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tristimulus.8–11 The basic approach using spectral re-
flectance was originally designed by Maloney,1 where
the spectral reflection from an object surface comes
from multiplying the body and the surface reflection,
allowing the spectral reflectance of an illumination to
be estimated using an analysis of this multiplication
formula. Thereafter D’Zmura2 proposed general linear
and bilinear models to extend Maloney’s approach based
on the combination of multiple illuminations and mul-
tiple surfaces and the relationship between these two
factors. Plus, Tominaga3 proposed the method of illumi-
nation estimation using singular value decomposition,
while Forsyth4 introduced the concept of a canonical
gamut to solve the color problem, where a canonical
gamut consists of all possible combinations of the real
illumination and surface reflectance, which allows the
illumination and surface reflectance to be estimated by
analyzing the relationship between arbitrary reflectance
and the canonical gamut. More recently, illumination
classification methods have been proposed to reduce the
complexity of the computation when illumination infor-
mation can be obtained. For example, Wandell5 and
Tominaga6 estimate the power spectral distribution us-
ing the concept of a blackbody, yet here the illumina-
tion is classified according to the gamut for the scene,
which results in a regular error. Thus, accurate illumi-
nation estimation is needed.

In contrast, Land’s Retinex theory8 uses a tristimulus
input along with the gray world assumption that the av-
erage vector for the three channels is assumed to be the

Introduction
The color of an object from reflected light is determined
by the spectral power distribution of the illumination
and surface reflectance of the object and the grade of
the receptor’s response. As such, if illumination charac-
teristics could be estimated, such as the spectral power
distribution or chromaticity values of an illumination,
this information could be effectively applied to a vari-
ety of areas, such as pattern recognition, image process-
ing, color appearance modeling, and so on. In the case
of human beings, the original color of an object under
an arbitrary illumination is estimated as an integrated
judgment. Consequently, in practice the scene is cor-
rected by the human visual system. However an input
device, such as a camera, is unable to discriminate the
features of the original input responses, leaving a need
for illumination estimation to replicate the visual abil-
ity of humans.

Illumination estimation methods can be classified ac-
cording to whether they use spectral reflectance1–7 or a
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illuminant chromaticity for the scene or image. Other ap-
proaches using highlights have also been considered. For
example, Shafer9 proposed the dichromatic reflection
model, which includes two vector components: surface re-
flection and body reflection. The vector addition of these
weighted components then allows the light reflection to
be represented using the object surface, based on the as-
sumption that the spectral composition of the surface re-
flection is the same as the illuminant spectrum. Plus,
since the chromaticity distribution of pixels in a high-
light region makes line patterns from the surface to the
illuminant chromaticity or vice versa, a point on the line
can be represented as the linear combination of the body
and the illuminant chromaticity vector. Lee10 also pro-
posed a method for estimating the illuminant chromatic-
ity by analyzing regions with a chromaticity change, i.e.,
for highlight regions in an image, the chromaticity dis-
tribution of the highlight region makes a line (IPS
method), and if there are more than two lines, the cross
point is assumed to be the illuminant chromaticity. Re-
cently, Tan proposed a method of illumination estima-
tion using the inverse-intensity chromaticity space
(Inverse-Intensity method).11 Tan’s method creates a two-
dimensional space that can be applied without segment-
ing the colors in the image. This algorithm can also be
applied to highly textured surfaces.

Since Lee’s method basically estimates an illumina-
tion with either a synthetic or optimal image, it is diffi-
cult to obtain a good result for a real world scene, as the
camera responses include quantization errors and non-
uniform CCD sensors.12 Therefore to overcome this prob-
lem, Lehmann13 recently proposed an illumination
estimation method for real world scenes that uses an
additional 20 images to compensate for the camera noise.
Lehmann’s method, Color Line Search (CLS), consists
of three steps. First, the highlight regions are automati-
cally selected and their pixels transformed into chro-
maticity coordinates. Second, the color lines are
determined according to the dichromatic reflectance
using a Hough transform. Third, a consistency check is
applied based on a corresponding path search of the
image domain. Yet, this method cannot be applied when
additional images are unobtainable.

