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To be able to eliminate the highlights in captured
scenes, we must identify them first. The dichromatic re-
flection model proposed by Safer2 is a tool that has been
used in many methods for detecting specularities. This
model supposes that the interaction between the light
and a dielectric material produces different spectral dis-
tributions in the object, i.e., the specular and diffuse
reflectances. The specular reflectance has the same spec-
tral makeup as the incident light whereas the diffuse
component is a product of illumination and surface pig-
ments. Based on this model, Lin et al3 have developed a
system for eliminating specularities in image sequences
by means of stereo correspondence. Bajcsy et al4 use a
chromatic space based on polar coordinates that allows
the detection of specular and diffuse reflections by means
of the previous knowledge of the captured scene. Klinker
et al5 employ a pixel clustering algorithm which has been
shown to work well in detecting brightness in images of
plastic objects. These previous approaches have produced
good results but they have requirements that limit their
applicability, such as the use of stereo or multiple-view
systems, high time of processing, the previous knowledge
of the scene, or the assumption of a homogeneous illumi-
nation, without considering the inter-reflections present
in most typical real scenes.

In this article we explain a new and real-time system
for the detection and elimination of brightness in color
images by means of two main steps:
• Detection: we use a 2D histogram of luminance and

saturation signals from a 3D polar coordinate color
representation. This new representation allows us
to obtain a specular reflectance map of the image.

• Elimination: we develop a vectorial geodesic recon-
struction algorithm, which has low cost and avoids
the over-simplification of the image.

Introduction
Real-time image processing differs from “ordinary” im-
age processing in that the same correct results must be
obtained in critical time. Real-time imaging covers a
multidisciplinary range of research areas including im-
age compression, image enhancement and filtering, vi-
sual inspection, etc.1 Indeed, a goal in computer vision
is to identify objects of real scenes in the shortest time
possible or within a deadline. Sometimes, this goal is
not easy since bad adjustment of illumination can in-
troduce brightness (highlights or specular reflectance)
in the objects captured by the vision system. The pres-
ence of brightness causes problems in low level com-
puter vision methods such as segmentation (which
typically assumes uniform or smoothly varying inten-
sity across a surface), stereo or motion analysis (which
attempt to match images taken from different view-
points) and in high level operations such as multimedia
applications, where the brightness affects the visual
quality of the scene.
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Color Spaces for Processing and LS Diagram
In recent years, the color spaces based in polar coordi-
nates (HLS, HSV, HSI…) have been widely used in im-
age processing.6-8 Important advantages of these color
spaces are: good compatibily with human intuition of
colors and separability of chromatic values from achro-
matic values. One of most popular of these color models
is the HLS (hue, luminance and saturation) and like
other intuitive color spaces, the HLS is derived from
the RGB cube (Fig. 1(a)), where the luminance and satu-
ration values are calculated as follows:
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where r, g, b, s and l range from 0 to 1.
The HLS representation has a cylindrical shape ac-

cording to the previous formulas. Some instability
arises, however, in saturation for small variations of
RGB values. To avoid this, we must linearly reduce the
saturation as the luminance increases or decreases. This
way, we change from a cylindrical geometrical repre-
sentation to a double cone shape. The saturation map is
now more amenable to image processing.9

We propose to exploit the existing relation of the
specularities presents in a color image with specific co-
ordinates of l and s, independently of the hue of the ob-
ject in which the brightness appears.10 Figure 1b shows
the LS diagram as the positive projection of all of the
corners of the RGB cube in a normalization of the ach-
romatic line to l signal and where l and s now range
from 0 to 255. The diagram is divided in 16 homogenous
regions that segment pixels of a chromatic image by dif-
ferent thresholds of luminance and saturation. The LS
diagram is a grey image f(l,s) in which each coordinate
(l,s) indicates the quantity of the pixels in values of lu-
minance and saturation of the original color image.

Color Mathematical Morphology
The definition of morphological operators needs a to-
tally ordered complete lattice structure.11 The color pix-
els do not present, a priori, this structure and it is
necessary to impose an order relationship in the color
spaces. Several studies have been carried out on the
application of mathematical morphology to color im-
ages.9,12–15 The approach most commonly adopted is based
on the use of a lexicographical order, which imposes to-
tal order on the color vectors. This way, we avoid the
false colors in an individual filtering of signals. Let x =
(x1, x2,..,xn) and y = (y1, y2,…,yn) be two arbitrary vectors
(x,y ∈ Zn). An example of lexicographical order olex, will
be:
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On the other hand, it is important to define the color
space in which operations are to be made. We use a color
space based in attributes of luminance, saturation and
hue. The preference of the components of the HLS model
in the lexicographical ordering depends on the applica-
tion and the properties of the image. Ordering with lu-
minance in the first position is the best way of preserving
the contours of the objects in the image (lattice influ-
enced by luminance). For our application, we employ
this strategy and we define a lattice with a lexicographi-
cal order of olex = luminance→saturation→hue.9,13 Thus,
we put more emphasis on the luminance signal. After-
wards, we analyze the saturation. Next, we compare a
hue distance value, only if the pixels are colored and
they have same intensity and saturation.

