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Color correction describes the transformation process between device response values, e.g., RGB, and CIE XYZ or CIE L*a*b*
values, respectively. In every metamer color reproduction system this is the first color transformation after image acquisition. In
general, this mapping is not unique because the spectral sensitivities of the majority of devices do not satisfy the Luther condi-
tion and the acquisition and viewing light sources typically have different power spectra. Hence, there exists a set of colors with
different reflectance spectra which result in the same device response (device metamerism), but have different CIE XYZ tristimulus
values for an observer under the viewing light source. In this publication we present a new method to determine this metamer
subspace (which depends on the device response) in the viewing CIE L*a*b* space by calculating a Metamer Boundary Descrip-
tor (MBD) matrix. This MBD matrix approximately describes the metamer subspace by storing its boundary points in every
entry. By calculating the center of gravity of this MBD we obtain a good color choice in the sense of a small mean error. To
calculate the entries of the MBD we use a priori knowledge about the physics of natural reflectance spectra and a linear pro-
gramming technique. This method improves the performance of target- and regression-based methods especially for saturated
colors. We present the results of simulation experiments including a comparison with existing methods.
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of the target colors. The color correction transformation
can be written as follows

A ⋅ c = (X, Y, Z)T, (1)

where c ∈ C is an arbitrary sensor response.
As a result of different acquisition and viewing light

sources and non-compliance of the Luther condition,
i.e., the linear dependency of the CIE color matching
functions on system sensitivities,1,2 by the spectral sen-
sitivities of the image acquisition system the transfor-
mation is generally not linear and the method results
in high ∆E errors.

In order to consider these non-linear effects in the
color correction transformation the use of polynomial
mapping of order p > 1 would appear to represent an
improvement:3
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for x = X, Y, Z. The coefficients ax
(i1,…,iq) can be calculated

using multi-order polynomial regression (MPR) of the
target colors.

Introduction
In every metamer color reproduction system color cor-
rection, i.e., the mapping from device response values,
e.g., RGB, to CIE XYZ or CIE L*a*b* colors, respectively,
is the first color transformation after image acquisition.

There are two different classes of methods for color
correction in linear acquisition systems: target based
methods and model based methods. Target based meth-
ods use a set of sample CIE XYZ/CIE L*a*b* colors with
corresponding sensor responses to determine an approxi-
mation of the color correction transformation. The best
known method is the linear mapping between the sen-
sor response values and CIE XYZ colors. Assuming that
the CIE XYZ colors depend linearly on sensor response
values this transformation must be optimal. If we con-
sider acquisition systems with q ≥ 3 channels and sen-
sor response space C the linear method determines a
transformation 3 × q matrix A, using linear regression
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In the methods described above the regression was
calculated in the intensity-linear CIE XYZ color space.
This minimizes the root mean square (RMS) difference
between the mapped CIE XYZ colors and the correspond-
ing CIE XYZ target colors. Unfortunately, Euclidean
distances in CIE XYZ are very poorly correlated to vi-
sual color differences.4 A common nearly perceptual
uniform color space is the CIE L*a*b* space in which
the euclidean distance is the ∆E*

ab color difference for-
mula. Therefore, if the regression can be performed di-
rectly in the CIE L*a*b* color space, this should lead to
an improvement with respect to small ∆E*

ab values.
Hardeberg3 initially transformed R, G, B sensor re-

sponses with a nonlinear function g(x) = x1/3 to achieve a
nearly linear relationship between the g(R), g(G), g(B)
values and the CIE L*a*b* colors. This leads to a better
performance of the subsequent multi-order polynomial
regression and smaller ∆E errors. The reason for choos-
ing g(x) = x1/3 is the transformation formula between CIE
XYZ and CIE L*a*b*. We call the method “multi-order
polynomial regression into CIE L*a*b* based on
Hardeberg” (MPRLabH). A generalization to q channel
systems can be performed by initially transforming each
channel response by g(x)
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where Px, x = L*, a*, b*, are similarly defined as in
Eq. (3).

König5 transformed the sensor response values as in
Eq. (1), but subsequently performed a multi-order poly-
nomial regression to the real target CIE L*a*b* colors
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where Px, x = L*, a*, b*, are similarly defined as in Eq.
(3). We call this method “multi-order polynomial regres-
sion into CIE L*a*b* based on König” (MPRLabK).

If we consider noisy systems the regression-based
methods result in high error rates. König5 proposed a
new matrix based method as in Eq. (1) by calculating
the coefficients using linear programming. The aim of
the calculation is to achieve matrix entries which have
nearly the same size but still cause small errors. The
resulting matrix does not amplify the noise as much as
regression-based matrices. We call the method “robust
matrix” method (RM).

Other different target based methods have been de-
veloped and proposed for color correction using neural
networks,6 LUT-interpolation and extrapolation7 or con-
straint least square-regression to preserve the white
point,8 to name a few.

The other class of color correction methods involves
model based methods. These methods use the mathemati-
cal model of the image acquisition system (which will be
discussed below) to reconstruct the CIE L*a*b* colors
from the sensor response values. As mentioned earlier
the acquisition and viewing light can differ and spectral
sensitivities of the image acquisition system might not
satisfy the Luther condition. Therefore, the reconstruc-

tion is generally not unambiguous. There are various
colors with different reflectance spectra which result in
the same device response (device metamerism), but have
different CIE XYZ tristimulus values for an observer
under the viewing light source. These values form the
“metamer subspace” with respect to the device response.