Accordingly, this article proposes an illumination esti-
mation method using the Mahalanobis distance that con-
siders the camera response distribution in a single image.

In general, the pixels in a highlight region consist of a
group of r − g chromaticity coordinates with an elliptical
shape, which is why they are influenced by various fac-
tors, including camera noise. Figure 1 shows an example
of line detection when using all the pixels in a highlight
region and only selected valid pixels, emphasizing the
difference in the resulting line detection.

Therefore, this article surveys the camera response
distribution for the total color regions and proposes a
method for valid pixel selection in highlight regions af-
ter calculating the Mahalanobis distance for the distri-
bution characteristic. Thereafter, a Principal Component
Analysis (PCA) is used to make a line for the selected
pixels in a highlight region and the illumination esti-
mated based on the line points.

Illumination Estimation Using Highlight Region
Illumination estimation using a highlight region is based
on using the illumination information captured by the
chromaticity distribution of the pixels in a highlight re-
gion. This method is relatively straightforward and fre-
quently used, as an illumination can be estimated based
on the output response without any specific camera op-
tics. The camera input response14 is indicated by the
following equation:

    
C e s dk = ( ) ( ) ( )∫ λ λ ψ λ λ

ϖ
, (1)

where Ck is the RGB value of the camera response, e(λ)
is the spectral power distribution, s(λ) is the sensitivity
of the camera, and ψ(λ) is the surface reflectance. Equa-
tion (1) can also be divided by the interface reflectance
and body reflectance, and described by a dichromatic
reflection model8 as follows:

    C C Ck S B= ( ) + ( )α θ β θ , (2)

where θ is determined based on the difference between
the illumination orientation and the normal vector of
the surface, α,β are geometrical factors, and CS and CB

are the interface reflectance and body reflectance of the
object, respectively. Thus, Eq. (1) can be represented as
follows:

    
C e s d e s dk = ( ) ( ) ( ) ( ) + ( ) ( ) ( ) ( )∫ ∫α θ λ λ ψ λ λ β θ λ λ ψ λ λ

ω ω
, (3)

Equation (3) is described using RGB values,
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where the interface reflectance part I is considered the
same as the illumination irradiating the object in the
scene; r and g are defined by normalizing the sum of R,
G, and B for the camera-specific RGB color space.
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Equation (5) is substituted for (R,G,B)T computed by
Eq. (4).

Figure 1. Example of line detection in highlight region.
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Valid Pixel Selection Using Distribution of CCD
Camera Response
A real image includes error factors due to the non-uni-
formity of the CCD sensor, electrical signal instability,
and camera noise.12 Figure 2(a) shows a uniform green
patch and is transformed to chromaticity coordinates un-
der D65 illumination. In an ideal case, a patch of uni-
form chromaticity is represented by a single chromaticity
coordinate. However, Fig. 2(b) shows that a uniform patch
creates a cluster of chromaticity coordinates. Thus, to
consider the total color tone, the camera response to the
Gretag Macbeth Color Checker was investigated based
on r − g chromaticity coordinates under D65 illumina-
tion using a Sony DSC-D700 CCD camera in a dark
booth. Figure 3(a) shows the 240 uniform color patches
of the Gretag Macbeth Color Checker. Although ideally

each color patch should be uniform, the RGB values of
the captured image varied due to the non-uniformity of
the camera response, as shown in Fig. 3(b), where the
non-uniformity of the RGB response induced a cluster
of r − g chromaticity coordinates, rather than a single
point, which is the major reason why the distribution of
highlight region responses was similar to an ellipse. As
such, a measure is needed that can consider the distri-
bution of a cluster. Therefore, in the proposed highlight
method, the covariance of the cluster is used to define
the Mahalanobis distance, then the average value of the
Mahalanobis distance among the 240 patches is used
as the threshold ζth value which was 0.9129 in this case,
to select valid camera responses,.

A block diagram of the proposed algorithm is shown
in Fig. 4. First, an input image is segmented into high-

Figure 2. CCD camera response for uniform patch; (a) uniform green patch and (b) camera response distribution based on r − g
chromaticity coordinates. Supplemental Material—Figure 2 can be found in color on the IS&T website (www.imaging.org) for a period
of no less than two years from the date of publication.

