )

' ( )
(log , )

τ ϕ ψ τ ψ ϕ ψ

ω
ω τ ω ϕ

ω
ω

π
= − −

=
− ∠ −

−∞

∞
∫∫

∫

0

2

I v Z v dv d

F
Z

d

LP

�
� �

�
� (18)

should exhibit a peak at the relative positition (log λ,
α), see Eq. (17). The second expression in this equation
allows direct computation of Ψ(τ, ϕ) from the original
DFT of f′ (without interpolation). The integral is over a
semiplane, excluding the origin.

Example
The Security ID contains a “rudimentary” example of a
register mark, in the shape of the two (4 by symmetry)
small concentric annular segments, see Fig. 2 (center).
These segments become rectangles under the log-polar
transformation.

To illustrate the effect of rotation and scaling, the
Security ID was placed obliquely (with random
orientation) on the glass platen of a flatbed scanner and
scanned with a resolution Rs = 600 dpi. The result is
shown in Fig. 9.

A 512 × 512 sub-image thereof is analyzed, (see the
square frame in Fig. 9), and the red channel of this sub-
image is shown in Fig. 10(a). Its DFT magnitude, shown
in Fig. 10(b), is clearly rotated and scaled compared to
the digital original, Fig. 5. Figure 10(c) shows the log-
polar form of the DFT magnitude. In this picture, τ runs
from left to right. At the right border of the picture τ :=
log(N/2), which corresponds to the maximal “physical”
spatial frequency R/2, the axis stretches over four
octaves (frequency doubling intervals) here, so at the
left border τ = log(N/2) − 4 log 2, corresponding to a
frequency R/32. The polar angle ϕ runs from top (ϕ = 0)
to bottom (ϕ = π), where the positive direction is
clockwise. The diagram was discretized to 256 × 256
pixels (a rather arbitrary choice), such that the “units”
are 256/4 = 64 pixels/octave in the τ-direction and 256/
180 ≈  1.42 pixels/degree in the ϕ-direction. Figure 10(d)
shows the log-polar form of the original code image Eye
of Fig. 2 (center) and Fig. 10(e) that of the DFT
magnitude of the marked image, Fig. 5; these two are
geometrically identical.

In the diagram of the 600 dpi scan, Fig. 10(c), the
rectangular “marks”, although deteriorated by various
sources of information loss, are still discernible, shifted
approximately 62 pixels = 0.97 octaves to the left,
compared to the original. This corresponds to a scaling
factor λ ≈  2−0.97 ≈  0.51 ≈  Ro/Rs. The vertical shift (which
is cyclic due to the π-periodicity of ϕ) is approximately
31 pixels upwards corresponding to a rotation α ≈ −22°,
i.e., counter-clockwise.
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Transformation Invariants
The register mark is a very general tool for

registration. By determining its position in the log-polar
plane, it is possible to match I = |F′| to the correct
reference image, which is a rotated and scaled version
of the code image. Other approaches to rotation and
scaling independent recognition are feasible. For
example, a code image can be used which is itself
rotation invariant. In this case only the scaling problem
has to be dealt with. However, instead of sacrificing the
generality of the code image, it is also possible to extract
invariant feature signals from the code image C and
compare these to the corresponding signals computed
from I. For example the circular profile of a signal I is
defined as

      
I w

w
I ds I we dc

w

( ): ( ) ( )= = ∫∫
=

1
2

1
0π

ω
π

ϕ
π

ϕ
ω

� �
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(using the point symmetry in the origin). Here    
�
eϕ  = (cos

ϕ, sin ϕ), the unit vector in the direction ϕ. Clearly

    I wc ( )  does not change if f (and hence I) is rotated. Scal-
ing of f causes scaling of I and hence     I wc ( )  by the in-
verse factor. This scaling can be transformed into a
translation by taking τ = log w, as before. Similarly,
we can define the radial profile

      
I I we dwr ( ): ( ) .ϕ

ω ϕ= ∞
∫

0

�
(20)

Here the lower integration limit is ω0 rather than 0 to
eliminate the influence of the cover image, this will be
explained in the next section. Due to the symmetry, the
signal  is π-periodic. Rotation of f by α causes a (circular)
shift α in     Ir ( )ϕ . Scaling theoretically does not change

  Ir ( )ϕ . Observe that the signals  and  are just the
projections along the coordinate axes of the (log-)polar
form of I.