One method is to reconstruct a reflection spectrum from
the sensor response of the acquisition system and to cal-
culate the appropriate CIE XYZ color. Several methods
have been proposed to perform this reconstruction such
as Pseudoinverse, smoothing Inverse,Wienerinverse or
Principle Component Analysis (PCA) (see, e.g., Refs. 3,
5, and 9). For acquisition systems using only a few chan-
nels, e.g., RGB, the set of possible spectra leading to the
given sensor response is very extensive because there are
many degrees of freedom to reconstruct the reflection
spectrum (metameric black space,10 see below). This can
result in large ∆E errors.

One of these reconstruction methods is the procedure
involving ”projection onto convex sets” (POCS) which
can be used in many fields of color science.11,12 This
method finds a feasible spectrum in the intersection of
some convex sets which define constraints such as posi-
tivity, boundedness, smoothness and ”leading to the sen-
sor response”. The resulting spectrum defines an
arbitrary tristimulus value in the metamer subspace
which depends on the starting point of the POCS itera-
tion. As mentioned above the metamer subspace can be
very large for acquisition systems with only a few chan-
nels, so additional constraints can be used if, e.g., the
model of the printer creating the acquired color is known
a priori.13,14

Finlayson and Morovic15 attempted to characterize the
metamer subspace of possible color spectra which re-
sult in the given sensor response in the viewing CIE
XYZ space. They used a linear programming technique
to find the smallest cube in which the metamer sub-
space is located and chose the center of this cube for
color correction (Linear Programming Center of Cube −
LPCC). They also proposed a different technique to de-
termine the desired color by sampling this cube (as a
region of interest) to find feasible points and take the
centroid of the feasible set. The center of gravity of the
metamer subspace in the CIE XYZ color space gener-
ally differs from the center of gravity of the set in the
CIE L*a*b* color space, where the common ∆E metrics
are defined. If the aim of a color correction transforma-
tion is to minimize the ∆E color difference between the
real color and the calculated color, an inspection of the
metamer subspace in the CIE L*a*b* color space seems
to be more effective. Furthermore, the description of the
metamer subspace using an enveloping cube is only a
very rough characterization.

The list of model-based methods is not exhaustive. It
should be mentioned that there are some methods which
use the image acquisition model to calculate a matrix
based color correction as in Eq. (1).16−18

In this publication we propose a method that charac-
terizes the metamer subspace in the nearly perceptual
uniform CIE L*a*b* color space by calculating a metamer
boundary descriptor matrix. The center of gravity of the
matrix entries is an approximation of the color with the
smallest ∆E distance to all other colors in the metamer
subspace. This color is the optimal color choice for color
correction in the sense of small mean error.

The Metamer Subspace
In this section we define the metamer subspace of a sen-
sor response for different acquisition and viewing
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illuminants and also show that a color correction trans-
formation is generally not unambiguous.

In a linear acquisition system the relationship be-
tween the acquisition illuminant La, the sensitivities
s1,…,sq, the reflection spectrum r, and the sensor re-
sponse c = (c1,…,cq)T ∈ C, is as follows

    
c s L r d i qi i a= + =∫ ( ) ( ) ( ) , , ..., ,λ λ λ λ ε 1

Λ (6)

where Λ = [400 nm, 700 nm] is the visible wavelength
interval and ε is the additive noise.

The corresponding discrete formulation achieved by
sampling the spectra in N equal wavelength intervals
is given by

c  = Ωa r + ε (7)

where r = (r(λ1),…,r(λN))T and the acquisition lighting
matrix
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In this article the sensor response c ∈ C, the acquisi-
tion light La and the system sensitivities s1,...,sq are well-
known.

In practice the system sensitivities have to be deter-
mined by measurement or by using a set of training col-
ors and a reconstruction method, e.g., Pseudoinverse,
Wiener-inverse,19 Principle Eigenvector,3 Projection onto
Convex Sets,12,20 Linear Programming,5 and Quadratic
Programming.21

Given the same reflection spectrum r an observer’s
tristimulus value vr ∈  CIE XYZ for the viewing
illuminant Lv can be modeled in an analogous manner
as the sensor response. Here we present only the dis-
crete form

υr = Ωυr (8)

where Ωv is the observer lighting matrix depending on
the CIE color matching functions     x y z, , .
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Solving Eq. (7) with respect to the reflection spectrum r
results in

    r ca= −ΩΘ ( )ε  + Kernel(Ωa) (9)

where ΩΘ
a  is the pseudo-inverse matrix of Ωa and

Kernel(Ωa) : = {w|Ωaw = 0}. By analogy to human colo-
rimetry the fundamental metamer is represented by ΩΘ

a
(c – ε) and Kernel(Ωa) is the space of metameric blacks
of the device.10,22,23. If we construct a matrix W :=
(w1,...,wK) using a basis w1,..., wK of Kernel(Ωa) we can
rewrite Eq. (9) as follows

    r ca= −ΩΘ ( )ε +Wu, u ∈ RRK (10)

