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Application of Spectral Estimation Methods to the Design of a

Multispectral 3D Camera
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This article reports on the colorimetric improvement of a multispectral 3D digitizer through scanning at a small number of near-
optimal wavelengths. Optimal wavelengths were first investigated theoretically based on the criterion of minimal color differ-
ences over some sets of reflectance curves using PCA-based and spline-based spectral estimation methods. Sets of three, four and
five optimal sampling wavelengths were derived to within +5 nm for each one based on the spread of variation for different
combinations of the method and the data set used for the derivation. This provided a basis for the selection of HeCd, ArKr, HeNe
and DPSS commercial laser lines for which the colorimetric performance was predicted. This was then tested in the laboratory,
where color rendition charts were scanned with the camera at seven wavelengths, after which the charts were computer ren-
dered on a CRT display. Both the theoretical prediction and the experimental observation indicate that four well-chosen wave-

lengths are adequate for proper rendition of the charts.
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Introduction

The recommended practices! for measuring the color of
reflecting objects require that the complete reflectance
spectra be obtained across the visible range. This is then
weighted by spectral power distributions of standard
illuminants and by color matching functions of standard
colorimetric observers to obtain tristimulus values that
correlate with the visual perception of color. Good table-
top spectrophotometers typically can record a reflectance
spectrum from 380 nm to 780 nm in steps of 5 nm for a
total of 81 points. Spectrophotometers are good at pre-
dicting colors under various types of illuminants and
for establishing colorant formulation. The spectropho-
tometric approach is however impractical in traditional
color imaging applications, which rely instead on pixel-
wise measurements of red-, green- and blue-filtered sig-
nals. The colors measured with these 2D cameras
incorporate the illumination used during image acqui-
sition. The appearance under other illuminants and the
colorant composition cannot be obtained, which can be
a major drawback in applications such as art conserva-
tion and internet shopping. To overcome this limitation,
multispectral 2D cameras are currently being devel-
oped?*® which make use of a small number of filters in
addition to, or in place of, the traditional RGB filters.
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All these filters are usually broad band, and abundant
literature has been published regarding the choice of
their spectral transmittance properties. The 3D laser
scanner is one class of instrument that has not so far
received much attention from the color imaging com-
munity. It brings the unique challenge that color accu-
racy must result from proper selection of a small number
of extremely narrow-band scanning lasers in combina-
tion to adequate spectral estimation methods.

This article reports recent progress on the develop-
ment of a 3D multispectral laser scanner making use of
four lasers. These lasers were chosen following a theo-
retical investigation where sets of three, four, and five
optimal scanning wavelengths were determined based
on the minimal average color difference over various sets
of reflectance curves and for different spectral estima-
tion methods. This choice was then tested in the lab,
where color rendition charts were scanned at seven
wavelengths. Colors were extracted for various subsets
of the seven wavelengths and the charts were computer
rendered on a CRT display. Both the theoretical predic-
tion and the experimental observation indicate that four
well-chosen wavelengths are adequate for proper color
rendition of the charts.

The NRC High Resolution Color Laser Scanner

This study discusses the improvement of the colorimet-
ric performance of a multispectral 3D laser scanner de-
veloped at the National Research Council of Canada.
The scanner is designed to capture the shape and color
of three-dimensional objects, such as fine art paint-
ings and archeological artifacts,®® which can then be com-
puter rendered with high realism.® The camera works by
projecting a laser spot on the object, which is then im-
aged on a CCD looking at the scene from a slightly dif-
ferent direction from that of the incoming beam. Spatial



coordinates of surface elements are obtained by trian-
gulation. An autosynchronized'® scanning mechanism al-
lows acquisition of a line profile on the object. This line
is scanned across the object and a dense mesh of spatial
coordinates is obtained. With this flying spot technique,
only one surface element is illuminated at any given
time which makes the system immune to inter-element
reflection problems.

In a three laser configuration of the camera, super-
imposed red (633 nm), green (532 nm), and blue (442
nm) laser beams are used for the projection, and the
CCD image is split into its three components with a
prism. High speed peak detection electronics extract the
centroid positions and the amplitudes of the three peaks.
The peak positions, along with the angular scanning
angles, serve to calculate the (x,y,z) spatial coordinates
of the surface elements (surfels). The amplitudes of the
peaks depend on the incidence and reflection angles at
the surfels, and these angles can be calculated from the
(x,y,z) information. The peak amplitudes are then con-
verted into reflectance values through a calculation that
compensates for the geometric effects.!* The peak de-
tection circuitry has provision for the simultaneous de-
tection of up to four peaks so a fourth laser can be added
to the system without affecting the data acquisition
speed (typically 10 points per second). If more than four
lasers are to be used, they must be grouped in sets of
four (or less) and the object is then digitized in multiple
scans.