(a)  (b)

(a)       (b)
Figure 3. Distribution of CCD camera response based on r − g chromaticity coordinates; (a) Gretag Macbeth Color Checker and
(b) response distribution based on r − g chromaticity coordinates. Supplemental Material—Figure 3 can be found in color on the
IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.
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light regions based on the RGB intensity, which in this
article was determined as 20 × 20 pixels, to contain a
single surface. Based on the r − g chromaticity coordi-
nates, an (r, g) value is calculated for each pixel in a
highlight region using Eq. (5). Three representative
values are then determined based on the intensity in
each highlight region to effectively describe the feature
of the cluster. New populations are selected in advance
using the established threshold as a criterion for the
three representative values. To obtain the threshold
value, the standard deviation between the mean of the
camera response and the cluster of the color tone for
each Gretag Macbeth Color Checker patch is calculated,
then the threshold is defined as the Mahalanobis dis-
tance for a pixel based on the standard deviation of the
color tone. Next, the total tone is expanded by calculat-
ing the mean value for the Mahalanobis distance in each
patch. As a result, valid pixels are selected from among
the standard representatives in a highlight region.

Generally, the pixels of a highlight region form an el-
liptical shape based on their r − g chromaticity coordi-
nates. Thus, representatives need to be determined for
selecting valid pixels from a highlight region. As such,
Wandell’s method15 is used to determine cluster repre-
sentatives. A cluster is divided by 0 ~ 30%, 0 ~ 70%, and
70 ~ 100% according to the intensity, based on the mean
of the chromaticity values in each region. Therefore,
valid pixels are selected within the Mahalanobis dis-
tance of the standard representatives.

Mahalanobis Distance Method
The Mahalanobis distance indicates the relation between
clusters or the relation between a cluster and a pixel,16

    
M S S S Sd

T
th= −( ) −( ) <−∑ 1 ς ,  (6)

where Md is the Mahalanobis distance between an arbi-
trary pixel and the centroid, S is the location vector of
an arbitrary pixel,   S  is the mean vector of the training
set, and Σ is the variance-covariance matrix for the
training set. Based on the distance calculated using Eq.
(6), pixels are then selected that are close to the cluster’s
shape in a highlight region. This means that valid pix-
els are selected based on the Mahalanobis distance af-
ter analyzing the distribution of the CCD camera
responses. Figure 5 shows an arbitrary population P and
its representative x. When selecting two points a and b
from the boundary of the population,     

E a x E b x
� � � �

− < −( ) ( ) ,
for the Euclidean distance. However, for the
Mahalanobis distance,     

M a x M b x
� � � �

− = −( ) ( ) , where E and
M are Euclidean distance and Mahalanobis distance,
respectively. This is why the Mahalanobis distance is
used to represent the characteristic of a population
shape. After valid pixels are selected using the
Mahalanobis distance, the line can be detected using a
principal component analysis in each highlight region.
The illumination can then be estimated using the inter-
section point of the lines.

Line Detection Using Principal Component Analysis
In general, a Hough transform10,11,13 is used for line de-
tection in highlight regions. However, if image noise is
included, the result will inevitably involve an error.
Therefore, the proposed algorithm uses a principal com-
ponent analysis as the line detection method, since it is
stronger than a Hough transform in the case of noise.
Table I shows a performance comparison of a Hough
transform and PCA for line detection based on experi-
ments with three group images, as shown in Fig. 6. Fig-
ure 6(a) consists of foliage, Fig. 6(b) consists of faces, and
Fig. 6(c) consists of fruits under unknown or known illu-
mination. Each σr and σg is a standard deviation for the
center point, and the line detection result is defined as

    
η σ σ= − +1 2 2

r g

Figure 4. Block diagram of proposed algorithm.