This algebraic solution must be restricted by physi-
cal conditions such as the positivity, boundedness and

smoothness of r (see, e.g., Refs. 10, 24, and 25). So not
all u ∈ RRK are physically useful. U ⊂  RRK denotes the
subset that fulfils these constraints in Eq. (10). If we
insert Eq. (10) in Eq. (8), we obtain the metamer set
Mc

XYZ of possible tristimuli in the CIE XYZ color space

    M c Wu u UXYZ
c

v a v= − + ∈{ ( ) | }.Ω Ω ΩΘ ε (11)

The ∆E error metrics (color difference formulas) are
defined in the CIE L*a*b* color space, so we map the
elements of M cXYZ from the intensity-linear CIE XYZ color
space into the nearly perceptual uniform CIE L*a*b*
space. We denote this transformation by L : CIE XYZ
  �  CIE L*a*b* and define our metamer subspace by

      M MLab
c

XYZ
c= L( ). (12)

To calculate the metamer subspace M cXYZ  different
methods have been proposed and described.10 Apart from
Monte Carlo calculations (using random metameric re-
flection spectra or reflection spectra derived by the
metameric black method10), a linear programming
method has also been developed.26 These methods do not
consider the smoothness characteristic of natural reflec-
tion spectra, which generally leads to larger metamer
subspaces. Furthermore, they characterize the metamer
subspace in the CIE XYZ color space.

The Optimal Color Correction Transformation
In this section we define the optimal color correc-
tion transformation in the sense of the minimal mean
error.

We show above that a color correction transformation
is in general not unambiguous. For a given sensor re-
sponse c each color of the metamer subspace M  cLab is a
possible choice for color correction, but only one color in
this metamer subspace is actually created by the ac-
quired surface with unknown reflection spectrum. If we
choose an arbitrary color x ∈ M  cLab there is at least one
reflection spectrum r which results in the sensor response
c and a color y  ∈  M  cLab where

    
∆ ∆E x y E x z

z MLab
c

( , ) max ( , ).=
∈ (13)

One aim of a color correction transformation could be
the selection of a color x ∈ M cLab which minimizes this
maximal error. If we focus on the minimization of mean
error we obtain the following definition for an optimal
color correction transformation:

Definition 1 (Optimal Color Correction
Transformation)
We assume a linear sensor response c ∈ C for an acqui-
sition illuminant a (see Eq. (7)) and the appropriate
metamer subspace M cLab for the viewing illuminant v (see
Eq. (12)) with the probability density function δ : M cLab

  �  [0, 1] of metamers in M cLab fulfilling

    
δ ( ) .x dx

MLab
c =∫ 1 (14)

A color correction transformation C : C   �  CIE L*a*b*
is optimal for the sensor response c with respect to a
color difference metric ∆E : CIE L*a*b* × CIE L*a*b*
  �  RR+

0, if the following equation applies:
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C ( ) arg min ( ) ( ) ( , ) .c x y E x y dy

x M M
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A color correction transformation is optimal with re-
spect to a color difference metric ∆E if Eq. (15) applies
for all c ∈ C.

It is difficult to determine the minimum in Eq. (15), so
we are satisfied with an approximation of this color with
respect to the ∆E*

ab metric by selecting the center of grav-
ity of the metamer subspace Mc

Lab. The calculation of the
probability density function δ of metamers inside the
metamer subspace is also difficult. A Monte Carlo calcu-
lation of the boundary of Mc

XYZ  made by Ohta10 considers
a normal trivariate distribution of metamers inside Mc

XYZ.
This assumption is based on previous research which in-
volved counting metamers inside the object-color solid.10,24

Transformation of the normal distributed points in Mc
XYZ

into CIE L*a*b* changes the skewness and kurtosis of
their distribution. Hence we do not know the parameters
of the normal distribution of the points in Mc

XYZ a priori
and to avoid the complex calculation of transforming its
density function for Mc

Lab we do not consider the distribu-
tion of the points. So the optimal color correction choice
as defined by Eq. (15) differs from our solution due to
our choice of the center of gravity of the metamer sub-
space with equally distributed points. Nevertheless, the
shape of the metamer subspace Mc

Lab is important for both
calculations – the optimal calculation in definition 1 and
the approximate calculation using the simplified center
of gravity. In the next Section we will present a method
which characterizes this subspace by virtue of a metamer
boundary descriptor.

The Metamer Boundary Descriptor
The Metamer Boundary Descriptor (MBD) is a n × m
matrix which stores a boundary point of the metamer
subspace Mc

Lab in every entry. Each row contains m con-
tour points of the set with a fixed L* value. The bound-
ary points are calculated in the CIE XYZ space using
Linear Programming (LP). A short overview of LP is given
in Appendix A, available as Supplemental Material.