The reflectance values obtained for the surface ele-
ments represent true intrinsic properties of the objects
and are useful for monitoring the physical state of an
artifact, for example before and after some restoration
work. In the case where the visual rendering of the ob-
ject is important, in virtual reality applications for ex-
ample, it is desirable to attribute some perceptual color
values to the surface elements. With red, green and blue
lasers only, it is tempting to feed the measured red, green
and blue reflectances directly into the input channels
of the display. This is not recommended'? and produces
a poor reproduction of the colors, which are furthermore
dependent of the display. Instead, the recommended
practice is to convert the camera signals into a device
independent color space used as an interconnection with
all the possible display devices. The next sections dis-
cuss how this conversion is best performed and identi-
fies how many and which laser lines to use for best
colorimetric results.

Methods and Data

The general approach for calculating colors from laser
scanner data is to first approximate the reflectance spec-
trum at all wavelengths between 400 and 700 nm using
interpolation and extrapolation. The estimated spectra
are then used to calculate CIE tristimulus values fol-
lowing the recommendations of the CIE. Two spectral
estimation methods were considered in this study: Prin-
cipal Component Analysis (PCA) and Spline interpola-
tion. Calculations of the mean CIE color difference were
performed with these two methods on six sets of spec-
tral data. Unconstrained optimization was used to de-
termine the best sampling wavelengths for various
combinations of method, data set, and number of wave-
lengths. These topics are now briefly discussed, after
which results and recommendations are presented.

PCA-Based Spectral Estimation
This estimation method requires some set of basis func-
tions, called Principal Components, derived from a col-

lection of spectra of which the curve being estimated is
a plausible representative. Our calculation of the Prin-
cipal Components coincides with the method recently
described by Fairman and Brill.’® Given a collection of
n spectra uniformly sampled at m (= 31 in this study)
wavelengths from 400 to 700 nm in steps of 10 nm, the
PCA method starts by building a matrix R of dimension
m x n where R is the reflectance of the j** sample at
wavelength 4, minus the average reflectance R,,,(4,) for
the collection at this wavelength. Each column of R then
represents a point in m-dimensional A space. R x RT is
proportional to the covariance matrix, and its eigenvec-
tors U,, sorted in descending order of associated eigen-
values, provide a suite of orthogonal directions along
which the spread of the distribution of points, in m-di-
mensional space, is greatest. These are the Principal
Components (PCs) of the collection. The spectra in the
collection are then best approximated, in a global least
square sense, by a linear combination of as many of the
first PCs one wishes to consider, plus the average spec-
trum. Formally, the coefficients for this linear combi-
nation are the mathematical projection of the spectrum
under consideration on each of the PCs. These cannot
be calculated if the spectrum is known at just a few
wavelengths. Instead, our PCA-based spectral estima-
tion method adjusts some coefficients by forcing the es-
timated curve to pass through each of the sample points.
For example with three sampling wavelengths (4,, A,
A3) the approximation reads:

R.imatea = Rave + @,/ U; + a,U; + a,U,,
where
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az| |Ui(43) Us(43) Uz(l3)] |R(A3)—Ryye(43)

which is easily generalized to more wavelengths. Occa-
sionally an estimated spectrum has excursions outside
the range 0 <R < 1, which are then clipped to that range.

Spline-Based Estimation

With this method (cubic spline), third order polynomi-
als are adjusted between each pair of consecutive
sampled points in such way that the resulting curve
passes through the points and is continuous through
the second derivative. The first and last polynomials
can be used to extrapolate towards the blue and red ends
of the spectrum. The simplest variation called natural
cubic spline, which sets the second derivative to zero at
the end points, cannot extrapolate the data well. Some
rule is needed to keep the extrapolated spectra not too
divergent from the sampled end points. In this study
we chose to replicate at 400 and 700 nm the reflectances
measured at the shortest and longest sampling wave-
lengths before fitting a natural cubic spline. This rule
was retained after testing a few possibilities for the end
point conditions and after observing that the simple
replication for the end points made very little differ-
ence on color calculations compared to using the true
reflectances at 400 and 700 nm. As with the PCA method,
estimated reflectance values that fall outside the range
0..1 are clipped to that range.

