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noise, and in this case linear digital processing
techniques fail.1,2

There are many impulsive noise models. Impulses are
also referred to as outliers. In statistics, outliers can be
defined as observations which appear to be inconsistent
with the pure data.2,4 Common for the models of
impulsive noise in the color images is the appearance of
noise as a very small or a very large value that presents
as spots of different color and values. This type of noise
is often called salt and pepper noise, but pure salt and
pepper noise that has only extreme values is very easy
to remove from the image because maximal or minimal
values can be eliminated.4 Typical sources for impulsive
noise are channel errors in communication digital links
or storage errors. More realistic noise is implied by bit
errors in the received signal values. Let each pixel be
quantized to several bits (24 for color imaging) in the
usual fashion. Assume the channel is a binary symmetric
one. If each a bit is flipped with the same probability it
is easy to prove that the contribution to the mean squire
error from the most significant bit is approximately 3
times that of all the other bits. Such an impulsive noise
is an example of very heavy-tailed noise.4

Different vector based processing filters have been
designed during last years in color imaging. For instance,
vector order statistics filters have demonstrated good
performance in the noise removal.1,2,5 There are a number
of filtering multichannel algorithms: the vector median
filters (VMF), that realize the vector ordering,
calculating their relative norm difference3; the basic
vector directional filter (BVDF), that employs directional
processing, taking pixels as vectors and obtaining the
output vector that shows less deviation of its angles
under ordering criterions in respect to the other
vectors.1,5 Other directional filters, such as the

Introduction
There are investigated and published different novel al-
gorithms applied in the multichannel image processing
during the last decade. One of the useful and promising
approaches being proposed was the multichannel signal
processing based on vector processing.1–3 In this case the
correlation in chromacity that exists between the chan-
nels is employed. The value of each a 2D pixel is repre-
sented by a 3D vector, so, the color image is translated
into a set of vectors with the directions and lengths that
are related to the chromatic properties of the pixels.

Nonlinear filtering techniques apply the robust order
statistics theory that is the basis for design of the
different novel approaches in digital multichannel
processing.1–5

The acquisition or transmission of digitized images
through sensor or digital communication link is often
interfered by noise. The noise is usually modeled as an
additive noise or a multiplicative and may be impulsive
one. Random additive noise can occur as thermal circuit
noise, communication channel noise, sensor noise, and
so on. Other noises include quantization noise and
speckle in coherent lighting. In color image processing
the assumption of additive Gaussian noise seldom holds.
One of the examples of non-Gaussian noise is impulsive
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directional distance filters (DDF), the generalized vector
directional filters (GVDF), and the distance dependent
multichannel filter (DDMF), use the direction of the
image vectors, eliminating some vector with atypical
directions according to the criterion used. The
output of  such a f i l ter  gives an estimate with
excellent color properties in the chromaticity sense.
Modification of the directional filtering approach is
represented by GVDF_DW, where the directional and
magnitude processing is divided, realizing them in
different windows. Other filters that are used here as
reference ones are the adaptive nearest neighbor filter
(ANNF) and the adaptive multichannel non parametric
filters (AMNF).1,2,5,6

Several novel filters with promising characteristics
have been designed during the last two-to-three years.
These algorithms have demonstrated good ability in
removing of impulsive noise, preserving fine image
details, as well chromatic properties of the filtered color
image.7–17 Below, we present a brief review of these
algorithms. Several of these filters we use below as
reference ones. The construction of the self-adaptive
algorithm (SAA) which can remove disturbed pixels,
saving the preservation ability, and which can be treated
as a modification of vector median filter is presented in
Ref. 7. The algorithm uses several similarity functions
adjusting the scale parameter via adaptation. The filter
presents good noise reduction and preserving ability
according to objective criteria PSNR, RMSE, and MAE
in comparison with the standard VMF and DDF.

Ref. 8 presents the method that can resolve the main
drawback of the VMF, blurring of the edges and fine
details is presented. The method’s idea is alternation
between VMF and identity operator, for use as the
proposed detector of noisy pixels. The restoration results
obtained by the proposed filter (named in here AVMF)
are compared with SAA,7 and standard VMF, BVDF, and
DDF showing the advantage of the proposed scheme in
standard objective quality measures.

A new filter (named in here VMF_FAS)9 replaces the
reference corrupted pixel in the window by one of its
neighbors according to calculation of similarity measure.
The performance of this filter is compared with different
reference filters such as VMF, BVDF, DDF, ANNF, etc.
showing significant advantage in the objective criteria.

Refs. 10 through 13 introduce the weighted vector
median (WVMF) and weighted vector directional
(WVDF) filters. The first approach uses two methods
for optimizing of the WVNF weights, adaptive to local
signal statistics and global ones. The numerical results
have shown a significant advantage of the proposed
WVMF over VMF in PSNR criterion. The selection
weighted vector directional filters11 enhance the
flexibility of VDF. The filter parameter can change the
smoothing capability from identity operation to the
BVDF. The authors present analysis of two sub-optimal
WVDF: LWVDF and SWVDF. Simulation results under
criteria, MAE, MSE, and NCD, show that the proposed
two filters can outperform the standard filters (VMF,
BVMF, DDF, GVDF), and previously presented filters.10

A filtering approach for impulsive noise reduction
employing the nonnegative integer weight corresponding
to the central sample, applying the BVDF, has been
presented.12 Similar to center weight variation,11 the
novel filter shows the ability to change the smoothing
properties. Two adaptive methods for angular thresholds
gave sufficiently good results in terms of the objective
image quality criteria and outperform standard
multichannel filtering algorithms. Ref. 13 generalizes

the design of the previously presented different filters
such as VMF, BVDF, DDF, weighted VMF, and weighted
VDF, introducing a class of nonlinear multichannel
filters with better performance in suppression of
impulsive noise and fine detail preservation.

