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High Performance Millimeter Wave Imaging
System
Recent advances in radar antenna technology and per-
sonal computing platforms have created a novel oppor-
tunity to design all weather imaging radars that run on
low cost hardware and can be readily installed in air-
craft to provide live images during landing. The 95 GHz
millimeter wave (MMW) imaging radar developed by
WaveBand consists of a low power transceiver, a radar
signal processor and an image processor. Our technical
approach is based on the following premises:
• The pilot is most comfortable and less prone to er-

rors if information is presented as a simulated day-
time image of the outside world

• Such 3D rendition can be obtained from a synthetic
urban or terrain database using known GPS posi-
tioning within certain error

• The on-board MMW radar sensor can generate real-
time range/cross range display (C-scope) of the out-
of-the-window view, including accurately positioned
runway obstacles

The overall configuration of the real-time ISVS radar
processor is shown in Fig. 1. The system uses a 3D air-
port and terrain database, a high resolution MMW ra-
dar for all weather visibility and an video camera or FLIR
device for high resolution detail. During operation, the
3D database is used to render a 3D perspective view of
the underlying surface using GPS coordinates provided
by the navigation system. In parallel a high resolution
MMW imaging radar provides detailed visual informa-
tion for obstacle avoidance, wire detection and near-sur-
face navigation without the danger of hitting the ground.
Finally, an on-board camera provides further image de-
tails. These three sources of information are subsequently
registered and transformed to create a single, consistent
representation to the pilot by means of an advanced fea-
ture registration and matching algorithm we developed
during the course of the development process.
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We describe a novel real-time image processing and sensor fusion system for aerial vehicles in need of autonomous landing,
guidance and obstacle avoidance. The Intelligent Synthetic Vision System (ISVS) described herein can process and display
information merged from multiple image sources including a high resolution millimeter wave radar, a stored terrain with 3D
airport database, FLIR, as well as visual reference images. The resulting solution provides safe all-time/all-visibility naviga-
tion in terrain-challenging areas and, in particular, real-time object detection during the final phases of landing in all weather
conditions.
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Introduction
Intelligent Synthetic Vision Systems (ISVS) combine ad-
vanced sensor capabilities with real-time rendering of
airports and 3D models of the environment to help pi-
lots navigate and land in low visibility conditions or at
night. SVS works by rendering 3D synthetic scenery
based on Global Positioning Satellite (GPS) data and
on-board sensors of the aircraft. Large data sets of Digi-
tal Elevation Models (DEM) as well as 3D models of air-
ports can be used to simulate daylight approach and
ideal visibility conditions.

To address these difficulties we developed a real-time
imaging solution serving as an Intelligent Synthetic Vi-
sion System (ISVS). The main purpose of this ISVS is
the presentation of realistic daylight scene to the pilot
in all environmental conditions. Using the ISVS they
are not only able to develop situational awareness with
less mental integration of disparate data, but fly and
land safely in all weather and lighting conditions.

However, the 3D databases do not provide immediate
feedback on obstacles and dangerous events on terrain
and landing sites and GPS sensors can only register the
plane within unacceptable margins of error. Therefore
the use of real-time imaging techniques that use ad-
vanced image enhancement, pattern recognition, and
sensor fusion techniques are required to provide a fully
integrated and reliable solution to this problem.
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In this real-time version of our Intelligent Synthetic
Vision System, three complementary sources of infor-
mation are integrated to present most information to
the pilot with minimal overload by the processing mod-
ule. This output is then transformed by the display pro-
cessing unit that creates a color transformation
compatible with night vision goggles and also places
symbology of detected obstacles visually overlaid on the
scene. Figure 2 shows more details of the functionality
of these modules and how they provide the final view to
the pilot during the most critical phase landing.

