
302

JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY® • Volume 49, Number 3, May/June  2005

Wavelet Domain Watermarking Using Maximum Likelihood Detection
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Traditionally, digital watermark detection algorithms are based on the correlation between the watermark and the media the
watermark is embedded in. Although simple to use, correlation detection is optimal only when the watermark embedding process
follows an additive rule and when the medium is drawn from Gaussian distributions. More recent works on watermark detection
are based on decision theory. In this article, a maximum likelihood detection scheme based on Bayes’ decision theory is proposed
for image watermarking in the wavelet transform domain. The decision threshold is derived using the Neyman–Pearson crite-
rion to minimize the missed detection probability subject to a given false alarm probability. The detection performance depends
on choosing a probability distribution function (PDF) that can accurately model the distribution of the wavelet transform coeffi-
cients. The generalized Gaussian PDF is adopted here. Previously, the Gaussian PDF, which is a special case, has been consid-
ered for such detection scheme. Using extensive experimentation, the generalized Gaussian PDF is shown to be a better model.
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plicity. Another advantage is that the detection can be
‘blind’, i.e., the original media is not required in the
detection process. Blind detection is often more desir-
able and has wider applications.1 However, correlation
detection is known to be optimal only when the embed-
ding process follows an additive rule and the medium is
drawn from Gaussian distributions.1

More recent works on watermark detection are based
on decision theory.2–7 For this type of detection, an ac-
curate model for the probability distribution function
(PDF) of the original media is required. For example, in
the works of Barni et al.2 and Kwon et al.,7 maximum
likelihood (ML) detection schemes based on Bayes’ de-
cision theory are proposed for non-additive watermarks.
A decision threshold is derived using the Neyman–
Pearson criterion to minimize the missed detection prob-
ability subject to a given false alarm probability. Barni
et al.2 modeled magnitude of a set of discrete Fourier
transform (DFT) coefficients using a Weibull PDF
whereas Kwon et al.7 modeled the discrete wavelet trans-
form (DWT) coefficients using a Gaussian PDF. Experi-
mental results in the context of robustness show that
these schemes have better performance than the corre-
lation detection. Moreover, blind detection is also pos-
sible by estimating the parameters of the PDF from the
watermarked media.4

In this article, we propose a new ML detection model
for image watermarking in DWT domain. It is based on
modeling the DWT coefficients by a generalized
Gaussian PDF. A decision threshold is also derived us-
ing the Neyman–Pearson criterion. The Laplacian and
Gaussian PDFs are special cases of the generalized
Gaussian PDF. Thus, the generalized Gaussian model
is expected to result in a better watermark robustness
as compared to the Laplacian and Gaussian models.
Indeed, this result is shown to be generally true in our
extensive experiments. The results in this article have

Introduction
A digital watermark is an imperceptible mark placed
on multimedia content for a variety of applications in-
cluding copyright protection, fingerprinting, broadcast
monitoring, etc. In the recent years, digital watermark-
ing has become an active area of research due to rapid
development of multimedia networks and thus the need
to prevent unauthorized duplication and distribution of
multimedia content. In a watermarking system, the
detection stage can be considered as the most crucial
stage. Good detection schemes enable the recovery of a
watermark with low probability of false detections. Two
types of false detections are possible during the detec-
tion process. A false alarm occurs if a watermark is de-
tected when no watermark has been embedded. On the
other hand, a missed detection occurs when an exist-
ence of a watermark is rejected even though one is
present. The complexity of the detector, the type of
embedder used, and the characteristics of the watermark
channel are among other things that influence the per-
formance of the detection process.

Traditionally, watermark detection algorithms are
based on computing correlation between the
watermarked media and the watermark itself. Correla-
tion detection is usually preferred because of its sim-
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been presented in part in Ref. 8. Proofs of some of the
important results are given in Appendix A, available as
Supplemental Material. The notation used is as follows.
Non-bold letters are used to represent scalar quantities
and functions, whereas bold letters are used for vectors.
All vectors are real valued and expressed in column
form.