Various fuzzy membership operations14–16 yield better
properties in spike detection and filtering performance.
Ref. 14 presents the design of a novel class that utilizes
fuzzy membership functions defined over vectorial inputs
according to digital geodesic paths. The novel filters can
be seen as an extension of the fuzzy adaptive filters,
because path connection costs are used to derive fuzzy
membership functions that quantify the similarity
between vectorial inputs. The filter simulations have
shown that it can successfully suppress Gaussian,
impulsive, as well as mixed-type noise. Ref. 15 introduces
an adaptive class of nonlinear hybrid filters. The filter
acts based on two stages: in the first stage, three adaptive
sub-filters are computed using fuzzy membership
functions based on two distance criteria; in the second
stage, the outputs of the three sub-filters in stage one
constitute the input set of the vector rational operation.
Novel filters outperform standard filtering technique such
as VMF and DDF. A novel method that incorporates a
new fuzzy inference system for noise detection has been
presented.16 It is combined with a switching scheme to
select between an identity filter output and the output
from a proposed L-filter design. The simulation results
on objective criteria PSNR and NCD have shown better
performance of the algorithm in comparison with
reference filters: VMF, VDF, and DDF.

Finally, Ref. 17 introduces a novel approach employing
CIE chromaticity coordinates. The proposed v1–filter and
u1-filter are non-iterative and nonlinear operators, but
the nonlinearity is strictly structural because their
numerators and denominators are computed through
linear convolution operations. The processing of the
achromatic channel Y is independent of the chromatic
filtering and has to be performed with operators that
preserve the high spatial frequencies. The anisotropic
diffusion and median filtering can be used, respectively,
to remove white Gaussian noise and impulse noise from
the Y band. The achromatic channel provides an
important input to the u1-filter and v1-filter thereby
eliminating possibly annoying hue shifts across regions
with different intensity levels. The proposed filtering
scheme provides a very interesting tool for smoothing
and regularizing chromatic signals.

Below, we present the new Vector Rank M-Type K-
Nearest Neighbor filters (VRMKNNF). The proposed
VRMKNNF have been adapted to color imaging using
some of the RM-filters.18,19 These filters provide the fine
detail preservation employing the KNN algorithm,2,4 and
the combined RM-estimators18,19 to obtain sufficient
impulsive noise suppression in each color channel. The
combined RM-estimators used in the proposed scheme
are described as redescending M-estimators with
different influence functions2,4,22,23 combined with the R-
(median, Wilcoxon, or Ansari–Bradley–Siegel–Tukey)
estimators22,23 to provide better noise suppression. To
improve the restoration performance of VRMKNNF we
also use an adaptive non parametric approach
determining the functional form of the density probability
of noise from data into the sliding filtering window.6 These
filters are called adaptive multichannel non parametric
VRMKNNF (AMN-VRMKNNF). Simulation results have
demonstrated that the proposed filters can outperform
other color image filters at least for high value of noise
contamination by balancing the tradeoff between noise
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suppression and fine detail preservation. The
implementation of the filters was realized on the Texas
Instruments DSP TMS320C671124,25 to demonstrate that
they can potentially provide a real-time solution to quality
video transmission.

RM-Estimators
There exist different R-estimators, they are derived from
the statistical theory of rank tests.22,23 The M-estima-
tors are based on a generalization of maximum likeli-
hood estimators. From the R- and M-estimators we have
derived the robust combined RM-estimators applicable
to image processing.18,19,26 The R-estimators form a class
of nonparametric robust estimators based on rank cal-
culations.22 The median estimator is the best estimator
when any a priori information about data Yi distribu-
tion shape and its moments is unavailable.22,23
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where Y(j) is the element with rank j, 1 ≤ j ≤ N in the
sample of size N.

If the probability density function is a symmetrical
one, the Wilcoxon test of signed ranks is asymptotically
the most powerful one and it determines the Wilcoxon
order statistics estimator22,23:
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where MED (see Eq. (1)) is the median operation for the
set of all N(N + 1)/2 pairs, and Y(i), Y(j) are the elements
with rank i and j, respectively.

Another R-estimator is the Ansari–Bradley–Siegel–
Tukey estimator22,23 which can be written in such a form:
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where Y(i) and Y(j) are defined by same manner as in Eq.
(2). The estimator, Eq. (3), can be realized by combined
use of the estimators, Eqs. (1) and (2).

Huber proposed the M-estimators as a generalization
of maximum likelihood estimators (MLE).2,4,22,23,27 The
standard technique for M-estimate calculation consists
of using Newton’s iterative method,4,22,23 introducing the
influence function
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as follows:
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Here,   ̂θ (q) is the M-estimate of the sample location pa-
rameter θ on a step q and S0 is a scale estimate; Yi is the
input data sample,   ̃ψ  is the normalized influence func-
tion ψ :ψ(Y) = Y   ̃ψ (Y), and YN is the primary data sample.
Usually   ̂θ (0) = MED{YN} is the median of primary data
and S0 = MED{|Yi  –   ̂θ (0)|} = MAD(YN) is the median of
the absolute deviations from the median.22,23

Sometimes, Eq. (4) can be simplified to such a one-step
estimator4,19,20:
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but the optimal estimator is presented by Eq. (4), and it
will be employed below in the proposed RM filtering
scheme.