The real-time image processor provides the process-
ing and coordinate conversion necessary for displaying

the image on a head-up-display and achieves a 30 fps
scanning rate for the continuous linear scan. We use
this MMW imaging radar to produce angular distance
measurements of objects in the field. The WaveBand
ISVS offers advantages that cannot be provided by ei-
ther system alone. We used the image of the actual ter-
rain and runway environment developed by WaveBand’s
94 GHz MMW sensor1 to accurately register and locate
the GPS-based ISVS image. Our innovative approach
dramatically increased the quality of the MMW image
since it was rendered in real-time as a daylight scene
from an on-board terrain and synthetic database. Fur-
thermore we also devised a number of advanced regis-

Figure 1. Functional overview of the real-time ISVS.

Figure 2. Detailed modular overview of WaveBand’s real-time MMW radar SVS. Supplemental Material—Figure 2 can be found in
color on the IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.
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tration algorithms, such as the use of the binary
Hausdorff distance (see below), to help real-time opera-
tions. As a result our approach dramatically increases
the integrity of the terrain image presented to the pilot
when near the runway where image content integrity is
most important. In the following sections we briefly re-
view each of the key elements.

Synthetic 3-Dimensional Airport and Terrain
Models
To allow the SVS to operate with either man-made ob-
jects such as buildings or airfields, we developed a 3D
visualization module. This module is capable of dis-
playing live video feed from either visual or IR sensors
and 3D model views from DEM data. The position in-
formation for the 3D rendition can be obtained using
the GPS-based sensors in the aircraft. This data flow
is used to control the relative position of a virtual cam-
era traveling “above” the digital airport model and ter-
rain surrounding it. This step is a prequisite to our 3D
template matching algorithm allowing the ISVS to gen-
erate 3D images of the environment within the image
processing module itself so that parametric template
images can be created and compared with the incom-
ing sensor image on-line. Thus, in order to use these
3D models for direct comparison with the images re-
ceived from the MMW sensor, we implemented a simple
rendering algorithm that creates a wire frame, binary
template image. The render algorithm uses a realistic
computer graphics (CG) camera model with focal
length, pixel aspect ratio, object distance, yaw, pitch,
roll and pivot information. The 3D runway is imaged
using this camera projection module as it moves in 3D
space with respect to the camera. Figures 3 and 4 dem-
onstrate the use of 3D models for a runway, and digi-
tal terrain, respectively.

Sensor Fusion and Integration Using Dynamic
Binary Image Templates
Since the raw image data from the MMW image, 3D syn-
thetic views and the optional video/IR camera have dif-
ferent resolutions, they are combined and further
processed by a registration module. This registration

module is a real-time image processing module that cre-
ates a properly registered output image. To create the
output image we consider the registration problem in
the 2D image domain, whereas binary image features
obtained from sensor image pairs are aligned using an
iterative matching algorithm, as discussed in the fol-
lowing sections. The sensor image pairs that feed into
the registration module are the perspective radar im-
age, and a 2D image obtained from either a rendered
view of a 3D synthetic model, or processed images from
the optional image sensors. Both input images first pass
through a feature detection module. This feature detec-
tion module uses a feature extraction algorithm that
exploits a model of neural attention mechanisms in the
human visual system.2 It automatically locates a subset
of binary features that can be used for optimal feature
matching and tracking. Subsequently, the algorithm
matches these detected binary features by minimizing
a cost function based on a measure derived from the
Hausdorff distance3 to find the best matching image
transformation parameters.

The Binary Hausdorff Distance
The use of the Hausdorff distance for binary image com-
parison and computer vision was originally proposed by
Huttenlocher and colleagues.4 In their study, the authors
argue that the method is more tolerant to perturbations
in the locations of points than binary correlation tech-
niques since it measures proximity rather than exact
superposition. Unlike most shape comparison methods
the Hausdorff distance can be calculated without the
explicit pairing of points in their respective data sets, A
and B. Furthermore, there is a natural allowance to com-
pare partial images and the method lends itself to simple
and fast implementation.