Color Difference Calculation
The criterion that was employed for judging the good-
ness of a spectral estimation method with given wave-
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lengths was to compare the average difference between
true and estimated colors over some comprehensive data
sets. The CIEDE2000 color-difference formula' was re-
tained. With this formula, CIE tristimulus values X, Y
and Z are first computed as the integral of the spectra
weighted by the color matching functions of the stan-
dard colorimetric observer times the spectral power dis-
tribution of the CIE D65 standard illuminant. The X, Y
and Z are next converted into CIE L*a*b* values.' The
CIE DE2000 formula is designed to generate a number,
AE,, that correlates with the perceived difference be-
tween two colors of differing L*a*b* values. A AE, of 1
roughly means that two colors are at threshold of vi-
sual differentiation when judged side-by-side under ref-
erence conditions. The CIEDE2000 formula is designed
for color differences that are less than a few units. One
issue is the choice among the 2° standard colorimetric
observer and the 10° standard colorimetric observer for
use in the calculations. Our understanding is that the
standard viewing conditions that were used for the es-
tablishment of the CIEDE2000 formula call for the 10°
standard colorimetric observer. On the other hand, col-
ors measured with a digital imaging system are likely
to vary within very small fields and one would think
that the 2° standard colorimetric observer would be more
appropriate. The 10° standard colorimetric observer was,
however, retained throughout this study except for one
test where the two observers were compared.

Wavelength Optimization

A function MeanError(4,, A,, ... ) is first implemented
that returns the mean AE, error over a collection for a
given set of sampling wavelengths and for the particu-
lar estimation method considered:

MeanError(1,, A, ...)

1. for each color sample of the set:

1.1. Read the reflectance R(4,), R(A,)... from its true
spectral reflectance curve R, ().

1.2. Estimate the spectral reflectance R,,,;,.;.c(1) over
the visible range.

1.3. Calculate CIE L* a* b* values from the estimated
spectrum as well as from the true spectrum.

1.4. Apply the CIEDE2000 color difference formula to
the true and estimated L*a*b* to obtain AE,,.

2.  Return the average AE, over all the color samples.

The set of wavelengths that minimize the MeanError()
function is then sought with the Nelder-Mead simplex
method.’® How the method works is best understood in
the case of a search for three optimal wavelengths {A,,
A9, A3). The method then starts by building a small tet-
rahedron in three-dimensional space around some ini-
tial estimate. Vertices of the tetrahedron are then moved
either away or closer to their opposing faces, or are pro-
jected through them, in order to make MeanError(4,,
Ay, A3) smaller. The tetrahedron eventually collapses
around a minimum. The method generalizes to higher
dimensionality of A space, where the “hyper-tetrahe-
dron” is called a simplex. The convergence of the method
is still a topic of discussion among mathematicians.”

Data Sets

A first data set considered for the calculations refers to
the 554 samples of the OSA-UCS color atlas. This color
order system was designed in such way that the color
difference between adjacent color points is perceptually
constant. Each sample was measured in our laboratory
with a Spectrogard II spectrophotometer for the 8°/dif-
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TABLE I. Optimal Sets of Three, Four and Five Sampling Wave-
lengths for the PCA-Based Method Based on the Criterion of
Minimum Mean CIEDE2000 Color Difference Over the Data Set.
The CIE D65 Standard llluminant and the CIE 10° Standard
Observer Are Assumed.

Data set Optimal wavelengths (nm) Mean AE,,
OSA-UCS 443.4 534.0 608.5 1.7
COLORCHECKERDC 456.0 534.0 605.0 2.0
ESSER 447.5 535.5 601.1 2.1
NGAPANELS 441.9 536.0 613.8 2.4
GAMBLIN 443.8 535.2 600.9 2.8
ROSS 443.7 536.6 598.4 2.0
OSA-UCS 446.4 512.4 562.5 612.7 0.61
COLORCHECKERDC 445.9 517.6 564.6 614.7 0.75
ESSER 445.3 513.8 563.2 608.2 0.98
NGAPANELS 445.1 524.2 572.9 621.5 0.99
GAMBLIN 445.8 520.9 566.6 637.4 1.08
ROSS 446.8 512.6 554.7 608.5 0.75
OSA-UCS 442.0 496.1 536.7 581.6 618.1 0.34
COLORCHECKERDC 447.6 496.4 542.5 581.8 621.2 0.42
ESSER 443.0 493.4 530.7 572.5 613.3 0.48
NGAPANELS 446.1 496.9 536.3 581.6 623.0 0.65
GAMBLIN 445.2 487.6 531.8 574.5 617.3 0.63
ROSS 445.2 484.7 523.8 564.8 612.5 0.47