Matching
The Normalized Inner Product (NIP)

To verify if an input image f′ contains the FS code
image C, we have to find the “correspondence” between

its Fourier magnitude |F′| and C. Here it is assumed
that C has already been scaled (and possibly rotated) to
the proper scanning resolution (orientation). In the case
that it differs from the “original” code image, it is better
to refer to C as the reference image. A possible way to
assess such a correspondence is (linear) correlation.
Because of the shift invariance, however, we only have
to consider the zero lag cross correlation which can be
expressed as a normalized inner product

    

NIP =
( )

( ) ( )
F C

F F C C

' ,

' , ' ,
. (21)

The inner product is defined as

    
( ( ), ( )) : ( ) ( ) ,G H G H dω ω ω ω ω= ∫ (22)

where the integral is replaced by a normalized sum if
the signals are discrete. Because the signals are real in
this case, we can also use the “complex inner product
notation”

    
G H G H d G H( ), ( ) : ( ) * ( ) ( ( ), * ( )).ω ω ω ω ω ω ω= =∫ (23)

Confusion can only arise when complex signals are
involved. Note that (|F′|,|F′|) = ∫|F′(ω)|2 dω = 〈F′,
F′〉, but (|F′|,C) = ∫|F′(ω)|C(ω) dω = 〈|F′|,C〉 ≠ 〈F′,C〉.
The “auto inner product” 〈G,G〉 is sometimes denoted
as ||G||2, the (Euclidean) norm of G. In the definition
of Eq. (21), ||C|| is a constant for a given code image.
The quantity that has to be calculated for each input
image is SIM := ||C|| × NIP = (|F ′|,C)/||F ′||, the
similarity, see Ref. 10 for example. Computation
efficiency can be gained by utilizing the symmetry of
the signals. The NIP equals unity if and only if |F′| ∝
C. Multiplication of the signals by a constant does not
affect the value.

Usually, in the definition of correlation, the signals
entering the inner product are first shifted to zero mean,
by subtracting the average:     f̂  := f −   f  This is also a
good idea for matching, because, if this were not done,
matching errors, i.e., deviations of |F′|from a constant
times C, on the foreground (the part of the code image
where C > 0) are “penalized,” whereas errors on the
background (C = 0) are not. The subtraction can be
performed by replacing C in Eq. (21) by     Ĉ  = C −   C  and
likewise for |F′|:

Figure 9. 600 dpi scan of the Security ID, skewed.

Figure 10. Comparison of log-polar magnitude spectra; see
text.

(a) (b) (c) (d)

(e)
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The problem with this technique is that the central
peak in the spectrum of f′, which is caused by the cover
image, is very strong. As a consequence, a low value of
the inner product is obtained even if the similarity is
“optically” good. To solve this, the input can be high-
pass filtered before computing the correlation, this
amounts to replacing F′(ω) in Eq. (24) by

Fh′(ω) := [1 − H(ω)]F′(ω), (25)

where H(ω) is the frequency domain representation of a
low-pass filter. The filtering can be done already in the
pixel domain by taking f′h(x) = (δ(x) − h(x)) * f′(x). In most
cases a simple cut-off window will be used, i.e., H(ω) = 1
for |ω|≤ ω0 and 0 otherwise. It can be advantageous,
however, to use another kind of filter. If, for example, a
Gaussian H(ω) := e–σ2ω2/2 is chosen, the low-pass filter im-
pulse response is also Gaussian, h(x) = e–x2/(2σ2)/  2π σ , en-
abling simple implementation (see Table I).

The standard deviation σ is inversely proportional to
the filter bandwidth. It can be calculated that for the
equal-pass situation, i.e., fixed       

H d( ) ,
� �
ω ω∫  the cut-off

frequency ω0 for the (spherical) uniform filter in d
dimensions and the standard deviation σ are related by
ω0σ = [Γ(d/2 + 1)]1/d. This parameter should be chosen
such that the central peak is suppressed while the code
image “survives.” If F′(ω) is replaced by F′h(ω) in Eq. (24),
we get a match value NIP(.) that depends on σ (or ω0). It
is expected that this optimizes for a good choice of the
filter parameter.