Formally, given two finite point sets A = {a1,...,ap}, and
B = {b1,...,bq}, the Hausdorff distance is defined as

H(A, B) = max(h(A, B), h(B, A)) (1)

where

    
h A B a b

a A b B
( , ) = −

∈ ∈
max min (2)

In the formulation above ||⋅|| is some underlying
norm over the point sets A and B. In the following dis-
cussion, we assume that the distance between any two
data points is defined as the Euclidean distance. H(A,B)
can be trivially computed in time O(pq) for point sets of
size p and q, respectively, and this can be improved to
O((p + q)log(p + q)). The function h(A,B) is called the di-
rected Hausdorff distance from set A to B. It identifies
the point a∈A that is farthest from any point of B and

Figure 3. Synthetic runway images from our program used to
generate binary templates within the image processing mod-
ule. Supplemental Material—Figure 3 can be found in color on
the IS&T website (www.imaging.org) for a period of no less than
two years from the date of publication.

Figure 4. Example of real-time digital terrain images rendered
using a virtual camera controlled by GPS signals (From left to
right: top view, high approach angle and low-altitude mid-ter-
rain images). Supplemental Material—Figure 4 can be found in
color on the IS&T website (www.imaging.org) for a period of no
less than two years from the date of publication.
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measures the distance from a to its nearest neighbor in
B. In other words, h(A,B) in effect ranks each point of A
based on its distance to the nearest point in B and then
uses the largest ranked such point as the measure of dis-
tance (the most mismatched point of A). Intuitively, if
h(A,B) = d, then each point of A must be within distance
d of some point of B, and there also is some point of A
that is exactly distance d from the nearest point of B.
For practical implementations it is also important (due
to occlusion or noise conditions) to be able to compare
portions of shapes rather than providing exact matches.
To handle such situations, the Hausdorff distance can be
naturally extended to find the best partial distance be-
tween sets A and B.4 To achieve this, while computing
h(A,B), one simply has to rank each point of A by its dis-
tance to the nearest point in B and take the Kth ranked
value. This definition provides a nice property, that is it
automatically selects the K “best matching” points of set
A that minimizes the directed Hausdorff distance.

Realizing that there could be many different ways to
define the directed (h(A,B), h(B,A)) and undirected
(H(A,B)) distances between two point sets A and B,
Dubuisson and Jain5 revised the metric and investigated
24 different distance measures based on their behavior
in the presence of noise. In Ref. 3 the author has rede-
fined the original definition of h(A,B) proposing an im-
proved measure, called the modified Hausdorff distance
(MHD), which is less sensitive to noise. Specifically, in
the formulation

    
h A B

N
a b

a b Ba A
( , )   = −

∈∈
∑1

min (3)

where Na = p, the number of points in set A. In this
article the author argues that even the Kth ranked
Hausdorff distance of Huttenlocher presents some prob-
lems for object matching under noisy conditions, and
conclude that the modified distance proposed above has
the most desirable behavior for real world applications.

In the work we presented in Ref. 3, we adopted the
MHD formulation of Dubuisson et.al.5 and further im-
proved its performance by introducing the notion of a
neighborhood function (Na

B) and associated penalties (P).
Specifically, in our solution we assume that for each
point in set A, the corresponding point in B must fall
within a range of a given diameter. Let Na

B be the neigh-
borhood of point a in set B, and an indicator I = 1 if
there exists a point b∈Na

B, and I = 0 otherwise. The com-
plete formulation of the “doubly” modified Hausdorff
distance (M2HD) can now be written as:
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  H(A,B) max(h(A,B) ,  h(B, A))= (4c)

The notion of similarity encoded by this modified
Hausdorff distance is that each point of A be near some
point of B and vice versa. It requires, however, that all
matching pairs fall within a given neighborhood of each
other in consistency with our initial assumption that
local image transformations may take place. If no match-

ing pair can be found, the present model introduces a
penalty mechanism to ensure that images with large
overlap are easily distinguished as well.