The main idea of this article is to formulate the fol-
lowing LP problem, which samples the boundary of the
metamer subspace along an arbitrary straight line g +
λυ (see explanations below and Fig. 1)

−λ = min (16)

with the linear constraints

r ≥ 0 (17)

r ≤ 1 (18)

Hr ≤ ρ (19)

−Hr ≤ ρ (20)

Ωar = c + ε (21)

Ωvr = vr (22)

g + λv = vr (23)

λ ≥ 0 (24)

Constraint (17) ensures the positivity of reflectance
spectra and constraint (18) guarantees the boundedness

of non-fluorescent surfaces (see e.g., Refs. 10, 15, and
26). In addition, we employ the smoothness constraint
(used in Ref. 20, to assure smooth scanner sensitivities)
in Eqs. (19) and (20) with a smoothing parameter ρ > 0
and a convolution matrix H to apply the Laplace opera-
tor to r:
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Constraint (21) ensures that we only take reflectance
spectra r into account, which lead to the given sensor
response c + ε. Constraint (22) introduces the observer’s
lighting matrix with the auxiliary variable vr. Con-
straints (17) through (22) define the metamer subspace
Mc

XYZ . In other words, for each reflection spectrum which
fulfils all these constraints the resulting auxiliary vari-
able vr lies in Mc

XYZ  and for each point in Mc
XYZ  there is a

reflection spectrum which fulfils the constraints. The
next constraint (23) restricts the auxiliary variable vr ∈
Mc

XYZ  so that it lies on the sampling line defined by g
and v. We are looking for the point vr ∈ Mc

XYZ  on the line
with a maximum positive λ in order to find a boundary
point of the convex set Mc

XYZ  (see Fig. 1). The notation λ
= max could be expected as the objective function, but
the mathematical convention (see Appendix A) is the
minimization of the objective function which leads to
the above objective function, Eq. (16).

By solving this LP we obtain a tristimulus value vr,
which is the intersection of the line and the boundary
of Mc

XYZ , and the appropriate reflection spectrum r. Since
all constraints form a convex set, there is only one in-
tersection point vr. This intersection point has to be
transformed into CIE L*a*b* coordinates and stored in
the MBD matrix.

After calculating the MBD matrix the color correction
can be realized by choosing the center of gravity of the
points in the matrix (see below and Appendix B, avail-
able as Supplemental Material).

Figure 1. Sampling of the metamer subspace Mc
XYZ  along

the line g +λv, λ ≥ 0. The corresponding MBD matrix has 8
columns and 5 rows.
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The accuracy of the calculated center of gravity of
the metamer subspace using points on its boundary is
generally enhanced by uniformly distributed points
(see Fig. 2(a) and 2(b)). The influence of a non-uni-
formly structured boundary shape as shown in Fig. 2(c)
is not very strong because the transformation of the
convex set Mc

XYZ  (which has a uniformly structured
boundary shape) by the smooth function L does not add
any appreciable structure to its boundary. Therefore,
for each boundary point the parameters g and v, which
define the sampling line, have to be chosen so that the
MBD entries are uniformly distributed on the bound-
ary of Mc

Lab. A construction scheme of the half line pa-
rameters g and v, which result in nearly uniformly
distributed points in the MBD matrix, is described
next.

Flexible sampling of the metamer subspace along an
arbitrary line is one of the differences from the LP
method10,26 and permits a better description of the
metamer subspace in the CIE L*a*b* color space.

To solve the LP problems we used the optimization
toolbox of Matlab,27 which employs a variation of the
predictor-corrector algorithm from Mehrotra.28

Half Line Parameter
Here we describe a construction scheme for the half line
parameters g and v used in constraint (23) which result
in sampling points with an almost uniform distribution
on the boundary of Mc

Lab.
As mentioned in the previous section the sampling

points have to be chosen so that they are uniformly dis-
tributed on the boundary of Mc

Lab. As the metamer sub-
space is sampled in the CIE XYZ color space certain
calculations are necessary.

Anchor Point g
All half lines used to determine a MBD row have the

same anchor point g (Fig. 1). We therefore only have to
calculate n anchor points gi, i = 1,...,n for a n × m MBD
matrix. We select the anchor points in such a way that
they uniformly cover the luminance spread of Mc

Lab. To
determine this luminance spread we have to solve the
following two LP problems

    − =v rr
Y min (26)

    v rr
Y = min, resp. (27)

with the linear constraints

r ≥ 0 (28)

r ≤ 1 (29)

Hr ≤ ρ (30)

−Hr ≤ ρ (31)

Ωar = c + ε (32)

Ωvr = vr (33)

The LP problem with the objective function (26) re-
sults in a color vr,max ∈ Mc

XYZ  with a maximal Y value.
The LP problem with the objective function (27) leads
to vr,min ∈ Mc

XYZ  with a minimal Y value. We transform
both colors into the CIE L*a*b* space to get the lumi-
nance spread of Mc

Lab.

[L*
min, L*

max] := [LL*( vr,min), LL*(vr,max)] (34)

and sample this interval at n equidistant positions

    
L L

i
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L L i ni
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We can now define the desired anchor points in the CIE
XYZ space as follows

    
g v

Y Y
Y Y

v vi r
i

n
r r: ,,min ,max ,min= +

−
−

−( )1

1
(36)

where Yi corresponds to L*
i, i = 1,...,n.

All anchor points are located on the line section be-
tween vr,min and vr,max and therefore in the convex
set Mc

XYZ .

Direction Vector v
The direction vectors have to be calculated for each MBD
matrix entry. Due to the structure of the MBD their Y
components equal zero.