Vector Connected Filters
Morphological filters by reconstruction have the prop-
erty of suppressing details, and preserving the contours
of the remaining objects.16–18 The use of these filters in
color images requires an order relationship among the
pixels of the image. For the vectorial morphological pro-
cessing, the lexicographical ordering, previously defined
o lex, will be used. As such, the infimum (^ v) and
supremum (∨v) will be vectorial operators, and they will
select pixels according to the order olex in the HLS color
space.

Once the orders have been defined, the morphologi-
cal operators of reconstruction for color images can be
generated and applied. An elementary geodesic opera-
tion is the geodesic dilation. Let g denote a marker
color image and f a mask color image (if olex(g) ≤ olex(f),
then (g) ^v f = g). The vectorial geodesic dilation of
size 1 of the marker image g with respect to the mask
f can be defined as:

Figure 1. RGB cube and 2D positive histogram (a) 3D RGB
cube; and (b) 2D positive LS diagram, l1 = 64, l2 = 127, l3 = 191,
lmax = 255, s1 = 64, s2 = 127, s3 = 191, smax = 255.

(b)

 (a)
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where δv
(1)

(g) is the vectorial dilation of size 1 of the
marker image g. This propagation is limited by the
mask f.

The vectorial geodesic dilation of size n of a marker
color image g with respect to a mask color image f is
obtained by performing n successive geodesic dilations
of g with respect to f:
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Geodesic transformations of images always converge
after a finite number of iterations. The propagation of
the marker image is limited by the mask image. Mor-
phological reconstruction of a mask image is based on
this principle.

The vectorial reconstruction by dilation of a mask color
image f from a marker color image g, (both with Df = Dg

and olex(g) ≤ olex(f)) can be defined as:
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 In Fig. 2, we can see an example of vectorial reconstruc-
tion of signals by means of a lexicographical order.

Actually, the high computational cost of processing of
the connected vectorial filters precludes application of
these operations in real-time algorithms. For this rea-
son, these filters are recommended only for high level
applications. In this article we will use the filters by
reconstruction in low level tasks by means of a controlled
filtering in specific areas of previously segmented im-
ages. This will permit us to achieve real-time require-
ments in image analysis.

Algorithm for Detecting and Eliminating
Specularities
It is known that the specularities in the chromatic im-
age have values of high luminance and low saturation.
In Ref. 19, Androutsos et al. produce a division of the
luminance-saturation space and they conclude that if
the saturation is greater than 20% and the luminance
is greater than 75%, the pixels are chromatic, if the satu-
ration is smaller than 20% and the luminance is greater
than 75%, the pixels are luminous or highlights. Our
criterion is similar and it is based on the division of the
luminance-saturation space into 16 homogenous regions
that segment the chromatic image. The exact limits of
the regions must be calculated, and one aim of this ar-
ticle is to specify these values.

The achromatic axes zone could be considered as a
highlight. This is partly true because it is only fulfilled
for grayscale images. In the HLS color space, as lumi-
nance l decreases, the brightness shows an increasingly
similar surface color (diffuse reflection) for the objects
on which this brightness appears, approaching the smax

value, defined as follows:
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where l ∈ [0, 255], s  ∈ [0, 255].

Contrast Enhancement by Color Morphology
An important consideration is that not all the images
have the same dynamic range and, therefore, the val-
ues of luminance and saturation of their specularities
do not correspond with the positions of the LS diagram
previously presented. The above mentioned problem
could be solved with a contrast enhancement by histo-
gram equalization. Nevertheless, the histogram equal-
ization of the original image can cause excessive
increase of luminance, over-saturation and false de-
tection of brightness. The best solution is to apply a
new vector morphological contrast enhancement for
luminous pixels, which considers the local features of
the images. Specifically, the white top hat operator is
added to the original image to enhance bright objects.20

We denote the color morphological contrast enhance-
ment by:

      f f f' ( )= + WTHv  (7)

where f’is the new contrasted color image and WTHv(f)
is the vectorial top hat (f-γv(f)) of the original color im-
age f. The color morphological contrast enhancement
expels only the highlights to the limits of the RGB cube.

