JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY® « Volume 49, Number 4, July/August 2005

Organizing Spectral Image Database Using Self-Organizing Maps

Oili Kohonen and Timo Jaaskelainen
Department of Physics, University of Joensuu, Joensuu, FINLAND

Markku Hauta-Kasari, Jussi Parkkinen4
Department of Computer Science, University of Joensuu, Joensuu, FINLAND

Kanae Miyazawa

Department of Information and Computer Sciences, Toyohashi University of Technology, Toyohashi, JAPAN

Techniques for searching images from a spectral image database and calculating the distances between spectral images using
different distance measures are proposed and the importance of the normalization that is based on the human visual sensitivity
function is examined. The searching techniques are based on the use of one-and two-dimensional Self-Organizing Map (SOM). In
the case of one-dimensional SOM, the Best Matching Unit (BMU) histogram is created for every spectral image of a database,
and images are ordered according to the histogram dissimilarity. Two-dimensional SOM is trained by using spectral data and
BMU-histograms as a training data and the distance between spectral images is defined based on the histogram dissimilarity
and image locations on the map, respectively. The proposed techniques are useful in image search and the order of the database
is different for spectral images and for spectral images weighted by human visual sensitivity function. The order of the database
is also highly dependent on the used distance measure. The results using a real spectral image database are given.
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Introduction
Spectral imaging has faced growing interest during the
last few years. Especially the development of computer-
based multimedia systems has created a real need to
reproduce color precisely under different illuminations.
Even though metameric imaging is a cheap and practi-
cal way to achieve a color match for a certain illumina-
tion, spectral imaging is needed to achieve a color match
for all observers across the changes in illumination.

High data volume is a significant disadvantage of
spectral imaging. In metameric imaging only three chan-
nels are needed, but in spectral imaging the number of
channels used varies from four to several hundreds, de-
pending on needed spectral resolution. When the spec-
tral range is from 400 nm to 700 nm, typical numbers of
channels are 31 and 61.

Image retrieval from conventional image databases
has been actively under research since the early 1990’s.!
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Many efficient techniques such as PicSOM,?? QBIC,*
CANDID,?¢ CBIR,”® NETRA,° Photobook,’* COMPASS!!
and MARS' have been developed for RGB image data-
bases. At the moment only a few spectral image data-
bases are publicly available, but the number and size of
them are expected to increase in the future due to the
rapid development of spectral imaging systems.'® For
example Munsell Color Science Laboratory provides a
spectral image database that is called Lipp-mann2000%,
and also the University of Joensuu'® has started to put
out some spectral images for research purposes. In con-
sequence of the high data volume of spectral images,
fast methods for searching images in the spectral im-
age databases will be needed.

A searching technique in a spectral image database
using one-dimensional Self-Organizing Map (SOM) was
originally proposed by Hauta-Kasari et al. in Ref. 13.
There a Best-Matching Unit (BMU) histogram was de-
fined, and a query from a database was realized accord-
ing to the BMU-histogram dissimilarity that was calcu-
lated using Euclidean distance as a distance measure.
In our previous study?® the size of the database and the
number of similarity measures were increased. In addi-
tion, the idea of the human visual sensitivity function
based normalization and the use of a BMU-histogram-
trained two-dimensional self-organizing map (SOM)
were proposed. The use of the human visual sensitivity
function arose from the fact that the results of data-
base searches are evaluated by human beings watching
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Figure 1. Neighborhoods of the centermost unit: hexago-
nal lattice on the left, rectangular on the right.?¢

the ordered outputs. In this study the importance of the
proposed normalization is examined more carefully, and
two new similarity measures are introduced.

Principles of SOM

In this study the spectral images are represented by his-
tograms which are used as feature vectors in the proposed
spectral database organizing method. For histogram gen-
eration, the order of the pixel values must be known. For
grayscale images, there exists a certain intensity-based
order for the gray levels, i.e., for pixels with scalar value.
The situation is different when we deal with spectral im-
ages, where the pixel values are color spectra, i.e., vec-
tors. There is no natural ordering for the color spectra.
However, the use of self-organizing maps enables us to
gain an order for multi-dimensional data. In Ref. 17 SOMs
have already been successfully used for ordering color spec-
tra. In this study the same method as in Ref. 17 was used
for histogram generation.

The Self-Organizing Map'® algorithm is an unsuper-
vised learning algorithm that defines a mapping from a
high-dimensional input data space into a lower-dimen-
sional space. Inputs that are located close to each other
in a high-dimensional space are also located near to each
other in a new, lower-dimensional space. SOM consists
of arranged units (or neurons) which are represented
by weight vectors. It is worth noticing that the dimen-
sion of input data vectors and the dimension of weight
vectors are the same. The units of the map are connected
to adjacent units by a neighborhood relation, which dic-
tates the topology of the map. The hexagonal and rect-
angular lattice structures with 0—, 1- and 2-neighbor-
hoods are shown in Fig. 1.