(a) (b) (c)

Figure 2. Effects on the accuracy of the calculated center of gravity of some sets using points on their boundaries. Cross
= center of gravity of the points. Circle = Center of gravity of the set. a) Points are not uniformly distributed on the
boundary of the set; b) points are uniformly distributed on the boundary of the set; and c) points are uniformly distributed
on the boundary of the set, but the shape of the boundary is not uniformly structured.
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For each luminance level, which is defined by an an-
chor point, we choose the direction vectors in such a way,
that they uniformly cover the contour of Mc

XYZ. We there-
fore use a multigrid strategy. Initially we take a decom-
position of [0, 2π]

    
φ π

k
k

K
k K: , , ..., ,= =2

0 (37)

and the appropriate direction vectors
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φ

φ
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in order to calculate K + 1 boundary points of Mc
Lab, us-

ing the LP problem, Eqs. (16) through (24). In general
the resulting boundary points L(vr,k), k = 0,...,K are not
distributed uniformly on the contour of Mc

Lab at the fixed
luminance level (see Fig. 3(a)).

If we assign a cumulative distance to each angle φk, k
= 0,...,K

  φ ξ0 0 0→ =: (39)

      
φ ξk k

j

k

r j r jE v v→ =
=

−∑: ( ( ), ( )), ,
1

1∆ L L (40)

we can define a function Θ : [0; 2π]   �  RR+ by linear in-
terpolation of the resulting pairs. This function is
strictly monotonicly increasing and therefore invertible.
We can then define new angles by inverting Θ (see Fig.
3(b))

    
˜ : , , ..., .φ ξi K

i
m

i m= ⎛
⎝⎜

⎞
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=−Θ 1 1 (41)

The corresponding direction vectors, which are defined
by Eq. (38), result in boundary points which are more

uniformly distributed on the contour of Mc
Lab at the ap-

propriate luminance level. If we repeat this procedure,
we obtain points which are distributed more uniformly.
In our simulation experiments we used only one itera-
tion step.

Noise Considerations
If we consider noisy systems, the LP problems embod-
ied in contraints (16) through (24) and (26) through (33),
may not be solvable because the set defined by the con-
straints is empty. In the case of such systems we can
ensure solvability by introducing the unknown noise ε
∈ RRn (ε ≠ 0) in constraints (21) and (32)

Ωar = c + ε (42)

as an additional arbitrary variable. The size of this vari-
able is bounded by other arbitrary variables ∆ε =
(∆ε1,...,∆εn)T ∈ RRn in further constraints

∆ε ≥ ε (43)

∆ε ≥ −ε (44)

∆ε ≥ 0 (45)

∆ε ≤ ξ. (46)

Constraints (43) and (44) restrict the magnitude of the
noise and can be combined into |ε| ≤ ∆ε. The next two
constraints (45) and (46) force the noise inside the noise
outlier set,12,20 where ξ = 3σε is used for Gaussian noise
(σε describes the standard deviation of the noise and
99.7% of the values are at most three standard devia-
tions away from the mean if we consider Gaussian
noise). It is also possible to use more complex noise
models, including shot noise, which follows Poisson
statistics. If there is a large number of detected pho-
tons, then the signal can be well modeled by a signal-
dependent gaussian distribution, where the variance
is equal to the mean.29 This noise model can be ex-
pressed as follows.30

Figure 3. a) Contour plot of the metamer subspace at a fixed luminance level. Equidistant angles result in a non-uniform
distribution of the points on the contour. b) The inverse of Θ shows the angles which result in a nearly uniform distribu-
tion of the contour points. These points are shown in c).
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cnoise = Ωar + f (cnoise) o εS + εt (47)

    = + ⋅ ⋅ +Ωa s sn
T

tr f c f cn( ( ) ,..., ( ) ) ,1 1
noise noiseε ε ε (48)

where εt represents the zero mean gaussian distribu-
tion of the thermal noise and f(cnoise)οεs represents the
shot noise. Signal dependency is modeled by f(cnoise) and
εs has a zero mean gaussian distribution. εt and εs can
be treated as independent. Constraint (46) can be modi-
fied to consider this signal-dependent noise model by
setting ξ(cnoise) = 3σεst(cnoise), where

    
σ σ σε ε εst s t

c f c( ) ( )noise noise= +2 2 2

is the standard deviation of the signal-dependent
gaussian distribution of the noise model.

As the thresholds ∆ε ∈ RRn are unknown a priori, they
are minimized in the objective function using an addi-
tional weighted term. The objective function (16) will
be replaced by

    
− + ⋅ =

=
∑λ εεw
i

n

i
1

∆ min (49)

and the objective functions (26) and (27) are changed to
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=
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iε ε
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∆ min (50)
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1
∆ min, resp. (51)

The weight wε > 0 should be large enough to ensure that
the solution contains ε ≈ 0 in the case of a noise-free
system. In our simulation experiments with noise free
systems wε = 1000 leads to the same results as a calcu-
lation without any consideration of noise.