It is evident that the last formula, Eq. (4a), represents
the arithmetic average of

    
ψ Y Yi N
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,

which is evaluated on the interval [−r,r], where the
parameter r is connected with restrictions on the range
of ψ(Y), for example, as has been done in case of the
simplest Huber’s limiter type M-estimator

      ˜ , ,ψ r r
rY r Y r Y( ) = ( )( ) = [ ]min  max -

for the normal distribution contaminated by another one
with heavy ‘tails’.22,23

Another way to derive the function   ̃ψ (Y) is to cut the
outliers off the primary sample. This leads to the so-
called lowered M-estimates. Hampel20 proved that the
skipped median
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is the most robust lowered M-estimate. Below we also
use the simple cut (skipped mean) influence function

    
ψ cut( ) ( )

,
,r Y

Y Y r
Y r

=
≤
>

⎧
⎨
⎪

⎩⎪0 .

There also exist other well known influence functions
in the literature. We propose to use the Hampel’s three
part redescending function, the Andrews sine function,
the Tukey biweight function, and the Bernoulli
function.4,22,23,28

The proposal for enhancement of the robust properties
of M-estimators by using rank estimates consists of the
application of the procedure similar to substitution of
the median average for the arithmetic one. We present
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where Yi and Yj are input data samples;   ̃ψ  is the nor-
malized influence function     ψ ψ ψ: ˜Y Y Y( ) ( )= ; initial esti-
mate is     θ̂

0( ) = MED{YN}; and YN is the primary data
sample. Equations (5) through (7) can be also applied
for 2D signals (images).

Here, an input sample is formed by pixels in the
sliding window that is usually employed in image
processing. The estimators presented are the iterative
combined RM-estimators. The R-estimators provide
good properties of impulsive noise suppression and the
M -estimators use dif ferent influence functions
according to the Huber scheme, providing better
robustness. So, it is expected that the performances of
combined RM-estimators may be better in comparison
with original R- and M-estimators. An additional
proposal to enhance the robust properties of the RM-
estimators, Eqs. (5) through (7), employed here is the
use of the presented iterative form of such estimators
as follows from Eq. (4).

Proposed Multichannel RM-Filters
A digital multichannel image I with size M1 × M2 is rep-
resented by a matrix defined as
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where yij ∈ {0,1,2,…,255}m, and denotes an m × 1 column
vector. In this article yij is called the vector valued pixel
located at position (i,j) in I. When m = 3 the digital mul-
tichannel image may be an RGB color image.

A filter window or sliding window with size N =
(2L+1)2 (N is odd, as L is an integer) covers on the image
I at position (i,j) and presents an observed sample
matrix Yij
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where 1 ≤ i ≤ M1 and 1 ≤ j ≤ M2. Each entry  in Yij is called
an observed vector-value sample (pixel) where i – L ≤ i′ ≤
i + L and j – L ≤ j′ ≤ j + L. Moreover, yij denotes the cen-
tral vector-valued sample (or central vector-valued pixel).

By the row-major method, yij in Eq. (9) can be
represented by
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Let the sliding window cover over the image I in a
raster-scan fashion. For convenience, the subscript ij in
Eq. (10) can be substituted by a scalar running index, l
= (i – 1) × L + j. So, Eq. (10) can be rewritten as
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bk ], y(l)
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gk , y(l)
bk ∈ { 0,1,...,255},

1 ≤ k ≤ N, N = (2L + 1)2, and T denotes the matrix
transpose.

In this article, we use a sliding window which moves
across the image by use of a location index l in the
following way6:

      y y y y y y yl N l N l N N= ( ) = ( )− − + +, , , , , ,1 1 2… … . (12)

To increase the robustness of standard filters, it is
possible to use different methods known in the robust-
estimate theory, for example, censoring or others.22,23,26 A
known means to improve the quality of filtration, via
preservation of both the edges and small-size details in
the image, consists of the use of Kc elements of the sample
whose values are closest to the central pixel value of a
sliding filter window. This leads to the widely known KNN
(K-nearest neighbor pixels) image filtering algorithm.2,4

The proposed VRMKNNF employs an idea of the KNN
algorithm. The following representation of the grayscale
scalar KNN filter is often used,
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where T is a threshold, and xi is the input data sample
in a sliding window, and x is the central element of the
window to be estimated. Usually, the value of T is equal
to twice of the standard noise deviation, as in the Sigma
filter.4 Another scheme will be proposed here which uses
the influence functions in the RM-estimators.

For convenience, the Vector KNN filter (VKNNF) is
written below as follows:

    
θ̂ ψKNN = ( )

=
∑1

1K
y y

c
i i

i

N
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where yi are the noisy image vectors in sliding filter win-
dow, which includes i = 1,2,…,N (N is odd) vectors
y1,y2,…,yN located at spatial coordinates in the filter win-
dow, and ψ(yi) is the influence function that is defined as
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For improving the robustness of the VKNNF we pro-
posed to use the iterative RM-estimators, Eqs. (5)
through (7), adapted for multichannel imaging.