At each training step one input data vector, x, is cho-
sen from the training data set. The best matching unit
(BMU) is defined as follows:

llx - weypll = minllx — w)ll, (1)

in which w; and wgy; indicate the weight vector of ith
unit and the best matching unit, respectively. In a train-
ing phase, Euclidean distance is a distance measure
typically used. The unit which produces the smallest
distance is called a best matching unit for an input data
vector x. After finding the BMU, the weight vectors are
updated using the following equation:

wl.(H1):{wi@)w(t)[x(t)—wi(t)], e Npull)

w;(t), otherwise

in which ¢ denotes time. Nyy;(¢) is a decreasing neigh-
borhood function around the BMU and o(#) is a decreas-
ing learning rate, for which 0 < a(¢) < 1 holds.**?° The
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iterative training of SOM is described below in an algo-
rithmic form.

Algorithm 1
Begin
Initialize the SOM
for i = 1 to number of epochs
take input vector xrandomly from the
training data
find the BMU, wgyy, for x by using the
Eq. (1)
update the weight vectors, w;, of the map by
using the Eq. (2)
decrease the learning rate o(t) and neigh-
borhood function N(¢)
end
End

The SOM can be considered as a b X ¢ X a matrix, in
which b and ¢ correspond to the spatial dimensions and
a is a dimension of input data. In the case of a one-di-
mensional SOM b =1 and ¢ > 1 or vice versa. When b >
1 and ¢ > 1 one deals with a two-dimensional SOM.

Searching Technique
For searching, the training data for SOM is created by
selecting spectra from the chosen spectral images. Spec-
tra are selected randomly and the number of spectra is
chosen empirically. The training is performed as de-
scribed in Algorithm 1.

After training, a BMU-histogram for a spectral image
is created by the following way. The BMU is calculated
for each pixel of a spectral image. As a result, we get a
BMU-image, where each pixel is represented by an in-
dex number that corresponds to wgyy. A histogram of the
BMU-image is generated and normalized by the number
of pixels in the image. The histogram generated repre-
sents the numbers distribution of different index num-
bers. That is to say, the distribution of the BMUs found.
This process is done for each spectral image of a data-
base, and a database of BMU-histograms is obtained as
a result. The size of the histogram database matrix is n x
m, in which n and m are the number of spectral images
used and the number of map units, respectively.

The search in a spectral image database using a one-
dimensional SOM is done as follows. A spectral image
is selected and its BMU-histogram is generated using
the map by which the existing BMU-histogram data-
base was generated. Next, the created BMU-histogram
is compared with the histogram database. The dis-
tances between the histograms are calculated and the
images are ordered according to these distances. If the
selected image is included in the database, the small-
est distance is 0. The results of the search are shown
to a user as RGB-images. A diagram for ordering the
spectral images using a one-dimensional SOM is shown
in Fig. 2.

In the case of a two-dimensional SOM, there are two
different ways to produce a SOM-map. In the first case,
the spectral data is used as a training data, and the
two-dimensional SOM is constructed by the same way
as the one-dimensional SOM. In the other case the one-
dimensional SOM is trained first, as described above,
and the BMU-histogram database is generated. Next,
these BMU-histograms are used as training data for the
two-dimensional SOM. The search in this histogram-
trained, two-dimensional SOM is done as follows. The
spectral image is selected and its BMU-histogram is
generated by using the one-dimensional SOM. Next, the
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Figure 2. A diagram for ordering the spectral images using a one-dimensional SOM.
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Figure 3. A diagram for ordering the spectral images using a BMU-histogram-trained two-dimensional SOM.

positions of this BMU-histogram and every histogram
of a BMU-histogram database are located in the two-
dimensional SOM. This is done by calculating the BMUs
for the BMU-histograms. From now on these new BMUs
are called the second level BMUs. In the case of the two-
dimensional, histogram-trained SOM, the distances be-
tween the selected image and the images presented in a
BMU-histogram database are calculated as a difference
between the weight vectors that correspond to the cal-
culated second level BMUs. A diagram for ordering the
spectral images by using a histogram-trained, two-di-
mensional SOM is shown in Fig. 3. If the selected im-
age is included in the database, or if any other image in
the database has the same second level BMU as the se-
lected image, the smallest distance is zero.