Figure 2. Vectorial reconstruction by dilation of a mask im-
age f from a marker colour image g. (a) Lexicographical order-
ing of vector signals f and g; and (b) Result of the connected
filter.

(b)

 (a)



Real-Time Elimination of Specular Reflectance in Color Images by  2D Histogram ...          Vol. 49, No. 3, May/June  2005  223

Figure 3. Color images for empirical study. Different types of materials: Fruits in (a) “Apples”; (b) “Tomatoes”; (c) Plastics in
“Balloons”; (d) “Bowling”; (e) Ceramics in “Vases”; and (f) Wood in “Drawers”. Supplemental Material—Figure 3 can be found in
color on the IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.

Highlight Detection
After color image contrast enhancement, the pixels of
specular reflectance are positioned on the smax line with
high values of l. All the specularities are identified along
the coordinates of the smax line, from s = 0 to a threshold
of s defined by ssp. We present the results of a study for
highlight detection carried out on a set of real chromatic
images that are quite representative of countless com-
mon materials, i.e., plastic, ceramics, fruit, wood, etc.,
in which there are strong and weak reflectances. A sub-
set of the images used in the study is presented in Fig.
3. The LS diagrams of these images are shown in Fig. 4.
As can be seen, the maximum values of s along l are
limited to the shape of LS-diagram of Fig. 1(b).

First, we select pixels of color image which are located
on smax line in region defined by [l3 − lmax, 0 − s1] of LS
diagram (Fig. 1(b)). As can be seen in Fig. 5, all of the
specularities have been detected in this region and there
is no presence of false brightness.

Figure 6 shows the evolution of the specularities de-
tected when saturation is increased along smax. It is a loga-
rithmic evolution where most of the bright pixels are
located as maximum values of luminance and minimum
values of saturation. The rest correspond to the transi-
tion from specular to diffuse reflection of the dichromatic
reflection model2 on the surfaces of the objects.

The graphs show that the detection of specularities
stops in all of the images for a threshold of s smaller
than s3, concretely, 10% of maximum saturation (ssp =
25), and at higher values, no additional pixels in the
image are detected as brightness. It is now easy to cal-
culate the value of lsp in HLS from Eq. (6), as:
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− + 510

2
 (8)

Highlight Elimination
To eliminate the highlight that was previously detected
with the LS diagram, we use a real-time geodesic filter.
It is a vectorial opening by reconstruction applied only
in the specular areas of the image and their surround-
ings. In this case, a new mask image h represents the
pixels of f with which we will be operating. The mask
image h is a dilation of size e of the mask of specularities
(Fig. 5). Assuming that Dh = Df, each pixel (x,y) has a
value of h(x,y) = {0,1}, where h(x,y) = 1 in the new areas
of interest in the image. The size e of the structural el-
ement of the dilation will determine the success of the
reconstruction and the final cost of the operations, since
this size imposes the process area of the filters.

In the geodesic filter, f is first eroded. The eroded sets
are then used as sets for a reconstruction of the origi-
nal image. The new filter is defined, taking into account
the fact that, in this case, the operation will not affect
all the pixels (x,y), but only those in which h(x,y) = 1:
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(d) (e) (f)

(a) (b) (c)

Figure 4. LS diagram of contrasted color images from Fig. 2.

(d) (e) (f)

(a) (b) (c)

Figure 5. Masks of brightness. Experimental results for original images in Fig. 2: (a) bright pixels: 617 in 300 × 270 of “Apples”;
(b) 889 in 330 × 204 of “Tomatoes”; (c) 104 in 232 × 234 of “Balloons”; (d) 143 in 208 × 253 of “Vases”; (e) 176 in 223 × 229 of
“Bowling”; and (f) 1465 in 216 × 263 of “Drawers”.
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Figure 6. Evolution of the specularities detected according to values of s by smax line in LS diagram: (a) “Apples”; (b) “Tomatoes”;
(c) “Balloons”; (d) “Vases”; (e) “Bowling”;  and (f) “Drawers”.