So, the Vector Rank M-type K-Nearest Neighbor fil-
ter (VRMKNNF) can be written as:
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where     θ̂VMMKNN
q( ) ,      θ̂VWMKNN

q( ) ,  and     θ̂VABSTMKNN
q( )  are the

VMMKNNF, VWMKNNF and VABSTMKNNF outputs,
respectively; g(q) and g1

(q) are the sets of Kc numbers of
vectors yi which are weighted by value in accordance
with the used influence function     ̃ ( )ψ yi  to the estimate
obtained at previous step     θ̂VRMKNN

q−( )1  in a sliding filter
window; R(k)

(q) and R(l)
(q) represent values of vectors hav-

ing k and l ranks among the sliding window elements
g(q) which are the members of the set of Kc vectors that
are weighted in accordance the used influence function used,

    ̃ ( )ψ yi , and are the closest to the estimate obtained at the
previous step,     θ̂VRMKNN

1q-( ) ; yi are the noisy image vectors in a
sliding filter window, which include vectors y1,y2,…,yN in
the filter window;     

ˆ
( )θVRMKNN

0( ) = +y N 1 2  is the initial estimate
that is equal to central element in a sliding window; q
is the index of the current iteration; Kc is the number of
the nearest neighbor vectors calculated in such a
form19,29:
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Here a controls the fine detail preservation; Kmin is the
minimal number of the neighbors for noise removal; Kmax

is the maximal number of the neighbors for edge restric-
tion and fine detail smoothing; and Ds(y(N+1)/2) is the im-
pulsive detector defined as follows19,30:
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Here MED{yi} is the median of the input data set yi in a
sliding window, and MAD is the median of absolute de-
viations from median in the same window defined after
Eq. (4).4,22

The algorithm finishes when     
ˆ ˆθ θVRMKNN VRMKNN

q q( ) ( )= −1  (the
subscripts VRMKNNF, etc., in the filters denotes the
VMMKNNF, or VWMKNNF, or VABSTMKNNF).

The impulsive detector employed, Eq. (18), depends
on the local statistics of the contaminated image. So,
the current value Kc calculated for uniform image areas
with low intensity can be extremely large, which marks
the possibility of increasing the data set and better
suppressing impulsive noise. In this case the size of the
sliding window should be larger. After numerous
simulations we proposed using the standard median
filter to improve noise removal ability and decrease
processing time. Thus, when Kc is sufficiently large, the
median filter may be used. Numerical simulations show
that, when Kc > 7 and Kc > 350, the VRMKNNF filters
proposed above may be replaced with a 3 × 3 median
filter and a 5 × 5 median filter, respectively. The
parameter Kc evaluates the number of pixels in the
calculus of estimation of KNN in an adaptive form; it
fixes this number according to local data activity. When
the calculated value of Kc is more than seven pixels, it
is clear that the filtering window may be localized in a
part on image with lower spatial frequency details in
the sliding window, so, it is not necessary to use KNN
estimator. Here, we can employ the 3 × 3 median filter
because the results of the KNN estimation using 7 pixels
from the total of 9 pixels produces similar results to the
case of 3 × 3 median filter. Additionally, the median
estimator requires a lower number of calculation steps
in comparison with the KNN estimator. Therefore, if Kc

presents sufficiently large values than the number of
pixels in a 5 × 5 filtering window reflects the fact that
there are homogeneous areas in the filtering window.
So, in this case we can employ the 5 × 5 median filter to
suppress the noise in absence of fine detail.

The proposed filtering approach employs an iterative
procedure, which follows from the classical iterative M-
estimate procedure.4 Unlike a classical M-estimate, which
uses the median of a sample data as the initial
approximation, the proposed algorithm forms the
estimate based on the center element of the sliding
window as the initial estimate in order to preserve the
small features of an image. At the current iteration q the
procedure uses a vector data sample to form a set of
elements whose values are closest to the estimate
calculated at the previous step. Subsequently, the
procedure calculates a median of this set or a more
complex estimate according to the RM-estimators, Eqs.
(15) and (16), presented above. Then, it uses such a
median at the next (q+1)th step as in the previous
estimation. The number of neighbors Kc in the vector
sample with closest values is calculated prior to the
iterations and is kept unchanged for every sliding window.
It is a measure of the local data activity within the sliding
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window and of the presence of impulsive noise at its
center element. The number Kc is calculated in this
manner for each element i in order to fit the filter to local
characteristics of an image, which helps to preserve the
small features. Iterations have to be terminated when
the current estimate becomes equal to the previous one.
From simulations we found that the iterations converge
after one or two iterations, but their maximal number
may be up to 4–5 depending on image nature.

To improve the impulsive noise suppression and detail
preservation performances of VRMKNNF filters we have
introduced the AMN-VRMKNNF that is based on an
adaptive non-parametric approach and determines the
functional form of density probability of noise from data
in a sliding filtering window.4 So, AMN-VRMKNNF is
presented by combining the adaptive multichannel non
parametric filter according with the Ref. 6 and the
VRMKNNF.

The proposed AMN-VRMKNNF can be written as:
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where     xl
VRMKNN  values represent the proposed

VRMKNNF providing the reference vector according
with the proposed scheme,6 y is the current noisy obser-
vation to be estimated from given set yN, and yl are the
noisy vector measurements, hl is the smooth parameter
that is determined as:
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where yj ≠ yl for ∀yj, j = 1,2,…,N, ||yj – yl ||L1
 is the abso-

lute distance (L1 metric) between two vectors, n−p/M with
0.5 > p > 0 guarantees satisfaction of the conditions for
an asymptotically unbiased and consistent estimator,6

M is the dimensionality of the measurement space (M =
3 when the multichannel image is an RGB color image),6

and the function K(y) is the kernel function that has
the exponential form K(y) = exp(−|y|) in the case of im-
pulsive noise. The most common choices for the density
approximation are kernels from symmetric distribution
functions, such as the Gaussian or double exponential.
For the simulation studies reported in this article, the
exponential kernel K(y) = exp(−|y|) was selected.6

Experimental Results
Impulsive Noise Model
As was written in Introduction there are many analyti-
cal models for impulsive noise. For color imaging as it
has been mentioned,9 that several types of impulsive
models usually can be used. Some of them need detailed
a priori information about the degradation process in
each channel. This information has to be given before
filtering and can contain the probability of appearance
of impulsive noise in each a channel, along with corre-
lation values between the channels’ noise. In our opin-
ion complex models which need several parameters that
have to be determined a priori or during the processing
stage have low tolerance if these parameters are not
connected with an image forming or transmission chan-
nel reality. So, such a model can produce confusion dur-
ing interpretation of filtering results.