Distance Calculations

Distance calculations are done using Euclidean distance,
energy, maximum peak location, Kullback—Leibler dis-
tance, dynamic partial distance and Jeffrey divergence
as distance measures. The distances between two his-
tograms, H, and H,, in these metrics are described as
follows:
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EuclideanDistance = \/ ﬁ (Hi()-H 2(i))2 , (3)

i=1

Z N2 & 2
Energy =3 Hy(i)" - ¥ H(i)"} 4)
i=1 i=1
MaximumPeakLocation = |L1 - L2|. (5)

in which L, and L, are the indices of the maximum val-
ues of compared histograms.

. . & g Hild)
Kullback — LeiblerDistance = Y, H;(i)log <, (6)
i=1 Hy(i)

1

A
DynamicPartialDistance = [2 |H 10)-H g(i)rlJ , (1)
ick
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Figure 4. Ordered output for spectral images in the case of one-dimensional SOM. The distance measure used is Euclid-
ean distance. Supplemental Material— Figure 4 can be found in color on the IS&T website (www.imaging.org) for a period of

no less than two years from the date of publication.

where k is a set that contains < m components of the
feature space with the smallest values for |H,(i) — H,(1)l,
k=1,...,m; Acan be chosen, and m is a dimension of
the histograms. If £ = m, Manhattan distance and Eu-
clidean distance are obtained by setting A=1and A =2,
respectively.

: & g Hi(i) , Hz(i)]

JeffreyDivergence = Hq(i)log ~ + Hy(1)log = |,
lzz:l[ 1( ) H3(L) 2( ) H3(l)

(8)

where H, = H, + H,/2 is the mean histogram.?'-23

Spectral Image Database

In this study a database of 106 spectral images was used.
The images have been measured at the University of
Joensuu (Finland),’ Lappeenranta University of Tech-
nology (Finland), Chiba University (Japan), Saitama
University (Japan), University of Bristol (United King-
dom) and at the Marine Biological Laboratory (Mary-
land, USA). The images have been filtered into equal
format: 61 spectral components with the spectral range
from 400 nm to 700 nm at 5 nm intervals. The size of
the images varies from 3 megabytes to 56 megabytes.
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TABLE I. The Objects of the Spectral Image Database

Objects Number Types Number
of images of images
skin 11 printed magazine pictures 8
corals 10 logos of business cards 3
plants 40 synthetic images 24
scenery 8 other 2

The objects of the database are listed in Table I. In
addition to measured spectral images, there are 24 syn-
thetically created images of which half have the same
texture but different color and the other half have the
same green color but different texture. The synthetic
images have been generated using the virtual texture
coloring technique described in Ref. 24. These images
were generated for future work, in which the texture
features will be studied. At the moment we do not have
this kind of data as natural spectral images. The im-
ages of the database can be seen in grayscale in Fig. 4
(color version of Fig. 4 can be found as Supplemental
Material), which shows the ordered output for spectral
images in the case where Euclidean distance is used as
a distance measure.
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Figure 5. The human visual sensitivity function.?’
Experiments

The calculations were done using a SOM PAK-software
package! and a SOM toolbox for Matlab.?>26 SOM-maps
were created by using spectral images and images
weighted by the human visual sensitivity function?’
(shown in Fig. 5) to study the importance of the nor-
malization earlier proposed. In all cases the topology
type used in the map was hexagonal and the learning
rate function type was linear. When a one-dimensional
SOM is in question the hexagonal topology corresponds
to the rectangular topology. The dimensions of the
weight vectors in the cases, where spectral data and
BMU-histogram data were used as a training data, were
61 and 50, respectively. In the cases of one-and two-di-
mensional spectral data-trained SOMs, 10,000 spectra
from each image were selected randomly as a training
data. To retain a theoretical possibility that every spec-
trum included in the training data could be chosen at
least once, the minimum number of epochs has to be
more than 1,000,000.

The one-dimensional SOMs, consisting of 50 units,
were trained by using 2,000,000 epochs in the ordering
phase and 4,000,000 epochs in the fine tuning phase.
The unit size of the SOM was chosen empirically as in
Ref. 17. The initial radius of the training area was 50
and the learning rates in the ordering phase and in the
fine tuning phase were 0.9 and 0.02, respectively. The
histogram similarities were calculated by using Euclid-
ean distance, energy, maximum peak location, Kullback—
Leibler distance, dynamic partial distance and Jeffrey
divergence as distance measures, and the spectral im-
ages were ordered according to the dissimilarities. In
the equation of dynamic partial distance, the 25 small-
est distances (k = 25) between the compared histograms
were taken into account, and A = 2.