Approximating the Optimal Color Correction
Transformation
When a Metamer Boundary Descriptor for a sensor re-
sponse c has been determined, the optimal color correc-
tion transformation with respect to the ∆E*

ab can be
approximated by calculating the center of gravity of the
MBD matrix entries. Equal matrix entries are consid-
ered only once. If d1,...,dk ∈ Mc

Lab, k ≤ m  ⋅ n are the
pairwise different matrix entries an approximating so-
lution can be calculated as follows

      
C ( ) .c

k
d

i

k

i≈
=
∑1

1
(52)

This first approximation can be improved by a better
consideration of the shape of Mc

Lab. Equation (52) weights
all boundary points equally which are stored in the MBD
matrix regardless of their position. The aim is not to
calculate the center of gravity of the MBD matrix en-
tries but the center of gravity of the metamer subspace
Mc

Lab itself, i.e.,
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Vol (53)

Vol(Mc
Lab) denotes the volume of Mc

Lab. In Appendix B,
available as Supplemental Material, we describe how
to calculate the integral in Eq. (53). Hence the center of
gravity is not always part of the considered set it should
be mentioned that in our experiments the calculated
point always lies inside Mc

Lab.

Results
We have compared our method (MBD) with the meth-
ods described in the introduction by means of simula-
tion. These methods were selected for various reasons.
The MPR target based methods are often used and com-
pared with one another,3,5,31 The RM method allows for
noise. As we also take noise into account in acquisition
systems, a comparison with this method could be inter-
esting. The LPCC method15 is based on the same as-
sumptions as the MBD method, while the POCS method
belongs to the model-based methods and also allows for
noise.

We carried out four different simulation experiments
to compare the methods using different simulation pa-
rameters: In Simulation I we used a Sony RGB sensor32

with sensitivities shown in Fig. 5. In Simulation II we
used the same sensor but added ±1% of the maximum
sensor response as noise to each channel. This signal
independent noise is not typical of a special image
aqcuisition system. As mentioned above acquisition sys-
tems normally have a more complex signal dependent
noise behavior.29,30 Measurements of IT 8.7/2 targets by
different scanners (see Fig. 4) have shown that the stan-
dard deviation of noise has a mean magnitude of ap-
proximately 1% of the maximum sensor response. Our
aim was to review each method with respect to disturbed
sensor responses, i.e., how the methods amplify or mute
noise. The disturbing magnitude of ±1% of the maxi-
mum sensor response per channel was also selected by
König5 in his simulation experiments.

In Simulation III we used an experimental six chan-
nel sensor5,31 with sensitivities shown in Fig. 6. In
Simulation IV we used the same sensor but added ±1%
of the maximum sensor response as noise to each chan-
nel.

Figure 4. Signal dependency of noise (green channel) of
three different scanners calculated for the gray ramp of an
IT8.7/2 Target.
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The acquisition and viewing illuminants have been
chosen as CIE-A (incandescent light, color temperature:
2856°K), CIE-C (average daylight, color temperature:
6774°K), CIE-F11 (narrow band white fluorescent lamp)
(see Fig. 7). For each simulation we calculated the color
corrections for all combinations of acquisition and view-
ing illuminants.

The test colors used in each simulation consisted of
two different spectral databases, i.e., a spectrally mea-
sured IT8.7/2 target33 with 288 color patches and the
Vrhel database,34 including 354 reflection spectra bro-
ken down into three groups (Dupont: 120 Dupont paint
chips, Munsell: 64 Munsell chips and Objects: 170 natu-
ral and man-made objects). The IT8.7/2 test spectra dif-
fer from the IT8.7/2 spectra used as training colors for
the target based methods. However, both IT8.7/2 spec-
tral sets are highly correlated (correlation coefficient
0.97).

A test database which is highly correlated with the
training colors and a different spectrally higher dimen-
sional35 test database were chosen in order to test the
generalization ability of the target based methods.

Determination of the coefficients of the multi-order
polynomials or the RM entries using measured target
patches is disturbed by noise in actual practice. For the
same reason the acquisition lighting matrix cannot be
calculated in an error free way for real acquisition sys-
tems, e.g., by measurement or by using the methods
listed above. The authors are aware of the fact that the
results of this simulation could be different if the pa-

rameters of the methods used were estimated on the
basis of noisy data. An estimation of these parameters
is not within the scope of the text. The parameters we
selected for the color correction methods were therefore
error free in this simulation.

The simulation parameters are summarized in Table
I and the parameters needed for the methods are shown
in Table II. The LPCC method is based on the assump-
tion that all natural reflection spectra can be modeled
by a few basis spectra which can be extracted from a
representative spectral database. These basis spectra
have been calculated for our simulations using 99% of
the energy of 1269 munsell color chips* which result in
25 basis spectra. As already mentioned we chose an
IT8.7/2 target33 for the training colors of the target based
methods. This target is widely used to create ICC pro-
files36 for scanners or cameras in practice.

Figure 5. Sensitivities of the Sony RGB Sensor32 Figure 6. Sensitivities of the experimental six channel
sensor.5,31

Figure 7. Acquisition and viewing illuminants used in
simulation experiments.