Below we use the simple and at the same time the
most severe model of impulsive noise from point of view
of color image degradation. This model needs only prior
information about the probabilities p  of  spike
appearance, which are independent in each channel.
Additionally, the impulsive noise is modeled as
uniformly distributed within the interval of given values
(0–255). So, we employ here the following model for each
channel of a color image:

     Y n Y Y n Y Y n YR im R G im G B im GB= ( ) = =, ( ), ( )  ,

    

n Y
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image Y another case
im

imp
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where nim(Y) is noise and Y represents each channel for
an RGB 24 bit color image.

Objective Criteria
We have conducted a set of simulation experiments in
order to evaluate the VRMKNNF and AMN-VRMKNNF
and compare their performances against the perfor-
mance of some other color filtering techniques proposed
in the literature.1,5–13 The results of these experiments
are presented below. The criteria used to compare the
restoration performance of various filters were the peak
signal-to-noise ratio (PSNR) and normalized mean
square error (NMSE) for the evaluation of noise sup-
pression, the mean absolute error (MAE) for quantifica-
tion of edges and fine detail preservation, and the
normalized color difference (NCD) for the quantification
of the color perceptual error1,4,5,8–11:
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is the mean square error, M1, M2 are the image dimen-
sions, y(i,j) is the 3D vector value of the pixel (i,j) of the
filtered image, y0(i,j) is the corresponding pixel in the
original uncorrupted image, and ||·||L1

, |·||L2
 are the L1-

and L2-vector norms, respectively;
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Here
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is the norm of color error; ∆L*, ∆u*, and ∆v* are the
difference in the L*, u*, and v* components, respectively,
between the two color vectors that present the filtered
image and uncorrupted original one for each a pixel (i,j)
of an image, and
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is the norm or magnitude of the uncorrupted original
image pixel vector in the L*u*v* space. As has been dis-
cussed in the various publications,1,8–11 the NCD objec-
tive measure expresses well the color distortion.

We have also used a subjective visual criterion
presenting the filtered images and/or their error images
for several better filters to compare the capabilities of
noise suppression and detail preservation for the
algorithms. So, subjective visual comparison of the
images provides information about the spatial distortion
and artifacts introduced by different filters, as well as
the noise suppression quality of the algorithm and
present performance of the filter, when filtered images
are observed by the human visual system.

Discussion of the Results
Many filtering approaches exist in color imaging. Because
it is difficult to analyze all the existing algorithms, the
objective performances and subjective visual results are
compared here with some reference filters commonly used
in the literature. So, the efficiency measures can be
judged via comparison of the experimental results ob-
tained, using the proposed filtering approach, with some
classical filters such as VMF, GVDF, AMNF, etc. Through
these filters, the presented filtering class can be com-
pared with other filtering schemes, because VMF, GVDF,
and AMNF are usually treated as comparable ones. To
determine the restoration properties and compare the
qualitative characteristics of various color filters, the
proposed 3 × 3 VRMKNNF (VMMKNNF, VWMKNNF,
and VABSTMKNNF) with simple, Hampel’s three part
redescending, and Andrew’s sine influence functions, the
3 × 3 AMN-VRMKNNF filter (AMN-VMMKNNF) with

simple influence function, and also the 3 × 3 vector me-
dian (VMF), 3 × 3 α-trimmed mean (α-TMF), 3 × 3 gener-
alized vector directional (GVDF), 3 × 3 adaptive GVDF
(AGVDF), 5 × 5 double window GVDF (GVDF_DW), 3 × 3
multiple non-parametric (MAMNFE), 3 × 3 adaptive
multichannel non parametric (AMNF), 3 × 3 adaptive
multichannel non parametric vector median filters (AMN-
VMF), and two newest ones, named here adaptive VMF
(AVMF)8 and fast adaptive similarity VMF (VMF_FAS),9

were simulated. These filters were computed and used
in accord with their references1–3,5,6,8,9 to compare them
with the proposed filtering approach. The reason for
choosing these filters to compare with the proposed ones
is that their performances have been compared with vari-
ous known color filters, and they were accordingly used
as the reference ones.