The weight vectors that correspond to the units of the
one-dimensional SOM are shown in RGB colors in the
Fig. 5. The ordered outputs for images in the case of
Euclidean distance are shown in Figs. 4 and 7. The por-
trait image of a young lady, shown in the left upper cor-
ner, is used as a reference image and the images from
left to right and from top to down are the images in an
ascending order according to dissimilarity. It can be seen
that ordering using spectral images differs from the one
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Figure 6. Weight vectors of one-dimensional SOM con-
verted to RGB colors. Vertical lines correspond to the map
units. Supplemental Material— Figure 6 can be found in color
on the IS&T website (www.imaging.org) for a period of no
less than two years from the date of publication.

in which the images weighted by human visual sensi-
tivity function are used. The results in the cases of other
similarity measures are shown in Figs. 8 and 9. (Due to
the restricted amount of a space, only the first 10 im-
ages of the search results are shown.) In the cases where
Euclidean distance and dynamic partial distance are
used, the better results are gained by using normaliza-
tion, but in the case of Jeffrey divergence, the opposite
holds true. When Kullback—Leibler distance, energy, or
maximum peak location are used as distance measures,
the results for weighted images are slightly better. Ac-
cording to these results it cannot be said that the use of
the human visual sensitivity function would generally
lead to better results.

Next, the two-dimensional SOMs were trained using
spectral data as training data. Again, both the spectral
images and the images weighted by the human visual
sensitivity function were used. All parameters except the
number of neurons were the same as in the case of one-
dimensional SOMs. The number of neurons was lowered
by one and the sizes of the maps produced were 7 x 7
neurons. The ordered outputs for images in the cases of
non-weighted and weighted images using Euclidean dis-
tance, energy, Kullback—Leibler distance, maximum peak
location, dynamic partial distance and Jeffrey divergence
are shown in Figs. 10 and 11, respectively. It can be seen
that ordering using spectral images differs from that, in
which images weighted by the human visual sensitivity
function are used. Generally it seems that better results
are achieved by using the non-weighted images. How-
ever, it is worth noticing that the results are evaluated
by human beings. By comparing these results to the re-
sults from one-dimensional SOM feature by feature, it
can be seen that the spectral data-trained, two-dimen-
sional SOM gives better results in the case of non-
weighted images, when Euclidean distance and dynamic
partial distance are used. In the case of Jeffrey diver-
gence the situation is opposite. Energy, Kullback—Leibler
distance and maximum peak location give quite bad re-
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Figure 7. Ordered output for spectral images weighted by human visual sensitivity function in the case of one-dimen-
sional SOM. The distance measure used is Euclidean distance. Supplemental Material— Figure 7 can be found in color on
the IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.

sults despite of the dimensionality of the map and the
normalization. When the weighted images are used, the
use of the one-dimensional SOM seems to be more rea-
sonable.

Finally, a two-dimensional SOM was constructed us-
ing a BMU-histogram database for weighted images as a
training data. The histogram database used was created
on the basis of the one-dimensional SOM. The size of the
resulting map was (20 x 20) units. The unit number is
that high because we did not want many images to have
the same second level BMU. The initial radius of the
training area was 20 and the learning rates in the order-
ing phase and in the fine tuning phase were 0.9 and 0.02,
respectively. The second level BMUs for the BMU-histo-
gram database were calculated using Euclidean distance
as a distance measure. The images were placed into the
two-dimensional map according to the second level BMUs.
The distances between the chosen reference image and
every image in the database were calculated as a differ-
ence between weight vectors that correspond to the cal-
culated second level BMUs in the BMU-histogram-
trained, two-dimensional SOM.

Due to the restricted amount of space, the whole two-
dimensional SOM that contains the images cannot be
shown. A small part of it is shown in Fig. 12. The or-
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dered outputs, based on the distance calculations in-
side the map, are shown in Fig. 13. The best results are
obtained using the maximum peak location. The result-
ing “balcony” and “cream cake” images can be explained
by the fact that the reference image as well as these
images were originally measured from printed maga-
zines for which the paper type used is quite similar.

An example of the connections between the spectral
images and BMU-histograms is shown in Fig. 14. The
figure contains histograms for 5 non-weighted and
weighted spectral images. The shapes of the histograms
are spikier and the locations of the peaks are more simi-
lar between each other in the case of the weighted im-
ages. Also the structure of the histograms seems more
periodic for the weighted images. These are consequence
of the fact that multiplication by the human visual sen-
sitivity function weights some certain spectral chan-
nels of the images very strongly.

Discussion

A searching technique in a spectral image database with
six different distance measures for the cases of one-and
two-dimensional SOMs was implemented and the im-
portance of the human visual sensitivity function nor-
malization was tested. In addition, a technique for cal-

Kohonen, et al.