TABLE I. Simulation Parameters

Simulation I Simulation II Simulation III Simulation VI

Sensor Sony RGB Sony RGB 6 Channel 6 Channel
Acquisition Illuminants A,C,F11 A,C,F11 A,C,F11 A,C,F11
Viewing Illuminants A,C,F11 A,C,F11 A,C,F11 A,C,F11
Noise − 1% of the max. − 1% of the max.

sensor response sensor response
per channel per channel

Test Spectra Vrhel,IT 8.7/2 Vrhel,IT 8.7/2 Vrhel,IT 8.7/2 Vrhel,IT 8.7/2
Spectral sampling 5 nm 5 nm 5 nm 5 nm

* The Munsell spectra are available from the Information Technology
Dept., Lappeenranta University of Technology, Finland.
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The results achieved for Simulations I-IV are shown
in Tables III through VI. Figures 12 through 15 show
the results for the Vrhel database which are broken
down according to the analyzed illuminants.

A few examples of the metamer subspace structures
can be found in Figs. 9 and 10 for the spectra shown in
Fig. 8.

Discussion
The results for Simulation I using the IT8.7/2 test spec-
tra demonstrate that the MPR methods perform very
well for test colors which are highly correlated with the
training colors. There is no advantage in using the
nearly perceptual uniform CIE L*a*b* space for regres-
sion. The MBD method follows with a mean ∆Eab differ-
ence of nearly 1 compared with the best MPR method
(MPRXYZ). For the Vrhel test spectra the MBD method
surpasses all other methods. The MPR methods are
clearly worse than in the case of the IT8.7/2 colors and
follow with a difference of nearly ∆E*

ab = 0.7 after the
MBD method. The different spectral test databases have
no visible influence on the model based methods (MBD,
LPCC, POCS). The LPCC performs a little worse than
the MPR methods and the POCS method results in very
large mean errors bigger than ∆E*

ab = 10. This is due to
the large magnitudes of the metamer subspaces for the
three channel Sony sensor. The RM method also shows
high error rates which are obviously smaller for the
IT8.7/2 test colors. This difference in error rate is also
due to the different correlation between test colors and
training colors.

In Simulation II the MBD method results in the
smallest mean ∆E*

ab errors for both spectral test data-
bases considered. For the IT8.7/2 test colors the MBD
method is followed by the MPR methods, while for the
Vrhel colors the LPCC method is the second best pro-
cedure after the MBD method. As seen in Simulation I
the target based methods show the same different er-
ror behavior in both of the spectral test databases. In
this case as well the MPR methods do not show any
noticeable differences. The conspicuous noise sensitiv-
ity of the MPR methods seen in Simulation IV is less
obvious for the Sony RGB sensor. Nevertheless, this

Figure 8. Examples of some Munsell spectra extracted from
the Vrhel database

Figure 9. Metamer subspaces of the spectra in Fig. 8 un-
der viewing illuminant C calculated for the Sony sensor
with acquisition illuminant F11.

Figure 10. Metamer subspaces of the spectra in Fig. 8 un-
der viewing illuminant C calculated for the experimental
six channel sensor with acquisition illuminant F11.

TABLE II. Parameters of Methods in Simulation I-IV. Symbols
Correspond to Previous Definitions

Target Parameter

MBD − MBD matrix rows: n = Round [2 (L*
max − L*

min) + 0.5]
MBD matrix columns: m = 8
Smoothness parameter: ρ = 0.0035
Max. noise amplitude: ξ = 0.03

MPRXYZ IT 8.7/2 Polynomial order: p = 3
MPRLabH IT 8.7/2 Polynomial order: p = 3
MPRLabK IT 8.7/2 Polynomial order: p = 3
RM IT 8.7/2 −
LPCC − Basis of reflection spectra consists of 25 spectra

which include 99.0% of the energy of 1269
reflection spectra of Munsell color chips.

POCS − Convex sets:
1. r ≥ 0 (positivity)
2. r ≤ 1 (boundness)
3. |Hr| ≤ 0.0035 (smoothness)
4. |Ωar – (c + ε)| ≤ 0 (Simulation I + III)
or |Ωar – (c + ε)| ≤ 0.01 (Simulation II + IV)
Exit condition:
||ri – ri+1||2 ≤ 10–5 or i > 100000
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Figure 11. Detailed view on metamer subspace no. 4 in
Fig. 9 (different perspective)

Figure 12. Results for the Sony RGB sensor (noise free). Values refer to the Vrhel database.

Figure 13. Results for the Sony RGB sensor (1% noise). Values refer to the Vrhel database.

TABLE III. Results for Simulation I (Sony RGB, No Noise).
Values Refer to All Illuminants

IT 8.7/2 Vrhel

E(∆E*ab) Std(∆E*ab) Max(∆E*ab) E(∆E*ab) Std(∆E*ab) Max(∆E*ab)

MBD 4.58 2.83 23.20 5.05 3.59 36.98
MPRXYZ 3.72 1.56 21.08 6.62 5.31 54.10
MPRLabH 3.84 1.62 16.35 6.02 4.14 44.88
MPRLabK 3.93 1.74 21.52 5.70 3.95 40.88
RM 9.46 7.45 48.58 14.16 10.86 74.34
LPCC 6.21 3.56 28.93 6.55 5.70 59.99
POCS 12.44 6.63 51.46 13.68 6.73 67.66
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Figure 14. Results for the six channel sensor (0% noise). Values refer to the Vrhel database.