Embedding Stage
In DWT domain watermarking, a watermark is embed-
ded by modifying the DWT coefficients of a given im-
age. Using DWT multiresolution decomposition,9 an
image can be separated into lower resolution subband
(LL1), and high resolution horizontal (HL1), vertical
(LH1) and diagonal (HH1) subbands. By repeating the
process, a mutiple level pyramid decomposition can be
obtained, see Fig. 1. For a watermark to be impercep-
tible, it is embedded in high resolution subbands where
the human eye is less sensitive to noise.10,11

Let x = [x1 x2 . . . xN]T be the vector representing N
DWT coefficients selected to embed a watermark w =
[w1 w2 . . . wN]T chosen from a set M. The corresponding
DWT coefficients of the watermarked image is repre-
sented as y = [y1 y2 . . . yN]T. We view xi, wi and yi as
realizations of the random variables Xi, Wi and Yi, re-
spectively, for i = 1, 2, . . . , N. The PDFs of Xi, Wi and Yi

are denoted as fXi
(xi), fWi

(wi) and fYi
(yi), respectively.

Embedding is usually done using either the additive
rule as

yi = xi + αiwi (1)

or the non-additive rule as

yi = xi (1 + αiwi), (2)

for i = 1, 2, . . . , N, where αi is a positive scalar repre-
senting the embedding strength. The larger the embed-
ding strength, the more robust is the watermark.
However, this also means more distortion is being in-
troduced into the image, thus the visual quality of the
image may be affected. Therefore, it is important to tune

the embedding strength to balance between robustness
and imperceptibility of the watermark.

If the additive rule is used, then a correlation detec-
tor is usually employed to detect the watermark. As men-
tioned earlier, in correlation detection the presence of a
watermark is determined by examining the correlation
between the watermarked image and the watermark
itself. The watermark is said to be detected if the corre-
lation value is greater than a predefined threshold. The
detection threshold has to be carefully selected to en-
sure accuracy in the detection process.12

On the other hand, non-additive rule usually works
with an ML detector. Detection then amounts to
thresholding a log likelihood function. In this case, the
detection threshold and a correct PDF model for the
DWT coefficients of the original image are required. The
generalized Gaussian PDF is a commonly adopted
model.5 In the following sections, we consider embed-
ding using the non-additive rule to derive an ML detec-
tion model based on the generalized Gaussian PDF.

Maximum Likelihood Detection
The components of the watermarks from the set M are
assumed to be independent and uniformly distributed
in [–1, 1] so that

      
f f w
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=
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The set M is thus the N-dimensional space of [–1, 1],
written as [–1, 1]N. Specifically, if w* = [w1

* w2
* . . . wN

*]T

is the embedded watermark, we can write M = M0 ∪ M1,
where M0 = {w : w ≠ w*} and M1 = {w*}. Note that w = 0
= [0 0 . . . 0]T that corresponds to a non-marked image is
already included in M0.

In ML detection, two hypotheses are established as
follows:

H0: y is not marked with w*

H1: y is marked with w*

The hypothesis H1 is accepted or equivalently the
watermark w* is detected if
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where fY(y|Mj), j = 0, 1, are the conditional PDFs and λ
is the decision threshold. The ratio l(y) is called the like-
lihood ratio. The conditional PDF fY(y|M0) can be ob-
tained as
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The Nth order integral in Eq. (5) should be taken over
the set M0 instead. But M0 and [–1 1]N differ by a single
point w* which is of zero measure. Thus, integrating
over [–1, 1]N is the same as integrating over M0. Using
Eq. (3) and under the assumption that the DWT coeffi-
cients are independent, we can express Eq. (5) as

      
f M f dwN

i

N

iY Y i iy y w
i

| | .0 1
1

1

1

2
( ) = ( )−

=
∫∏ (6)