Figure 5. Relation of Mahalanobis and Euclidean distance in
population.
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with η = 1 as the best. The line for a cluster is detected
using a statistical characteristic. As such, a principal com-
ponent analysis is used to determine a single line based
on the pixels of the r − g chromaticity coordinates in a
highlight region, i.e., for an arbitrary vector population,

      X x x xn
T= [ ]1 2 � ,  (7)

the mean vector of this population is then defined as,

    m E xx = { }, (8)

and the covariance of the vector is

    
V E x m x mx x x

T= −( ) −( ){ }, (9)

where T is the transpose. The second order vector can
then be analyzed using the pixels of the chromaticity
coordinates. At this time, the eigenvalue of Vx is selected
to determine the order of significance. i.e., a line is de-
tected in a highlight region based on calculating the
covariance value and significant eigenvalue for the high-
light pixels. As a result of detecting the line using the
principal component of the selected valid pixels, the

Figure 6. The test images used for experiment in Table I. Supplemental Material—Figure 6 can be found in color on the IS&T
website (www.imaging.org) for a period of no less than two years from the date of publication.

camera noise is reduced, making the line accurate. Also,
the estimated illumination error is smaller than the
error of the CLS method, which is shown in detail
through experiments.

Experiments
The proposed method was evaluated using a Sony DSC-
D700 CCD camera, which was calibrated prior to the
experiment. The image size was 640 × 480, the shutter
speed was set to 1/45 s, and the f-number was 2.4. The
experiment compared the lines obtained under four il-
luminations (Day, A, TL84, and CWF) in a Gretag
Macbeth Judge II Booth. To compare the results, the
pixels selected in the highlight regions were compared
with the lines based on the chromaticity coordinates.
In addition, the estimation error and reproduced im-
ages were compared for a quantitative result. Conse-
quently, the images reproduced by the proposed method
were visually closer to those obtained under the stan-
dard illumination than were those reproduced by con-
ventional methods. In addition, the proposed method
was able to accurately estimate the illumination using
only a single real world image.

Results of Valid Pixel Selection in Highlight Region
Figure 7 shows the pixels selected after applying the
proposed algorithm, where the pixels were selected us-
ing the average Mahalanobis distance based on the dis-
tribution of  the camera response.  Figure 7(a)
represents the segmented regions in the test image,
then Fig. 7(b) shows the distribution of pixels for a nose
region in chromaticity space, while Fig. 7(c) shows the
distribution of pixels for a cheek region in chromatic-
ity space. The circles (•) denote the pixels selected by
the proposed algorithm, whereas the squares (■■) de-
note the pixels selected by the CLS method. Although
the pixels in the highlight region were distributed
based on chromaticity coordinates, the pixels selected

TABLE I. Comparison between Hough Transform and PCA for
Line Detection

Group 1 (foliage) Group 2 (face) Group 3 (fruit)

Hough PCA Hough PCA Hough PCA
transform transform transform

σr 0.0082 0.0019 0.0822 0.0535 0.0847 0.0260
σg 0.0175 0.0172 0.0507 0.0282 0.1016 0.0154
η 0.9806 0.9826 0.9034 0.9395 0.8677 0.9697
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by the proposed method represented a cluster. Table II
shows a comparison of the variation in the line inter-
section points for the three methods. Each     Êl  and 

    Êg
is the estimated illumination in r − g chromaticity
space, while each σr and σg is the standard deviation
for the estimated illumination. Even though the stan-
dard deviation is smaller, it is not necessarily accu-
rate, despite being precise. However, the precision of
the data contributes to the performance of the algo-
rithm. As such, the proposed algorithms produced has
relatively smaller standard deviation for the intersec-
tion points than the conventional algorithms.

Comparison of Illumination Estimation Error
Four images were obtained under different illuminations
(Day, CWF, TL84, and A) in a light booth, and then the
estimation error was calculated using the proposed and
conventional methods. A visual comparison was made
with reproducing the image under a standard illumina-
tion. The error in each illumination was shown after
obtaining the same images under different illumina-
tions, see Table III.

Figure 7. Pixel distribution in highlight regions; (a) test image, (b) pixels in nose region in chromaticity space, and (c) pixels in
cheek region in chromaticity space. Supplemental Material—Figure 7 can be found in color on the IS&T website (www.imaging.org)
for a period of no less than two years from the date of publication.