Figure 15. Results for the six channel sensor (1% noise). Values refer to the Vrhel database.

TABLE V. Results for Simulation III (6 Channel, No Noise).
Values Refer to All Illuminants

IT 8.7/2 Vrhel

E(∆E*ab) Std(∆E*ab) Max(∆E*ab) E(∆E*ab) Std(∆E*ab) Max(∆E*ab)

MBD 1.83 3.26 13.21 2.21 2.05 21.53
MPRXYZ 3.55 9.60 32.28 12.95 18.03 278.93
MPRLabH 4.48 2.44 21.35 7.60 7.18 104.11
MPRLabK 0.86 0.60 7.00 3.03 2.99 76.53
RM 7.26 6.13 47.63 11.73 9.99 73.20
LPCC 2.58 2.20 23.38 5.26 7.51 77.20
POCS 3.61 1.76 14.71 4.90 2.85 29.66

TABLE IV. Results for Simulation II (Sony RGB, 1% Noise).
Values Refer to All Illuminants

IT 8.7/2 Vrhel

E(∆E*ab) Std(∆E*ab) Max(∆E*ab) E(∆E*ab) Std(∆E*ab) Max(∆E*ab)

MBD 8.13 5.21 27.47 9.77 7.98 97.42
MPRXYZ 8.50 6.28 50.90 11.83 9.95 80.84
MPRLabH 8.52 6.17 42.64 11.65 10.41 157.21
MPRLabK 8.54 6.17 42.70 11.10 9.24 93.92
RM 10.73 7.49 50.37 15.57 11.11 75.66
LPCC 9.46 5.41 34.33 10.50 7.88 63.12
POCS 15.97 9.11 86.46 18.08 10.00 109.84
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seems to be the reason why the MPR methods result
in bigger errors for the IT8.7/2 colors than the MBD
method. Unlike Simulation I they are surpassed by the
LPCC method for the Vrhel colors. The RM method
leads to almost the same results as in Simulation I.
The results show the second worst error rates and are
only exceeded by the POCS method. Allowing for noise
in the RM and POCS methods does not seem to have
any benefit for the Sony RGB sensor compared with
the other methods.

In Simulation III the error rates of all the methods
are lower than in Simulation I. This is due to the smaller
metamer subspaces of the six channel sensor compared
to the Sony RGB sensor (see Figs. 9 and 10). This simu-
lation shows a distinct difference between the MPR
methods which is very noticeable in the case of the Vrhel
colors. The regression in the CIE L*a*b* color space has
obvious benefits, as shown by the excellent mean error
of the MPRLabK method of ∆E*

ab = 0.86 using the IT8.7/
2 colors. The MBD method show the second best results
for the IT8.7/2 colors and again the best results in the
case of the Vrhel colors. Due to the smaller metamer
subspaces the LPCC and the POCS methods have rela-
tively small error rates and are better than the MPRXYZ
and MPRLabH methods. This simulation also demon-
strates a major difference between the error rates of the
target based methods with respect to the test color da-
tabases used. Once again this is the result of the corre-
lation with the training colors.

Simulation IV shows that the MPR methods consid-
erably amplify the influence of noise due to their higher
order terms in the polynomials. MPR methods are there-
fore not usable for noisy systems with many channels.
The absense of any allowance for noise in the LP prob-
lems of the LPCC method leads to an empty constraint
set in the case of various sensor responses, i.e., the
method cannot be used. This behavior was not observed
in Simulation II for the Sony RGB Sensor.

The strength of the RM method is evident in the pres-
ence of noise in the 6 channel system. For the IT8.7/2
colors the smallest mean errors are obtained with the
RM method. The MBD and POCS methods outperform
the other methods with respect to the Vrhel colors and
result in similar error rates. This demonstrates that
selecting the center of gravity of small metamer sub-
spaces in noisy systems offers no evident benefits com-
pared with the choice of an arbitrary color as in the
POCS method.

Finally these simulation experiments demonstrates
that the MBD method is one of the most precise meth-
ods for all of the analyzed noise-free systems as well as
for all noisy systems. All of the other investigated meth-
ods have their strengths only in one of these cases.

A drawback of the MBD method compared with the
other methods is its numerical complexity. To calculate
the MBD matrix 2 nm + 2 linear programming problems
have to be solved, using one iteration step to determine
the half line parameters. The MBD matrix in our simu-
lation experiments using an Athlon64 CPU, Matlab27 and
non time optimized code is calculated on the average in
10 seconds. The computation of many color corrections,
e.g., for all pixels of a high-resolution image, is therefore
very time consuming on standard hardware.

Conclusion
A new model based method for color correction was pre-
sented and compared with other methods by simulation
experiments. The new method characterizes the
metamer subspace of reflection spectra, which result in
the given sensor response, by calculating a metamer
boundary descriptor matrix in the CIE L*a*b* color
space. Using a larger matrix dimension we obtain a bet-
ter representation of the metamer subspace. By calcu-
lating the center of gravity of all different matrix entries
we achieve a good approximation of the color with the
smallest mean ∆E distance to all other possible colors
so that this is a good choice for achieving small mean
errors in color correction. The results also validate the
performance of our method for noisy systems.    
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