Figure 1. A DWT three-level pyramid decomposition of an
image
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In the non-additive rule, Eq. (2), the embedding
strength αi is set much lower than unity to make the
watermark invisible. For small αi, the integrals in Eq.
(6) can be approximated so as to result in

fY(y|M0) ≈ fY(y|0). (7)

Barni et al.2 derived this approximation for Weibull
PDF, and it is also used by Kwon et al.7 for Gaussian
PDF. A general derivation of Eq. (7) which is valid for
any PDF is given in Appendix A, available as Supple-
mental Material. Using Eq. (7) and the property of con-
ditional independence of Y1, Y2, . . . , YN, the likelihood
ratio l(y) can be expressed in terms of the PDFs of X1, X2,
. . . , XN as
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By taking the natural logarithm of the likelihood ra-
tio, the decision rule Eq. (4), becomes
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where λ′ = ln λ + ΣN
i =1 ln(1 + αiwi

*) is now the new deci-
sion threshold.

Neyman–Pearson Criterion
When a watermarked image is distorted, the missed de-
tection probability PMD can be much larger than the false
alarm probability PFA.2 To overcome this problem, the
Neyman–Pearson criterion can be used to obtain the de-
cision threshold λ′ in such a way that the missed detec-
tion probability is minimized subject to a specified false
alarm probability, say P*

FA. In view of Eq. (7), once P*
FA

has been fixed, λ′ can be derived from
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By the central limit theorem, the PDF of z(X) can be
assumed to be Gaussian with mean
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and variance
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In this regard, Eq. (10) can be rewritten as
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where erfc(⋅) is the complementary error function.
Hence, the decision threshold λ′ is obtained as

      
λ σ µ' erfc .*= ( ) +−

( ) ( )
1 22 2PFA z zX X (15)

Probability Distribution Model
It is important to choose a PDF that matches the actual
distribution of Xi to achieve optimum behavior of the
ML detector. We propose modeling Xi as random vari-
able having a generalized Gaussian PDF with zero
mean. The Gaussian model by Kwon et al.7 is also in-
cluded here for comparison.

Generalized Gaussian Model
The zero mean generalized Gaussian PDF is expressed
as

    
f x a eX i i
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where γi > 0 is the shape parameter of the distribution.
The positive constant ai and bi are given as
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respectively, where σi
2 is the variance of the distribu-

tion and Γ(u) =     
t e dt uu t− −∞

>∫ 1
0

0, ,  is the gamma function.
Note that γi = 1 yields the Laplacian PDF and γi = 2 yields
the Gaussian PDF.

Substituting Eqs. (16) and (18) in Eq. (9), we obtain
the decision rule as
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In view of Eq. (15), mean and variance of z(X) = z(Y)|Y=X

are required to obtain λ′gg, the decision threshold for
the generalized Gaussian case. Equivalently, we need
to find the mean and variance of |Xi|γi . It is shown in
Appendix A, available as Supplemental Material that
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where c is a constant. In particular, when c is a positive
even integer, the even moments of Xi are given by Eq.
(20). When c = γi, it follows from the property of gamma
function that Γ((c + 1)/γi) = Γ(1 + 1/γi) = Γ(1/γi)/γi. Substi-
tuting this into Eq. (20) yields
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Since V[|Xi|γi] = E[|Xi|2γi ] – (E[|Xi|  γ i])2, it follows from
Eq. (20) that
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With Eqs. (21) and (22), it is straightforward to obtain
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and
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In Eq. (19), the variance σi
2 and shape parameter γi have

to be estimated from the DWT coefficients of either the
original image or the watermarked image. As the em-
bedding is done in an imperceptible manner, estimation
using the DWT coefficients of the watermarked image
should be close to that of the original image.4 Let B be
the DWT subband containing xi and having NB coeffi-
cients. All coefficients in B are assumed to be identi-
cally distributed, i.e., they have identical PDF. Then an
unbiased estimator of σi