TABLE II. Comparison of Variation in Line Intersection Points
in Highlight Region

Illuminations IPS method CLS method Proposed method

Day     Êr 0.2772 0.3150 0.3112
σr 0.2244 0.0200 0.0277

    Êg 0.2774 0.3166 0.3164
σg 0.1623 0.0370 0.0111

CWF     Êr 0.3198 0.3464 0.3425
σr 0.0719 0.0085 0.0109

    Êg 0.3126 0.3466 0.3377
σg 0.0679 0.0144 0.0087

TL84     Êr 0.3634 0.3660 0.3693
σr 0.2505 0.0381 0.0175

    Êg 0.3607 0.3585 0.3658
σg 0.0823 0.0268 0.0064

A     Êr 0.3288 0.3529 0.3623
σr 0.2523 0.0289 0.0203

    Êg 0.3842 0.3368 0.3422
σg 0.1205 0.0201 0.0034

(a)

 (b)  (c)
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Figure 8. Results of image reproduction; (a) test image under A illumination, (b) image reproduced using measured illumina-
tion, (c) image reproduced using IPS method, (d) image reproduced using CLS method, (e) image reproduced using Inverse-
Intensity method, and (f) image reproduced using proposed method. Supplemental Material—Figure 8 can be found in color on the
IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.

(b)

(c)  (d)

 (e) (f)

(a)
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Figure 9. Results of image reproduction; (a) test image under CWF illumination, (b) image reproduced using the measured
illumination, (c) image reproduced using IPS method, (d) image reproduced using CLS method, (e) image reproduced using
Inverse-Intensity method, and (f) image reproduced using proposed method. Supplemental Material—Figure 9 can be found in
color on the IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.

(b)

(c)  (d)

 (e) (f)

(a)
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Table II shows the estimated illumination and stan-
dard deviation of the estimated illumination of the lines
made by the chromaticity coordinates for the three meth-
ods in the same image under each illumination. Ideally,
although the lines should cross at one point, this does
not usually occur due to camera noise and the effect of
the illumination. The results were similar to the chro-
maticity coordinates, so Table III shows the quantita-
tive results for an accurate comparison. At this time, a
reduced estimation error was confirmed for all the illu-
minations with the proposed method. The method of
calculating the estimation error was as follows:

    ∆ ∆ ∆E r geg = +2 2 . (10)

Each estimated error was 0.0227 (Day), 0.0092 (CWF),
0.0437 (TL84), and 0.0342 (A) for the four illuminations,
which was smaller than that for all the conventional
methods, except for the Inverse-Intensity method with
A illumination. Then, reproductions were made under
the standard illumination based on the results of the
illumination estimation by the conventional methods
and proposed method. In Figs. 8 and 9, each (a) image
is captured under A and CWF illumination; each (b)
image is reproduced based on the measured illumina-
tion; each (c) image is reproduced by the IPS method;
each (d) image is reproduced by the CLS method; each
(e) image is reproduced by the Inverse-Intensity method;
and each (f) image is reproduced by the proposed
method. The proposed method performed better than the
conventional methods; although the proposed method
was not always absolutely accurate in determining the
measured illumination, the reproduced image was still
visually similar to the measured image.

Conclusion
This article proposed a method for illumination estima-
tion based on the distribution of CCD camera responses
in a real world image. The proposed method analyzes
the statistical data for the CCD camera responses, cal-
culates the Mahalanobis distance for the camera re-

sponses, and then selects pixels based on the relation
between the Mahalanobis distance and the cluster fea-
ture in a highlight region. In experiments, the images
reproduced using the proposed method were visually
more similar to under the standard illumination than
those reproduced by the conventional methods. In addi-
tion, the illumination was estimated using only a single
real world image. However, the proposed algorithm re-
quires accurate segmentation of highlight regions and
advance knowledge of the camera’s characteristics
through experimental settings, thereby limiting the
applicability of the proposed method. Also, the proposed
algorithm does not work well if there are two or more
surfaces in a single highlight region or there is no high-
light region or specular material in the image.    
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