The modified Hausdorff measure (M2HD) as used here
is ideal for applications, such as object tracking and rec-
ognition, where although overall shape similarity is
maintained, the matching algorithm has to account for
small local distortions and structural noise.3

Registering Radar Output to Synthetic or Sensory
Images
To address the need of registering the MMW output ob-
tained from our radar system with other imagery rep-
resenting the same scene, we devised a method that
builds upon our image processing modules developed
earlier in this project and creates a transparent pipe-
line to be used both in conjunction with synthetic data
sets as well as imagery delivered by other sensors. To
achieve this goal the registration problem was consid-
ered in the 2D image domain, whereas binary image
features obtained from a pair of images are aligned us-
ing an iterative matching algorithm. Figure 5 shows the
overall diagram of the process. The inputs to our regis-
tration module are the i) original radar image is first
transformed to a perspective “out-of-cockpit” view (up-
per/left), and ii) a 2D image obtained either as a ren-
dered view of a 3D synthetic model such as an airport
or images from another sensor, such as a visual or IR
camera (upper/right). Both input images are first passed
through a feature detection module that locates corners
and optionally edges and straight lines in order to ob-
tain binary features used for feature matching (lower/
left). Finally, using the detected binary features we find
the best matching affine transformation parameters via
a local search algorithm based on the Downhill Simplex
Method,6 and use them to transform each image into
the coordinate space of the other, i.e., the visual image
overlay on the radar image or vice versa (lower/right).

Further details of the feature detection algorithms are
shown in Fig. 6. Taking advantage of the predominantly
man-made structures the MMW landing radar will op-
erate on, we used a set of low-level feature detection
algorithms that best capture the rectangular shapes
dominating runway and airport images. Specifically, we
start visual processing by applying corner detection and
optional line detection algorithms using the Hough
transform. We discussed these techniques as well as the
effects of various parameter settings in detail in our
previous reports.7–9 We run the corner and line detector
modules for both input images (radar and sensory/syn-
thetic) and create two corresponding binary feature
maps to be used in the matching stage that follows.

The matching algorithm selects one of the input im-
ages as a fixed reference and attempts to iteratively find
the best matching affine transformation that rotates,
scales and translates the other image in such a way that
all binary features match with the smallest possible
degree of error. As a measure of similarity we used a
binary image metric, called the Hausdorff distance de-
scribed above.6–8 The main advantage of using a
Hausdorff distance in this scenario is that it lacks the
explicit need to pair image features up before matching
takes place. Therefore an iterative search algorithm can
easily be constructed that spans the possible space of
affine image transformations and finds the best match-
ing alignment that minimizes the computed Hausdorff
measure (see above).

Although the possible space of affine image transfor-
mations is 6-dimensional, and there is no guarantee of
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an absence of local minimums in the Hausdorff distance
function for a given dataset our solution takes advan-
tages of the natural physical constraints of the moving
airplane. Specifically, the affine transformation values
are a function of the yaw, pitch, roll as well as x, y, z
positional parameters of the equipment as measured by
GPS and mapped to the synthetic terrain data set via
the parameters of the virtual camera. During landing
the glide slope of the aircraft is 3 degrees and varies
slowly and smoothly, thus eliminating many ambigu-
ities in the matching process. Once the iteration is com-
plete, the final set of transformation parameters are
used to express the radar image in the coordinate space
of the other sensor, or—by using the inverse—overlay-
ing the visual image on the radar itself. Figures 7 and 8
show the respective outputs using the best matching
affine image parameters. Both figures show the regis-
tered images in solid (left) and semi-transparent dis-
play mode (right).