(b) (a)

(d) (c)

(f) (e)
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The vectorial erosion of the opening by reconstruction
is also done with a structural element of size e. This
erosion replaces highlight pixels (high olex) by the sur-
rounding chromatic pixels (low olex). Next, the vectorial
geodesic dilation (iterated until stability) reconstructs
the color image without the recovering the specularities.
This is the same approach was successfully used in the
detection of color cells in real-time medical imaging,21

the filling in of holes22 and Gaussian noise elimination
in color images.23

With this new operation, we avoid some of the main
inconveniences of the geodesic reconstruction, i.e., the
high cost of processing caused by the multiple iterations
of the reconstruction and the over-simplification of the
image.9 The main steps of the proposed method (and the
precedence of the operations) are summarized in Fig. 7.

As can be seen in Fig. 7, the possibilities of parallel
processing are very limited. Nevertheless, in order to
achieve the results in a lower time, an alternative con-
figuration for multiprocessor environment is possible,
i.e., the vectorial erosion of the opening by reconstruc-
tion can be carried out in all the pixels of the original
image f (in a second processor), in parallel with the de-
tection step of the algorithm (first processor). This way,
the first vectorial erosion (e = 1) of the top hat is re-
used. The task graph of this new configuration is shown
in Fig. 8. We will evaluate this alternative in the fol-
lowing section.

Experimental Results and Real-Time Aspects
We now present the results obtained from the applica-
tion of our method for eliminating the specularities in
the various real scenes shown in Fig. 3. In addition, we
show a cost comparison for the two configurations of the
algorithm: single processor and multi-processor.

The algorithms have operated mainly in a single 2.8
GHz standard processor PC system. Until now, the mul-
tiprocessor configuration has been only simulated using
Visual software.24 However, in order to exploit the paral-
lel processing option in practice, we are now considering
the execution of the algorithm over a multiprocessor sys-
tem which consists of a standard mono-processor PC and
a Matrox Genesis Board. This board has, in addition to a

multi-channel frame grabber module, a low level image
processor module. This last component is based on the
TMS320C80 multi-processor and the Matrox NOA
(Neighborhood Operation Accelerator) chip. With this
multi-processor system, the morphological erosion is done
on the genesis board, and the rest of operations are ex-
ecuted on the PC processor. In this way, we can achieve
the parallelism described.

Figure 7. Algorithm steps for the detection and elimination of specular reflectance in color images.

Figure 8. Task graph for a parallel processing of the algorithm.
Morphological tasks in grey.

Step 1: detection

Step 2: elimination
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In Fig. 7, the main sequence of pseudo-code of the al-
gorithm can be observed graphically. The complexities
of the two configurations of the algorithm are similar,
although the time of execution of the color algorithm in
multi-processor descends because some color erosions
are made in the second processor. The function
“PixelsSegmentation” is the search for pixels in the chro-
matic image which have saturation and luminance cor-
responding to a vector of 25 values of coordinates (l,s)
of smax line. This way, only the pixels with specular re-
flectance and their neighborhoods are chosen for pro-
cessing. The complexity associated to this function is
determined by the search of these 25 values in the color
image, i.e., 3 loops of size 25, N and M, being N and M
the dimensions of the image. The last operations of the
algorithm have the complexity of color morphological
operations, i.e., O(S × V × C), where S is the number of
pixels in processing area (image h) and S < N × M, V is
the number of pixels in the neighborhood of structuring
element e, and C is the number of color components.

From the visual results obtained (Fig. 9), the effec-
tiveness of our method for the detection and elimina-
tion of specular reflectance can be observed. It must be
emphasized that in the results obtained with the new
filter, over-simplification does not appear since the re-
construction only functions in bright areas. Further-
more, the results are obtained at a much lower
computational time which is compatible with real-time
image processing systems.

The reconstruction task is the most critical operation.
For this reason, the size e of the structuring element of
morphological operations will depend on the application

and real-time requirements, i.e., a low e (1,2) is recom-
mended for visual inspection and a high e (3,4,…) is the
best in multimedia and image restoration. An example
of improvement in the results of the algorithm (for “bal-
loons” image) according to the size of the structural el-
ement can be seen in Fig. 10. The CPU times (in seconds)
for the two steps of the algorithm in single processing
system are presented in Tables I and II.

The speed of the PC’s processor influences in the re-
sponse times of the algorithms because the last opera-
tions of the algorithm (geodesic filter) are the ones that
require more processing time, and they are always ex-
ecuted in the PC’s processor (see Tables I and II). Ex-
ecuting some morphological erosions in a second
processor (for example, Genesis board) decreases the
total time, but the execution time of this operation is a
lot shorter than the time required for the highlight elimi-

(d) (e) (f)

(a) (b) (c)

Figure 9. Elimination of specular reflectance of real color images in Fig. 3. Over-simplification is not present in the results.
Supplemental Material—Figure 9 can be found in color on the IS&T website (www.imaging.org) for a period of no less than two years
from the date of publication.