fuse geometry. The reflectance curves were re-sampled
every 10 nm from 400 to 700 nm to produce column vec-
tors of 31 components.

Five additional sets, identified here as COLOR-
CHECKERDC, ESSER, GAMBLIN, NGAPANELS, and
ROSS were obtained from Prof. R. S. Berns of the Roch-
ester Institute of Technology. COLORCHECKERDC (240
samples with some neutrals replicated) and ESSER (283
samples) are commercial color charts used with digital
cameras and scanners. GAMBLIN (63 samples) was fab-
ricated using the Gambin conservation colors'® which
were mixed with white at two different concentrations.
NGAPANELS (219 samples) is made of dry pigments
dispersed in PVA, each pigment mixed with titanium
white. These are the pigment collection of the National
Gallery of Art, Washington (NGA). ROSS (68 samples)
is artist oil paints, also mixed with titanium white, pre-
pared by chief of conservation, Ross Merrill, at NGA.

Optimal Wavelengths

Tables I and II give the sets of three, four, and five sam-
pling wavelengths that were found to minimize the mean
AE, error for the six data sets using the PCA-based and
the spline-based spectral estimation methods. As can
be seen, the mean error is cut by about half going from
three sampling wavelengths to four sampling wave-
lengths, and by another half going from four to five. The
optimal wavelengths are fairly independent of the data
set used to derive them, varying less than £10 nm most
of the time. Furthermore, this variability is higher when
the number of wavelengths is larger, but the spectral
estimation becomes less sensitive to the choice of wave-
lengths as their number increases.

The PCA-based method is seen to perform slightly bet-
ter than the spline method. The advantage of the PCA-
based method over the Spline method is at least true
when the color to be estimated is part of the set that
was used to derive the Principal Components and the
optimal wavelengths. The sensitivity of the PCA method
with respect to the “training set” used to derive the prin-
cipal components was tested by performing a mean er-
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TABLE Il. Optimal Sets of Three, Four and Five Sampling Wave-
lengths for the Spline Method Based on the Criterion of Mini-
mum Mean CIEDE2000 Color Difference Over the Data Set.
The CIE D65 Standard llluminant and the CIE 10° Standard
Observer Are Assumed

TABLE lll. Mean AE,, Error, with the PCA-Based Method and
Four Sampling Wavelengths, for Each Data Sets as a Func-
tion of the Training Set Used to Derive the Principal Compo-
nents and the Optimal Wavelengths

Data set used for training

Data set Optimal wavelengths (nm) Mean AE,, Data set 1 2 3 4 5 6
OSA-UCS 456.3 533.4 607.3 2.1 1:0SA-UCS 0.61 074 085 1.14 1.22 0.90
COLORCHECKERDC 452.9 525.8 603.7 2.1 2: COLORCHECKERDC 1.02 0.75 1.03 1.44 1.38 1.04
ESSER 453.3 536.3 596.8 2.4 3: ESSER 122 1.06 098 136 1.50 1.16
NGAPANELS 443.8 536.6 605.4 2.3 4:NGAPANELS 118 1.04 131 099 1.16 1.24
GAMBLIN 444.7 537.2 602.0 2.8 5: GAMBLIN 133 123 1.29 135 1.08 1.18
ROSS 452.2 534.4 596.0 2.4 6: ROSS 1.01 097 1.02 113 122 0.75
OSA-UCS 443.8 512.1 560.7 614.6 0.95 Ave.: 1.15 1.01 1.13 1.26 1.27 1.07
COLORCHECKERDC 444.3 514.0 564.0 615.0 0.98