2 is given as

    

ˆ ,σ i
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where y is the corresponding DWT coefficient of the
watermarked image (possibly distorted) in B. To obtain
an estimator for γi, we express Eq. (20) as
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Note that for a fixed c ≠ 2, the right-hand side of Eq.
(26) is solely a function of γi. Thus, by defining r(γi) =
σi

2c/E2[|Xi|c], we can estimate γi as
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The case when c = 1 is first given by Mallat,9 and is
also studied by Sharifi and Leon–Garcia13 who referred
to r as the generalized Gaussian ratio function.

One way to solve Eq. (27) is to approximate the in-
verse of the function r using any of the well-known func-
tion interpolation methods.14 The knowledge of the range
of r would be useful to achieve the desired accuracy in
the interpolation process. When c = 1, we show in Ap-
pendix A, available as Supplemental Material that r is
a strictly decreasing function of γi with
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and,
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For high resolution DWT subbands, it is sufficient to
apply interpolation based on 0.1 ≤ γi ≤ 3.4

Gaussian Model
If Xi is modeled as a Gausian random variable with PDF
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where µi is the mean and σi is the variance, then the
decision rule becomes
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By noting that the central moments of Xi 
15 are given as
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it is straightforward to show that
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as required to form the decision threshold λ′g. When µi

= 0, we see that Eqs. (33) and (34) reduce to Eqs. (23)
and (24), respectively, with γi = 2.

Experimental Results
The proposed ML detector is tested using the 512 × 512
images shown in Fig. 2. During the watermark embed-
ding stage, each image is first transformed by DWT us-
ing a Daubechies filter to obtain a three-level DWT
decomposition. For simplicity, we embed to all the DWT
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coefficients in LH3, HL3 and HH3 subbands. Embedding
can also be restricted to say the first 5000 coefficients
with the largest magnitude in these subbands.7 This
would minimize the noise introduced by the watermark
in the image.

A constant embedding strength α is used for all the
DWT coefficients in the three subbands. Table I shows
the values of α chosen so that the peak signal to noise
ratio (PSNR)16 of each watermarked image is about 45
dB. A PSNR of 40 dB and above is usually considered
as good image quality. The steps for testing the robust-
ness of the proposed ML detector are summarized as
follows:
1. Select an image and obtain its DWT.
2. Generate a set M′ containing 100 watermarks.
3. Select a watermark from M′ and embed to the

subbands LH3, HL3 and HH3 of the image.
4. Distort the watermarked image using a standard

image processing operation, e.g., JPEG compression.
5. Compute     ̂σ i

2  and     ̂γ i  using Eqs. (25) and (27),
respectively, from the distorted watermarked image.

6. Compute the decision threshold λ′gg using Eq. (15) with
µz(x) and σ 2

z(x) given by Eqs. (23) and (24), respectively,
and P*

FA = 10 9 or erfc–1 (2 P*
FA) = 4.24.

7. Compute       z ỹ( )  as in Eq. (19) (    ̃y  being the distorted
version of y) for all the watermarks in M′0, and then
compare them with λ′gg.

8. If       z ỹ( ) > λ′gg for the embedded watermark but not for
any other watermarks in M′0, then the detection is
said to be successful. Otherwise it is a failure.

For each standard image processing operation, steps
1–8 are repeated for 10,000 trials for each image. A dif-
ferent set M′0 is used in each trial. The percentage of
successful detections are recorded for each image.