Evaluation of the Real-Time Image Processing and
Visualization Engine
To create the real-time image processing and 3D ren-
dered images of 3D airfield models and terrain data re-
quired by the image registration algorithms, we use a
high performance real-time rendering engine that imple-
ments a variety of optimization techniques to render
radar + visual + synthetic 3D data at high speeds with-
out special demands on computing power. In fact, the
render and image processing environment we developed
runs on a personal computer and low cost commodity
hardware. The performance of the rendering engine is
demonstrated in Table I. We have tested the system on
multiple computer platforms each exhibiting different
configuration and performance characteristics. For test-
ing purposes we focused primarily on CPU and graph-

Figure 5. Overview of the image registration algorithm used to match MMW radar images with synthetic images and/or output
from other sensors. Supplemental Material—Figure 5 can be found in color on the IS&T website (www.imaging.org) for a period of no
less than two years from the date of publication.

ics card performance and measured the overall frame
rate as a function of 3D model polygon size to establish
optimal performance. We compared two computers la-
beled Computer1 and Computer2, both running DirectX
and OpenGL. Computer1 was a machine with one of the
fastest CPU’s and graphics cards commercially avail-
able today. Computer2 was an average computer con-
figuration by today’s standards. The same performance
is expected to cost significantly less in the near future

Figure 6. Iterative image registration algorithm using fast
and efficient binary image metrics.
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and therefore it will be widely available on home level
computers.

In its current configuration the ISVS runs on two
Pentium-based personal computers providing live radar
images and image processing at 15–30 (fps) in 256 scan-
ning angles and range resolutions between 2K–4K FFTs.
One computer is responsible for computing the radar
image, while the second one provides radar transfor-
mation, image processing and real-time alignment with
other image sources.

Experimental Results
The combined ISVS was tested using in-flight images
captured on an airfield in Brackett field, California. Fig-
ures 9 and 10 demonstrate the results obtained with
our registration method using video imagery of an ex-
perimental aircraft approaching Brackett field airport.
In both figures, the visual reference, recorded by a video
camera mounted on the other wing of the aircraft, is
properly aligned with features made visible by the MMW
radar. Specifically, we use our perspective radar image
transformation and correction algorithms to register the
radar image with the video input. In the figures below,
the visual image, the radar display and finally those
two images overlaid, are shown in the top, center and
bottom order, respectively.

Finally, using a Digital Elevation Model Database
and satellite imagery a 3D real-time preview of the
landing sequence was created as demonstrated in Figs.
11 and 12.

Conclusion and Future Work
In this article we described a novel real-time image pro-
cessing application that combines advanced millimeter
wave radar imaging with computer vision and digital
elevation databases. The resulting Intelligent Synthetic
Vision System provides a robust solution to the fusion
and overlay of information for pilots during standard
maneuvers. By virtue of the MMW radar the system
described herein is capable of “seeing through” dense
fog and thus enabling navigation and landing in zero–
zero visibility conditions.

Future work includes further enhancement of the im-
age processing and recognition algorithms as well as
using multiple MMW radar beams to create a fully 3D
visual representation of the underlying scenery.    

Figure 7. Final result of the image registration algorithm
showing visual image mapped onto the perspective radar out-
put (see text). Supplemental Material—Figure 7 can be found in
color on the IS&T website (www.imaging.org) for a period of no
less than two years from the date of publication.

Figure 8. Final result of the image registration algorithm
showing radar image mapped into the coordinate system of
the visual reference (see text). Supplemental Material—Figure
8 can be found in color on the IS&T website (www.imaging.org)
for a period of no less than two years from the date of publication.

TABLE I. Comparison of Real-Time Image Processing and
Render Performance

Computer1 Computer2

CPU speed Pentium4/3 GHz Pentium4/850 MHz
Memory 1 GBytes 256 MBytes
Graphics Card Radeon-9700 GEForce2-Go
Memory 2 Gbytes/DDR3 1 Gbytes/DDR3

127,709 97,305 62,859 33,017 polygons

Computer1-DirectX 6.15 7.73 12.86 20.44 fps
Computer1-OpenGL 7.92 8.65 12.07 14.95 fps
Computer2-DirectX 31.89 35.72 42.84 52.07 fps
Computer2-OpenGL 29.25 31.33 40.27 44.75 fps

Figure 9. Image processing and registration of MMW radar
images to visual reference. Supplemental Material—Figure 9
can be found in color on the IS&T website (www.imaging.org) for
a period of no less than two years from the date of publication.
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