ESSER 448.3 506.5 554.8 615.4 1.22

giﬁ:ﬁ:\lﬂs :22'; ::;; :g:; 21:? 01'917 TABLE IV. Predicted Mean CIE DE2000 Error Over the OSA-
ROSS 446:5 507:0 555:1 613:8 1:1 UCS Data Set for Some Combinations of Commercial Laser

Wavelengths

OSA-UCS 443.8 511.9 557.5 597.8 633.7 0.55

COLORCHECKERDC  446.5 495.8 541.3 582.7 623.7 0.56 Method Set of laser wavelengths (nm) Mean A,
ESSER 443.6 494.4 532.5 573.5 617.4 0.67 Spline 442 532 633 3.0
NGAPANELS 4441 514.1 556.2 596.3 641.2 0.67 PCA 442 532 633 3.1
GAMBLIN 443.7 511.8 550.9 592.2 640.8 0.75

ROSS 446.4 504.8 545.6 582.5 624.7 0.77 Spline 442 532 568 633 1.3

Spline 442 514 568 633 1.4
PCA 442 514 568 633 1.5

ror calculation for each data set using the PCs and opti- PCA 442 488 532 568 633 0.88
mal wavelengths derived from each of the other five sets. Spline 442 488 532 568 633 0.94
Table III gives a matrix grid for these errors. The di- Spline 442 514 532 568 633 1.1
agonal elements are smallest, as expected, and the off-
diagonal elements are not too far away, which shows Spline 442 488 514 532 568 633 647 0.92
that the PCA-based method is not too sensitive to the PCA 442 488 514 532 568 633 647 0.93

training set used to derive the PCs and the optimal
wavelengths. The COLORCHECKERDC appears to be
the best training set among the six. This exercise was
not repeated with the spline method because this method
was found to be even less sensitive to variations of the
sampling wavelengths than the PCA method.

The sensitivity of the optimal wavelengths to the
choice of the Standard Colorimetric Observer was also
tested by performing a few calculations with each of the
observers inside the CIEDE2000 formula. The differ-
ences for the optimal wavelengths were found to be a
few nanometers, at most, and were less than the vari-
ability relulting from the choice of data sets.

This is all indicative that optimal sets of three, four
and five sampling wavelengths can be established, and
that it is a bit vain to try to isolate these wavelengths
to better than approximately +5 nm. For example, the
set {446 nm, 518 nm, 565 nm, 615 nm} and the method
of calculation that uses the PCs and average reflectances
from the Macbeth ColorCheckerDC, appears near-ideal
when the goal is to keep the expected error to less than
approximately one unit.

Near-Optimal Commercial Laser Lines

The NRC 3D camera requires TEMOO continuous wave
lasers with power outputs roughly 10 mW or higher. It
has been used in past years in a three lasers configura-
tion, with HeCd (442 nm), DPSS green (532 nm) and
HeNe (633 nm) simultaneously hooked to the camera
through a single-mode optical fiber. We considered add-
ing a ArKr tunable laser to the system, bringing a choice
among 488 nm, 514 nm, 568 nm and 647 nm for addi-
tional wavelengths. Using Tables I and II as a guide,
we tested various combinations of wavelengths that fell
close to the optimal ones by predicting the mean error

for the OSA-UCS catalog. Table IV presents these theo-
retical predictions.

As can be seen, the spline method and the PCA method
become more-or-less equivalent for the sets of non-opti-
mal wavelengths considered. There appears to be a sub-
stantial cost for deviating from the optimal wavelengths,
specially with the PCA method. Most notable is the dou-
bling of the predicted mean error when the non-optimal
633 nm red is used instead of the optimal 608 nm for
scanning at three wavelengths. We believe the reason
behind this is that many of the yellow-orange-red OAS-
UCS samples owe their color to a rather sharp transi-
tion between low spectral reflectance values and high
spectral reflectance values occurring somewhere in the
A > 550 nm region. Hue is very sensitive to the exact
location of that transition. Spectral estimation meth-
ods can only approximate this transition with some sort
of ramp between sampled green and sampled red. If the
sampled red is too far towards the long wavelength limit
on the axis, all the yellows, oranges and reds start look-
ing orange-red since they are all approximated with the
same ramp. The same idea applies to the blue-green
shades but they seem less sensitive.