The 320 × 320 RGB color (24 bits per pixel) widely
used test images “Lena”, “Mandrill” and “Peppers”,
with different texture character were corrupted by
impulsive noise according to the model presented above
with intensities that change in the range from 0%
(noise free) to 10% with the step size 2%, and from 10%
to 50% with the step size 5% for spike occurrence in
each channel. So, numerical results cover a wide range
of possible noise corruption. Table I shows some
comparative restoration results for several proposed
and reference filters presenting the noise suppression
performance (PSNR) in the case of the test image
“Mandrill”. Table II exhibits the simulation results for
all the objective criteria (NMSE, NCD, MAE and
PSNR), introduced in the previous section, employing
the proposed filtering approach and some of the better
reference filters according to Table I. Simulation
results (see Table I) clearly show that VMF_FAS and
VWMKNN filter with a simple cut influence function
are the best algorithms in noise suppression for low
noise intensity (from 2% to 10%). In high impulsive
noise intensity (from 25% to 50%) the better PSNR
criterion values have been obtained by algorithms
AMN-VMMKNN and VMMKNN with a simple cut
influence function, and for 15%, and 20% spike
occurrence the best PSNR performance is presented by
VMMKNN (Simple Cut) filter. Analyzing the estimates
of the PSNR criterion (Table I) we can conclude that
the proposed filtering scheme shows an advantage in
the PSNR performance in comparison with cases when
other filters are used for high spike occurrence, i.e.,
more than 10%–15%. For example, for the test image
“Mandrill” the scoring is changed from 0.53 dB (20%)

TABLE I. PSNR in dB for Different Filters Applied to Case of Test Image “Mandrill”

Impulsive Noise VMF VMF_FAS AVMF GVDF GVDF_DW VMMKNNF VWMKNNF AMN-VMMKNNF
Percentage Simple Simple Simple

2 24.111 29.268 24.390 21.038 21.298 24.772 29.039 23.680
4 24.053 27.736 24.316 20.972 21.260 24.644 28.079 23.651
6 23.973 26.888 24.213 20.930 21.203 24.515 27.164 23.601
8 23.873 26.044 24.090 20.861 21.172 24.380 26.374 23.543

10 23.778 25.294 23.974 20.728 21.105 24.202 25.502 23.476
15 23.347 23.680 23.480 20.295 20.954 23.774 23.729 23.285
20 22.793 22.473 22.881 19.769 20.765 23.202 22.713 23.072
25 22.041 21.013 22.091 18.996 20.467 22.513 20.891 22.792
30 21.180 20.113 21.209 18.088 20.160 21.777 19.772 22.467
35 20.171 19.015 20.181 17.119 19.645 20.925 18.754 22.007
40 19.062 17.899 19.067 15.990 18.885 19.851 17.672 21.331
45 17.976 16.947 17.978 14.930 18.122 18.824 16.722 20.575
50 16.952 16.001 16.953 14.055 17.218 17.847 15.885          19.764
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TABLE II. Comparison Simulation Results for NMSE, NCD, MAE and PSNR Performances Presented by proposed and Reference
Filters

Impulsive Noise Algorithm NMSE NCD MAE       PSNR
Percentage Mandrill Lena Peppers Mandrill Lena Peppers Mandrill Lena Peppers Mandrill Lena Peppers

0 AVMF 0.0171 0.00227 0.00258 0.0280 0.0078 0.0057 6.98 1.89 1.51 24.44 31.58 31.54
VMF_FAS 0.00478 0.00019 0.00144 0.0041 0.0002 0.0016 0.99 0.05 0.34 29.97 42.30 34.07
AMN-VMMKNNF 0.0300 0.00586 0.00688 0.0532 0.0250 0.0217 13.60 6.27 5.56 21.99 27.45 27.29
VMF 0.01823 0.0029 0.0030 0.0336 0.0155 0.0108 8.55 4.08 2.86 24.15 30.47 30.89
VWMKNNF Simple 0.0274 0.0045 0.0078 0.0451 0.0195 0.0188 11.36 4.90 4.63 22.37 28.52 26.74
VMMKNNF Simple 0.0326 0.0060 0.0100 0.0481 0.0209 0.0209 12.67 5.64 5.67 21.63 27.31 25.65

5 AVMF 0.0177 0.0026 0.0031 0.0293 0.0096 0.008 7.36 2.39 1.97 24.27 30.95 30.81
VMF_FAS 0.009 0.0021 0.0028 0.010 0.0045 0.0045 2.54 1.194 1.14 27.21 31.85 31.19
AMN-VMMKNNF 0.021 0.0039 0.0046 0.035 0.0195 0.017 10.767 5.03 4.42 23.62 29.21 29.21
VMF 0.0188 0.0032 0.0034 0.034 0.016 0.012 8.71 4.29 3.14 24.02 30.07 30.30
VWMKNNF Simple 0.0088 0.0023 0.0029 0.019 0.0096 0.008 4.96 2.55 2.114 27.69 31.45 30.91
VMMKNNF Simple 0.0165 0.0031 0.0034 0.034 0.0169 0.014 8.74 4.44 3.54 24.58 30.22 30.34

10 AVMF 0.0190 0.0032 0.0039 0.031 0.0117 0.0095 7.87 2.97 2.49 23.97 30.09 29.79
VMF_FAS 0.0140 0.0043 0.0046 0.0159 0.0086 0.0081 4.06 2.35 2.07 25.29 28.80 29.01
AMN-VMMKNNF 0.0213 0.0042 0.0049 0.0432 0.020 0.0182 11.04 5.23 4.66 23.48 28.94 28.71
VMF 0.0199 0.0037 0.0042 0.0349 0.0172 0.0132 8.96 4.57 3.49 23.78 29.46 29.44
VWMKNNF Simple 0.0133 0.0050 0.0067 0.0226 0.0128 0.0121 6.13 3.56 3.212 25.50 28.13 27.42
VMMKNNF Simple 0.0180 0.0035 0.0040 0.0359 0.0179 0.0146 9.19 4.73 3.847 24.20 29.64 29.62