Numerical Considerations
Consider Eq. (21) again. As pointed out above,

although the code image is clearly recognizable in I =
|F′|, the value of the inner product is mainly influenced
by the cover image a. To see this, let us calculate this
value in the ideal case |F′| = |A| + |B|, where A is an
unperturbed but unknown cover image and |B| = µ C.
Substituting into Eq. (21), we obtain
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which becomes unity when A ≡ 0. Introducing
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we can express in dimensionless quantities:

  
NIP = +

+ +
1

1 2

γδ
γ γ δ( )

. (28)

The parameter γ2 is the ratio between the cover image
and the stego image “energy”, δ is just the NIP of |A|
with C; it can be interpreted as the “relative spectral
mixing” between cover and code image. Usually δ << 1
by choice of C. Hence we can approximate the RHS of
Eq. (28) by the first terms of its series expansion
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Generally γ cannot be made arbitrarily small without
influencing the visibility of b. With the notation of Eq.
(23), and using Eqs. (6) and (7), we have
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A similar calculation can be made for the zero mean
variables as in Eq. (24), yielding again Eq. (28) with γ, δ
replaced by   ̂ , ˆγ δ , defined analoguous to Eq. (27) in terms
of     Â  and     Ĉ . In this case, however, the correspondence
to the pixel domain quantities is less clear. The desired
effect of the filtering of Eq. (25) will be a strong decrease
of γ. The value of γδ will not be affected very much.

Fourier Transform Duality
In the calculation of γ in Eq. (30), Parseval’s relation,

Eq. (6) was used to express (auto) inner products of
frequency domain variables in terms of space (“pixel”)
domain variables. This is also possible for cross inner
products by using the general form of Parseval’s
relation20,21

    A B a bd, , .= ( )2π (31)

Here a, b are functions of a d-dimensional variable with
a   →

F A, b   →
F B. For a = b and d = 1, Eq. (31) reduces to

Eq. (6). For example, the mixing parameter can be
written as δ = (ψa, c)/    a a c c, ,( )( )  where, by definition,
ψa  →

F |A| and c is the inverse FT of the code image
(c   →

F C) as before.
In the same way, Eq. (31) can be used to write the

general formula for the NIP, Eq. (21) as
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In this expression ψf′ (x)  →
F  I is the only signal that cannot

be derived directly from the pixel image. The formula for
the inverse FT gives ψf′(x) = ∫|F′(ω)|eiωx dω/(2π). If |F′| in
the integrand were replaced by its square, the well-known
identity20 that the squared modulus of the FT, sometimes
called the energy spectrum of the signal, equals the FT of
the autocovariance function; ψf′ f′(x) := ∫f′*(y)f′(y + x) dy
can be invoked to write the NIP in terms of known pixel
domain signals. (Referring to this analogy, ψf′(x) could be
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called the rooted autocovariance function). For a binary
code image, C2 ∝ C and thus:
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Although it is an interesting result that all factors in
the match score have a “pixel domain counterpart,” i.e.,
can in principle be computed without explicitly
evaluating the FFT, we have found no straightforward
application of this identity yet. The reason for this is
that matching I2 to C2, instead of I to C, gives poor results
in practice due to the process noise.

Example
The scanned image, Fig. 6 (left), which was used before
to illustrate properties of FS coding, serves as a
numerical example for matching. The size of the

Figure 11. DFT modulus of 305 dpi scan, filtered.

recorded image f′(x,y) is 256 × 256 pixels. No rescaling
of the code image is necessary, because Ns = No and Rs =
Ro, see Eq. (14). Hence, the image Eye from Fig. 2 is the
reference image C(p, q). (The magnitude of) F′(p,q), the
DFT of f′(x,y), is shown in Fig. 6 (right). In Table II, we
list the values of the means and the discrete inner
products (G,H):=

    

1
2 0

1

0

1

N p

N

q

N

=
−

=
−∑ ∑ G(p,q)H(p,q). The normal-

ization by N2 is convenient, because it avoids the values
becoming awkwardly big and, with this definition,   G   =
(G, 1), so we can use Eq. (24), rather than calculating
with the zero-mean variables.