When fixed to using the HeNe 633 nm red, it appears
very beneficial to incorporate a fourth sampling wave-
length in the yellow region in order to catch the yellow-
orange-red transition. The combination {442 nm, 532
nm, 568 nm, 633 nm} is seen to perform by a factor of
two better than {442 nm, 532 nm, 633 nm} alone. There
appears to be much less improvement to be gained from
adding a fifth wavelength, either 488 nm or 514 nm, to
catch the blue-green transition. Finally, introduction of
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a sixth and a seventh wavelength does not bring sig-
nificant improvement to the average color difference.
This exercise demonstrates the importance of being
close to the optimal wavelengths, as the performance
from scanning at all seven available wavelengths is still
poorer than that predicted for four optimal wavelengths.

Experimentation

The next step was to get a practical sense of these pre-

dictions in the lab. It is possible to interface with the

camera as many lasers as one wishes and capture the
3D-spectral images in multiple scans. Each laser line is
then coupled to the camera through a single-mode opti-
cal fiber and used to capture a (3D + intensity) image of
the object. Images captured with all the laser lines can
then be merged into a single 3D multispectral image
with the first three channels containing the (x,y,z) spa-
tial information, and the rest of the channels contain-
ing the spectral reflectance at the sensing wavelengths.

Ideally however, one would like to use just three or four

lasers and benefit from the camera’s optics and peak

detection electronics that allow the simultaneous detec-
tion of up to four peaks. 3D multispectral acquisition in
one single scan then becomes possible.

Many sources of uncertainty other than spectral esti-
mation errors affect the color measurement results.
These can be of systematic nature, e.g., calibration er-
rors, dark signal offsets, etc., or purely random. An ex-
ample of the latter is speckle noise that affects both the
amplitude and centroid location of the peaks detected
on the CCD." Since these errors may dominate the spec-
tral estimation errors, it is worth experimenting before
investing in extra lasers and modified procedures.

For testing the performance of the color rendition sys-
tem, a Macbeth Color Checker™ (we used the pocket
size version of this chart) and a Macbeth Color Checker
DC™ were scanned at all seven wavelengths available
to us. A first scan was with the HeCd, DPSS green and
HeNe lasers coupled simultaneously to the camera. This
was followed by four additional scans with the extra
wavelengths from the ArKr laser coupled one line at a
time. CRT renderings of the charts were then produced
for various combinations of the wavelengths, allowing
visual judgment.

The following steps are involved in the experimental
workflow:

1. An intensity calibration model is first established
prior to scanning the objects. This is extracted from
series of scans of a nearly-Lambertian white reference
target placed at various depths inside the volume.
The spatial dependence of the intensity response of
the camera over its whole 3D volume of view is then
determined. This is repeated for each scanning
wavelength.

2. After a given object is scanned, the calibration model
is used to recover reflectance values at each surface
element (surfel). A compensation for shading effects,
which makes use of the 3D information and exploits
a BRDF model," is embedded in this step as well as
in step 1.

3. For each surface element, an associated full visible
spectrum is estimated based on the reflectance values
for the chosen set of sampling wavelengths. The
spline interpolation method was favored for this test.

4. CIE XYZ tristimulus values for the D65 standard
illuminant and the 2° standard observer are then
derived from the estimated spectrum.

5. CIE XYZ tristimulus are next converted into sRGB
values.?® (Note that the 2° observer is imposed by the
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sRGB standard while CIEDE2000 applies to the 10°
observer; this is nevertheless consistent since there
is no relationship between the standard used for
encoding and the standard used for color difference
evaluation.)

6. The sRGB part of the 3D color image is finally
displayed on a CRT operated close to the sRGB
standard conditions.

We note that our testing made use of flat 2D charts
placed nearly perpendicular to the camera’s and viewer’s
lines of sight. The 3D information served only at the
reflectance recovery stage. For more complicated 3D
shapes, synthetic shadows would be applied on the vir-
tual objects for realistic renderings. This shadowing
must be performed in XYZ color space prior to conver-
sion to sRGB.

For the comparison, the CRT was placed next to a
Macbeth viewing booth simulating daylight and hold-
ing the real charts. The visual comparison confirms that
the combination {442 nm, 532 nm, 633 nm} fails to de-
liver the pure reds, which are rendered orange-red in-
stead. Other “warm” colors suffer as well. This problem
appears to be solved with the addition of the 568 nm
wavelength. The large majority of the colors of the charts
then reproduce well, at least as far as can be judged
with this kind of test. Although some visible improve-
ment could be observed with the addition of a fifth wave-
lengths at 488 nm, this improvement was found to be
very subtle and probably not worth the extra cost.