15 AVMF 0.0213 0.0041 0.0050 0.0334 0.0141 0.0119 8.60 3.63 3.13 23.48 29.06 28.66
VMF_FAS 0.0203 0.0077 0.0101 0.0223 0.0135 0.0142 5.83 3.70 3.70 23.68 26.28 25.63
AMN-VMMKNNF 0.0223 0.00451 0.0054 0.0443 0.0213 0.0193 11.38 5.46 4.92 23.285 28.59 28.32
VMF 0.0219 0.0045 0.0053 0.0363 0.0185 0.0151 9.43 4.92 3.95 23.35 28.64 28.44
VWMKNNF Simple 0.0200 0.0084 0.0116 0.0268 0.0166 0.0169 7.55 4.75 4.59 23.73 25.87 25.025
VMMKNNF Simple 0.0198 0.0041 0.0049 0.0378 0.0191 0.0162 9.76 5.07 4.26 23.77 28.93 28.71

20 AVMF 0.0244 0.0054 0.0069 0.0362 0.0166 0.0150 9.49 4.41 3.92 22.88 27.83 27.30
VMF_FAS 0.0268 0.0108 0.0131 0.0354 0.0178 0.0161 7.69 5.00 4.84 22.47 24.80 24.45
AMN-VMMKNNF 0.0233 0.0049 0.0061 0.0455 0.0222 0.0209 11.77 5.74 5.26 23.07 28.18 27.82
VMF 0.0249 0.0057 0.0071 0.0384 0.0200 0.0172 10.11 5.42 4.53 22.79 27.58 27.19
VWMKNNF Simple 0.0253 0.0128 0.0133 0.0323 0.0207 0.0199 9.07 6.120 5.34 22.71 24.06 24.42
VMMKNNF Simple 0.0226 0.0052 0.0063 0.0399 0.0206 0.0183 10.48 5.54 4.76 23.20 27.96 27.68

25 AVMF 0.0293 0.0075 0.00963 0.0398 0.0197 0.0187 10.61 5.34 4.89 22.09 26.41 25.83
VMF_FAS 0.0376 0.0151 0.0189 0.0357 0.0228 0.0248 9.72 6.50 6.44 21.01 23.34 22.91
AMN-VMMKNNF 0.0249 0.0055 0.0068 0.0470 0.0235 0.0229 12.29 6.11 5.69 22.79 27.76 27.35
VMF 0.0296 0.0077 0.0098 0.0412 0.0222 0.0204 11.05 6.07 5.35 22.04 26.28 25.78
VWMKNNF Simple 0.0386 0.0175 0.0237 0.0373 0.0255 0.0284 11.01 7.57 7.64 20.89 22.71 21.93
VMMKNNF Simple 0.0266 0.0066 0.0086 0.0426 0.0225 0.0213 11.36 6.09 5.49 22.51 26.89 26.31

30 AVMF 0.0359 0.0106 0.0146 0.0439 0.0236 0.0239 12.00 6.53 6.27 21.21 24.89 24.02
VMF_FAS 0.0462 0.0197 0.0259 0.0427 0.0279 0.0316 11.84 8.09 8.29 20.11 22.19 21.53
AMN-VMMKNNF 0.0269 0.0064 0.0084 0.0487 0.0253 0.0266 12.91 6.69 6.48 22.47 27.04 26.42
VMF 0.0361 0.0107 0.0147 0.0449 0.0253 0.0250 12.30 7.04 6.58 21.18 24.83 23.99
VWMKNNF Simple 0.0499 0.0234 0.0321 0.0429 0.0303 0.0348 13.03 9.23 9.55 19.77 21.44 20.61
VMMKNNF Simple 0.0315 0.0091 0.0127 0.0456 0.0252 0.0256 12.44 6.92 6.63 21.78 25.52 24.63

40 AVMF 0.0588 0.0234 0.0326 0.0546 0.0341 0.0393 15.88 10.07 10.37 19.07 21.45 20.54
VMF_FAS 0.0769 0.0367 0.0504 0.0592 0.0415 0.0509 17.41 12.68 13.59 17.90 19.49 18.65
AMN-VMMKNNF 0.0349 0.0107 0.0145 0.0546 0.0316 0.0384 15.04 8.74 9.06 21.33 24.86 24.07
VMF 0.0589 0.0234 0.0326 0.0550 0.0348 0.0397 15.99 10.26 10.48 19.06 21.44 20.54
VWMKNNF Simple 0.0811 0.0406 0.0555 0.0569 0.0434 0.0520 17.98 13.61 14.46 17.67 19.05 18.24
VMMKNNF Simple 0.0491 0.0186 0.0268 0.0543 0.0334 0.0393 15.60 9.60 10.02 19.85 22.43 21.40

50 AVMF 0.096 0.0442 0.0627 0.0691 0.0484 0.0606 21.37 15.07 16.33 16.95 18.68 17.70
VMF_FAS 0.119 0.0610 0.0859 0.0771 0.0586 0.0755 24.07 18.57 20.59 16.00 17.28 16.33
AMN-VMMKNNF 0.050 0.0189 0.0271 0.0639 0.0419 0.0571 18.54 12.19 13.39 19.76 22.37 21.34
VMF 0.095 0.0441 0.0627 0.0692 0.0485 0.0607 21.42 15.13 16.36 16.95 18.69 17.70
VWMKNNF Simple 0.122 0.0652 0.0884 0.0736 0.0593 0.0745 24.09 19.40 20.88 15.89 16.99 16.20
VMMKNNF Simple 0.078 0.0345 0.0506 0.0664 0.0452 0.0596 20.27 13.72 15.21 17.85 19.76 18.63

to about 1.27 dB (30%), and to about 3 dB for high noise
intensity. Similar results have been obtained for other
test images, “Peppers” and “Lena”.