Figure 8. Ordered output for spectral images in the case of one-dimensional SOM. The distance measures used, row by
row from top to down are: energy, Kullback—Leibler distance, maximum peak location, dynamic partial distance and
Jeffrey divergence. Supplemental Material— Figure 8 can be found in color on the IS&T website (www.imaging.org) for a
period of no less than two years from the date of publication.
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Figure 9. Ordered output for spectral images weighted by human visual sensitivity function in the case of one-dimen-
sional SOM. The distance measures used, row by row from top to down are: energy, Kullback—Leibler distance, maximum
peak location, dynamic partial distance and Jeffrey divergence. Supplemental Material— Figure 9 can be found in color on
the IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.
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Figure 10. Ordered output for spectral images in the case of two-dimensional, spectral data-trained SOM. The distance
measures used, row by row from top to down are: Euclidean distance, energy, Kullback—Leibler distance, maximum peak
location, dynamic partial distance and Jeffrey divergence. Supplemental Material— Figure 10 can be found in color on the
IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.
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Figure 11. Ordered output for weighted spectral images in the case of two-dimensional, spectral data-trained SOM. The
distance measures used, row by row from top to down are: Euclidean distance, energy, Kullback—Leibler distance, maxi-
mum peak location, dynamic partial distance and Jeffrey divergence. Supplemental Material— Figure 11 can be found in
color on the IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.
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Figure 12.The locations of spectral images in two-dimensional, BMU-histogram-trained SOM.. Supplemental Material—
Figure 12 can be found in color on the IS&T website (www.imaging.org) for a period of no less than two years from the date of

publication.

culating the distances between spectral images using a
BMU-histogram-trained, two-dimensional SOM was
proposed, and spectral images were ordered by these
distances.

It was shown that the proposed features are useful in
image search. The order of the database is different for
spectral images and for spectral images weighted by the
human visual sensitivity function. Also, the order of the
database is highly dependent on the distance measure
used. According to these results, it is impossible to say
whether or not normalization using the human visual
sensitivity function should be used. Furthermore these
results are strictly valid only for the database used.

Euclidean distance, energy, maximum peak location,
Kullback-Leibler distance, dynamic partial distance and
Jeffrey divergence were used as distance measures. Each
of these metrics has advantages and disadvantages, and
it cannot be said that one certain measure should be
transcendent compared to the others. All distance mea-
sures used, except energy, are based on bin-by-bin com-
parisons. The problem with bin-by-bin comparisons is
that the histograms of similar images are not always
similar with respect to every histogram component. Bin-
by-bin-based distance measures are highly position de-
pendent and even a very small shift in a histogram may

Organizing Spectral Image Database Using Self-Organizing Maps

cause a larger distance estimate even though the shapes
of the compared histograms may be very similar. On the
other hand, the distance estimate between two histo-
grams that may have very different shapes may be quite
small for the case of energy, which is the only distance
measure that is not based on bin-by-bin comparisons.
In the case of energy the only thing that matters, is the
distribution of the values in the histogram; i. e., the
heights of the peaks are important but the locations of
the peaks are totally irrelevant.

Drawbacks of the proposed techniques are that the
training phase of SOM takes quite a long time, and the
size of the training data is large. In conclusion, the main
results of this article are proposed searching techniques.
After the training phase of SOM, the techniques are fast
and memory efficient enough to be used for searching
spectral images in a database.

The next goal of this research is to include the tex-
tural features to the proposed methods, study the
influence of the image background, and combine some
distance measures. Also the use of the topological neigh-
borhood of the SOM units in histogram comparisons is
to be included. At the moment, the Euclidean distance
is used as a distance measure in the training phase. It
is hard to say whether this is unfair to the other dis-
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Figure 13. Ordered output for spectral images weighted by human visual sen-sitivity function in the case of two-dimen-
sional, BMU-histogram-trained SOM. The used distance measures row by row from top to down are: Euclidean distance,
energy, Kullback—Leibler distance, maximum peak location, dynamic partial distance and Jeffrey divergence. Supple-
mental Material— Figure 13 can be found in color on the IS&T website (www.imaging.org) for a period of no less than two years
from the date of publication.

Figure 14. Example of the BMU-histograms that represent spectral images. Upper and lower histogram rows represents
spectral images and spectral images weighted by human visual sensitivity function, respectively. Supplemental Mate-
rial— Figure 14 can be found in color on the IS&T website (www.imaging.org) for a period of no less than two years from the
date of publication.
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tance measures. However, in the future, other measures
will be used in the training phase as well. @&
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