In order to provide a more quantitative judgment of
the goodness of the experimental results, we measured
the 24 samples of our small Macbeth ColorChecker with
a NRC-traceable Perkin Elmer Lambda 19 (PE-19) spec-
trophotometer, for the 0/45 geometry. The PE-19 reflec-
tance data, resampled every 10 nm from 400 to 700 nm,
served as a reference to calculate the “true” CIELAB
values and the “predicted” spline estimated CIELAB
values that should result from sampling with the four
laser combination {442 nm, 532 nm, 568 nm, 633 nm}.
The “experimental” laser scanner CIELAB values, for
these particular four wavelengths, were extracted from
the sRGB image generated with the system. The mean
and the standard deviation of the experimental CIELAB
values were computed for regions of interest (ROI) com-
prising a few thousands of pixels. The standard devia-
tion of each of the L*a*b* components, inside a given
ROI, is typically of the order of 2 CIELAB units and
corresponds to the magnitude of the random noise af-
fecting the system. The means are taken as the “experi-
mental” CIELAB values. Figure 1 shows in a*b* space
the distribution of the true, predicted and experimen-
tal values. The difference between the experimental
CIELAB values and the predicted CIELAB values cor-
responds to the systematic errors of instrumental ori-
gin. The difference between the predicted and the true
CIELAB values corresponds to the systematic error in-
herent to the spectral estimation method by itself. These
two types of error appear to be of similar magnitude.
We note that the a*b* differences tend to be higher for
the highly chromatic colors, but that this is partially
compensated by the CIEDE2000 formula which scales
down a*b* differences with increasing chroma.

Conclusion

3D autosynchronized laser scanning at a number of dis-
crete wavelengths is a powerful technique for captur-
ing surface reflectance values from objects, in perfect
registration with the spatial coordinates of the surface
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Figure 1. Comparison, for the Macbeth ColorChecker, of the
experimental a*b* values with the true and the predicted val-
ues derived from measurements with a NRC-traceable Perkin
Elmer Lambda-19 spectrophotometer. The experimental data
are for the laser scanner operated with four laser wavelengths
442 nm 532 nm, 568 nm and 633 nm, and using the spline-
based spectral estimation method for color calculations.

elements and without inter-reflection problems. When
the reflectance data is used to calculate the perceptual
color values of the surface elements, the choice of the
laser lines used for scanning affects the achieved color
accuracy. In virtual reality applications, there is no need
to be more accurate than what the graphics engine can
deliver and what the visual system can detect. In con-
sequence one can limit the number of wavelengths to
something practical.

We started this study by deriving optimal sets of three,
four and five sampling wavelengths through simulations
that made use of available color reflectance data sets
and of the recently proposed CIEDE2000 color differ-
ence formula. These wavelengths were identified to
within approximately +5 nm. A combination of four
wavelengths appears sufficient to bring the expected
colorimetric error to less than approximately 1
CIEDE2000 unit.

In light of the above findings, we next investigated
the best combination of practical laser lines available
on the market. For this we predicted the mean AE, er-
ror over the OSA-UCS collection for various combina-
tions of HeCd, ArKr, HeNe and DPSS laser lines. The
best combinations of three, four and five wavelengths
were found to be {442 nm, 532 nm, 633 nm}, {442 nm,
532 nm, 568 nm, 633 nm} and {442 nm, 488 nm, 532
nm, 568 nm, 633 nm}. Performance is predicted to de-
grade substantially using these commercial lines instead
of the unconstrained optimal ones. Sensing in the green-
yellow to orange-red region of the spectrum was found
critical for proper rendition of the pure reds.

Our theoretical predictions were finally tested in the
lab by coupling the camera to seven different lasers lines
and capturing 3D-multispectral images of color charts.
For the laser lines we tested, a four wavelengths combi-
nation appeared necessary for the capture of the red
shades. Incorporation of additional wavelengths was
found to bring only marginal improvement. This holds
true for the color charts that were used, which are be-
lieved to be representative of a large fraction of the color
surfaces encountered in real life. Finally, we find that
the laser scanner systematic errors, which are due to
influential factors other than the spectral estimation
method itself, appear comparable to the spectral esti-
mation errors. &
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