Tables II through V shows a set of the results obtained.
The generalized Gaussian model is compared with the
Gaussian and Laplacian models. Similar results can also
be found in Ref. 8 with P*

FA = 10–6. Here, the non-zero
mean Gaussian model is also included in the compari-
son. In Table II, the watermarked images are com-
pressed by JPEG with a 50% quality factor. In Table
III, the watermarked images are low pass filtered us-
ing a 4 × 4 spatial filter. In Table IV, the pixels of the
watermarked images are up-scaled by a factor of 3.
Lastly, in Table V, the watermarked images are cor-
rupted by zero mean Gaussian noise of variance 0.5.
Except for the images ‘Barbara’, ‘Crowd’ and ‘Bridge’ in

Figure 2. Test Images

TABLE I. Watermark Embedding Strength for Images

Image α

Barbara 0.185
Crowd 0.150
Baboon 0.170
Goldhill 0.205
Fishing boat 0.175
Zelda 0.215
Bridge 0.155
LAX 0.190

TABLE II. Percentage of Successful Detections Under JPEG
Compression

Image Generalized Gaussian Gaussian Laplacian
Gaussian  (non-zero mean)

Barbara 100.00 75.66 75.66 99.13
Crowd 100.00 98.25 98.30 99.98
Baboon 100.00 99.95 99.95 100.00
Goldhill 100.00 91.26 91.28 99.83
Fishing boat 99.93 85.10 85.13 98.51
Zelda 100.00 90.33 90.33 99.65
Bridge 100.00 97.63 97.63 100.00
LAX 100.00 81.11 81.13 99.71
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Table III, it is clear from the results that the general-
ized Gaussian model yields better detection. Also note
that the non-zero mean Gaussian model offers only little
improvement over the zero mean Gaussian model. This
is somewhat to be expected insofar as the mean of the
DWT coefficients in the subbands is close to zero.

Conclusion
In this article, we have proposed an ML detection model
for image watermarking in DWT domain. A generalized
Gaussian PDF is used to model the distribution of the
DWT coefficients. Based on the work of Barni et al.,2 we
explicitly derived a decision threshold for the proposed
model using the Neyman–Pearson criterion. Our exten-
sive experiments revealed that the generalized Gaussian
PDF results in a better detection performance as com-
pared to the Gaussian and Laplacian PDFs. The gen-
eral idea presented here is also applicable to watermark
detection in other forms of multimedia data and forms
the basis of on-going research.    
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TABLE III. Percentage of Successful Detections Under Low
Pass Filtering

Image Generalized Gaussian Gaussian Laplacian
Gaussian  (non-zero mean)

Barbara 33.09 54.66 54.68 68.37
Crowd 65.21 75.08 75.08 55.40
Baboon 91.40 88.31 88.40 90.10
Goldhill 97.80 70.34 70.34 90.36
Fishing boat 90.94 47.84 47.87 45.90
Zelda 95.51 66.33 66.25 79.33
Bridge 41.07 59.21 59.23 86.35
LAX 67.32 31.53 31.51 58.55

TABLE V. Percentage of Successful Detections Under
Gaussian Noise

Image Generalized Gaussian Gaussian Laplacian
Gaussian  (non-zero mean)

Barbara 100.00 97.10 97.10 100.00
Crowd 100.00 99.70 99.79 100.00
Baboon 96.22 88.76 88.64 94.48
Goldhill 99.19 95.23 95.37 98.81
Fishing boat 89.13 51.12 51.28 62.32
Zelda 99.82 94.90 94.92 98.91
Bridge 100.00 99.63 99.66 100.00
LAX 99.28 96.70 96.77 99.08

TABLE IV. Percentage of Successful Detections Under
Scaling

Image Generalized Gaussian Gaussian Laplacian
Gaussian  (non-zero mean)

Barbara 99.90 80.41 80.29 98.93
Crowd 99.93 95.82 95.84 99.89
Baboon 100.00 99.80 99.80 100.00
Goldhill 100.00 86.20 86.31 99.43
Fishing boat 99.94 72.30 72.61 95.17
Zelda 100.00 93.03 93.11 99.92
Bridge 100.00 95.53 95.53 100.00
LAX 100.00 80.73 80.91 100.00