TABLE I. CPU Times (seconds) for Step 1 of the Proposed
Algorithm

Color image Morphological contrast Pixels segmentation
enhancement by s

max
 line in LS

Apples    0.15 0.06

Tomatoes 0.12 0.05

Balloons 0.11 0.05

Vases 0.11 0.05

Bowling 0.11 0.05

Drawers 0.11 0.05
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(a) (b) (c) (d) (e)

Figure 10. The improvement of brightness elimination by size of structuring element e in morphological operations. (a) Original
image; (b) e = 1 (3 × 3); (c) e = 2 (5 × 5); (d) e = 3 (7 × 7); (e) e = 4 (9 × 9). Supplemental Material—Figure 10 can be found in color on
the IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.

TABLE II. CPU Times (seconds) for Step 2 of the Proposed Algorithm by Structuring Element of Size e in Morphological
Operations. Single Processor Configuration

Apples Tomatoes Balloons Vases Bowling Drawers

e δ
      
γ v
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( ' )
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1 0.03 0.51 0.01 0.63 0.01 0.13 0.01 0.36 0.01 0.46 0.01 0.96
2 0.04 0.69 0.03 0.75 0.03 0.18 0.03 0.44 0.02 0.52 0.03 1.28
3 0.05 0.92 0.03 1.08 0.04 0.27 0.03 0.59 0.03 0.76 0.04 1.69
4 0.06 1.16 0.04 1.34 0.04 0.41 0.04 0.79 0.04 0.93 0.04 2.06

TABLE III. Final CPU Times (seconds) for Brightness
Elimination by Means of a Global Geodesic Filter, and
the Proposed Algorithm for Single Processing and the
Multiprocessing Configurations (e = 1)

Color image Global filter Proposed algorithm Proposed algorithm
(Single-processing)  (Multiprocessing)

Apples 9.09 0.75 0.68
Tomatoes 11.73 0.81 0.73
Balloons 19.45 0.30 0.24
Vases 8.10 0.53 0.43
Bowling 8.64 0.63 0.57
Drawers 17.76 1.14 1.01

Figure 11. Evolution of execution times of the algorithm ac-
cording to the size of the structural element of morphological
operations. Multi-processor configuration of the algorithm
with respect to the best time of single processor and global
filter (e = 1).

nation stage, and, thus, the speed of the second proces-
sor is not critical.

The multiprocessing allows us to reduce this CPU time
between 0.07 seconds (e = 1) and 0.20 seconds (e = 4).
This represents an additional reduction in temporal cost
between 10% and 24%, with respect to a single proces-
sor configuration. In Table III, we show a comparison of
temporal execution costs between the new algorithm for
the elimination of specularities in color images and a
global geodesic filter (e = 1) that operates over the en-
tire image. As can be seen, the new method avoids the
high computational cost of the geodesic processing for
textured images (“Balloons” and “Drawers”), which is
unacceptable for real-time requirements.

Finally, an evolution of times of execution (seconds)
of the new algorithm according to the size of the struc-
tural element of the morphological operations is pre-
sented in Fig. 11.

Conclusions
In this article, we have presented a new method for the
detection and elimination of specular reflectance in color
images for real-time computer vision applications. The
novelty of our investigation is the integration of the de-
tection and the elimination of brightness in the same
algorithm. In addition, all the operations for brightness
elimination are based on color morphology.

A detailed study has demonstrated that the
specularities in real scenes appear in a given area of
the LS diagram, which is a 2D histogram of luminance
and saturation signals. The use of a new connected vec-
torial filter allows us to eliminate the specular reflec-
tance previously detected. This filter is an extension of
the geodesic transformations of the mathematical mor-
phology to color images. The possibility of eliminating
highlights in color images without causing over-simpli-
fication has been demonstrated. In addition, the elimi-
nation of brightness has been obtained with a very low
processing time, in single processor and multi-proces-
sor configurations, with respect to a global geodesic re-
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construction. This permits us to achieve real-time re-
quirements in image processing, even in very textured
images. The detection and elimination of brightness is
obtained independently of the material of the objects
on which they appear, without any need of multiple view
or previous knowledge of the scenes.

Based on the success shown by these results, we are
working to improve our method for eliminating
specularities. We work in other scheduling tasks and
multi-processor configurations for color geodesic opera-
tions to reduce the processing time required in these
operations as much as possible.    
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