A uniform (circular) high-pass filter was applied in
the frequency domain. The cut-off radius r0 = Nω0/2π =
20 was chosen by inspection of C and |F′|. The filtered
DFT modulus is shown in Fig. 11. The “corresponding”
Gaussian filter has standard deviation σ =  2 /ω0 ≈  2.9.
We have applied a filter with σ = 3 in the pixel domain.
The results are very similar to those with the uniform
filter. The NIP has a very low value for the plain image.
As mentioned, this is due to the huge central peak in
|F′|. We observe that the filtering has only a small effect
on the cross-product, while (  ′ ′Fn Fn, ) is much smaller than

Figure 12. Graph of NIP(r0) for (a) Security ID, sub-image of the digital original; (b) scan of the Security ID,
“clean” part; (c) scan of the Security ID, “overprinted” part; (d) scan of a document containing the cover image of the
Security ID, without FS coding; (e) Gaussian noise image, computer generated. On the left, the corresponding sub-
image and its DFT (filtered with r0 = 20) is shown for each case.

TABLE II. Inner Products for 305 dpi Scan

Inner product “Plain” Filtered Uniform Filtered Gaussian
r0 = 20 σ = 3

′F 6.644 5.805 5.807

  C 55.028 same same
(|F′|C) 807.317 807.317 801.063
(|F′| |F′|) 24733.368 80.528 79.428
(C,C) 13311.728 same same
NIP 0.0445 0.7797 0.7790
NIP 0.0277 0.7030 0.7023
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(|F′|, |F′|). The value of NIP is somewhat smaller than
the value obtained without incorporating the zero mean
shift. It is expected, however, that the value is lower for
unmarked images. As an illustration, in Fig. 12 a graph
is shown of NIP as a function of the cut-off radius r0 of
the uniform circular filter for several 305 dpi images.

Finally we will analyze the original digital signal, to
illustrate the fact that, even in the noise-free case, no
perfect matching can be achieved because of the
quantization in the computation of the FS signal and
the spectral mixing of the cover and the stego-signal.
The values of the means and the discrete inner products
for Fig. 2 are listed in Table III.

Here A is the DFT of the cover image a. The subscript
i denotes the “ideal” case |Fi| = |A| + µC, (see Eqs.
(26) through (28)), which differs from the “digital” |F|;
see the remark above following Eq. (9). So (|Fi|,C) =
(|A|,C) + µ(C,C), and (|Fi| ,|Fi|) = (|A|,|A|) +
2µ(|A|,C) + µ2(C,C). Both computed values are larger
than the actual values.

Conclusions
FS coding embodies a useful method of providing a digi-
tal image with a code, in such a way that the added
information is meaningless or even imperceptible to the
common observer.

The cover image can be any gray value image with
sufficient modulation, i.e., images containing large even
areas are not useful. In principle, the code may contain
the full information of a gray value image at the size of
one half of the cover image, due to the required
symmetry. In practice, some restrictions will be imposed
on the code image to obtain better properties for the
marked image. For the purpose of document
identification, it is expected that code images will be
used that are relatively simple to produce and recognize.
The code images in the examples considered until now
are binary and have a global, coarse shape, i.e., do not
contain small details. However, application of actual
halftone pictures is also conceivable. Some aspects of
the influence of the code image on the properties of the
marked image have been analyzed here by signal
processing and statistical techniques.

FS coding has some properties that are very useful
for document processing applications. Extraction of the
code image is supported by its invariance to shifting and
cropping and its predictable behavior with respect to
other common practical operations such as contrast

stretching, resampling/(re)scaling and rotation. These
invariances indicate a strong analogy to holography. An
FS coded image can therefore be considered as a kind of
“graphical hologram.” Ways to perform the detection in
the presence of these “disturbances” have been proposed
here. In addition, experiments have shown that the code
image is able to survive various graphical transfer
processes, such as halftone screening, printing and
digitizing, etc.

On the other hand, the effects of other practical
processes such as
• digital transformations, e.g. compression, embed-

ding of additional watermarks
• printing, writing etc. on the marked areas
• soiling, damaging of the substrate, wear and tear etc.

may be insurmountable in the sense that they can af-
fect the code image to the extent of its becoming unrec-
ognizable.

In cases where these processes are likely to occur
special care has to be taken to enable recoverability of
the code.

Various applications in security documents are
currently the subject of study. Combination of FS with
other types of frequency coding techniques22–25 can
produce structures with wide applicability in document
protection and copyright enforcement. For example,
modern variable printing technology offers the
possibility to embed a different code in each document,
which opens opportunities for owner identification or
tracing.

Moreover, machine authentication is enabled by the
recent technological progress of document scanning and
sorting systems. Although the detection examples in this
article have been produced using an ordinary office
(flatbed) scanner, high speed inspection platforms are
now capable of recording documents in color , with
comparable resolution and quality.    
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