Analyzing the data presented in Table II one can see
that in free noise or low impulsive noise intensity (5%)

the newest filter VMF_FAS has some advantage in
comparison with filters following from the proposed
approach as well as others reference filters, VMF and
AVMF, in values of all objective criteria. For high noise
corruption intensity, when spike occurrence is more than
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15% – 20% (10%, in case of test image “Mandrill”), the
algorithms following from the proposed filtering
approach present the best performances in NMSE and
PSNR criteria. One can see that the NCD and MAE
performances presented in this table favor the newest
filters “VMF_FAS” and “AVMF” for low impulsive noise
intensity, less than 20%. For high impulsive noise
corruption it is difficult select the best filter. We can
only note that for “noisy” type images, such as
“Mandrill”,  the NCD performance values of the
VMF_FAS filter and proposed VWMKNNF (Simple)
filter are very similar. Finally, for very high impulsive
noise corruption, when the percentage is 40% or more,
better MAE and NCD performance is presented by the
proposed AMN-VMMKNN filter. It is necessary to note
that when the objective criteria MAE and NCD show
some advantage in favor of the filters VMF_FAS or
AVMF, its PSNR values are less by 0.7 dB to 1.5 dB in
comparison with what the AMN-VMMKNN filter gives.

The presented comparison of the objective criteria
shows that the restoration performances of VRMKNNF
and AMN-VMMKNN often outperform other analyzed
filters, at least for high impulsive noise corruption, i.e.,
more than 15%–20%.

Figure 1 exhibits the processed images and zoomed
image portions for the test image “Mandrill”, explaining
the impulsive noise suppression and detail preservation
in accord with Table I. Figure 1(b) shows the input image
corrupted by 10% impulsive noise for each a color channel,
Figs. 1(c), 1(d) exhibit the filtering results when the
proposed VWKNNF (Simple) is applied, and Figs. 1(e)
and 1(f) present VMF_FAS filtered image results. Finally,
Figs. 1(g) and 1(h) show AMN-VMMKNNF filtered
images. From this figure one can see that the processed
images obtained by the proposed VMMKNNF and AMN-
VMMKNNF appear to have a good subjective quality. The

VWKNNF (Simple) output is characterized by sufficiently
good fine detail preservation and noise suppression as
well. Another proposed AMN-VMMKNNF presents
excellent noise suppression but some image details are
blurred.

Figures 2 and 3 show the subjective visual quantities
of restored parts of color images “Lena” and “Peppers”
with a spike occurrence of 20% and 30%, respectively.
From these figures we observe that the proposed
VMMKNNF and AMN-VMMKNNF provide better
impulsive noise suppression and detail preservation, in
comparison with the newest AVMF and VMF_FAS filters
which present better visual qualities among the
reference filters.

Figure 4 presents the error images of the same zoomed
part of the filtered images “Mandrill”, “Lena”, and
“Peppers” for the subjective visual comparison of Fig. 1
to Fig. 3. Figure 4 shows that the error images in the
case of using the proposed VMMKNNF and AMN-
VMMKNNF demonstrate it to have as good subjective
quality as the VMF_FAS filter. It is easy to see,
analyzing these error images that the VMF_FAS filter
presents slightly better visual subjective performance
in fine detail preservation, but at the same time it shows
worse impulsive noise suppression in comparison with
the proposed filtering technique. These subjective
results confirm objective performances presented in the
Tables I and II.

The parameters for VRMKNNF and AMN-VRMKNNF
filters and influence functions were found after
numerous simulations in different test images degraded
by impulsive noise. The values of the parameters of the
proposed filters were 0.5 < a < 15, Kmin = 5, and Kmax = 8,
and the parameters of the influence functions were: r ≤
81 for Andrews sine, and α = 10, β ≤ 90 and r = 300 for
Hampel three part redescending. The idea was to find

Figure 1. Subjective visual quantities of restored color image “Mandrill”, (a) original image “Mandrill”; (b) input noise image
corrupted by 10% impulsive noise in each a channel; (c) proposed VWKNNNF (Simple) filtered image; (d) proposed VWKNNNF
(Simple) filtered zoom part of (c); (e) VMF_FAS filtered image; (f) VMF_FAS filtered zoom part of (e); (g) proposed AMN-VMMKNNF
filtered image; and (h) proposed AMN-VMMKNNF filtered part of (g). Supplemental Material—Figure 1 can be found in color on the
IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.

(a)  (b)  (c)  (d)

(e)  (f) (g)  (h)
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the parameter’s values when the values of criteria PSNR
and MAE would be optimal. The Kmin and a values were
varied from 1 to 8, and from 0 to 20, respectively. The
simulation results have shown that the best performances

were obtained when Kmin ≥ 5 and a ≥ 2, respectively. The
parameters α, β, and r were obtained for different
influence functions, for example, in the case of the
Hampel function the optimum value α was equal to 14

Figure 2. Subjective visual quantities of restored part of color image “Lena”, (a) original image; (b) input noisy image corrupted by
20% impulsive noise in each a channel; (c) AVMF filtered image; (d) VMF_FAS filtered image; (e) VWMKNNF filtered image (Simple)
(f); VMMKNNF filtered image (Simple); (g) AMN-VMMKNNF filtered image; and (h) VMF filtered image. Supplemental Material—
Figure 2 can be found in color on the IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.

(a)  (b)  (c)  (d)

(e)  (f) (g)  (h)

Figure 3. Subjective visual quantities of restored part of color image “Peppers”, (a) original image; (b) input noisy image corrupted
by 30% impulsive noise in each a channel; (c) AVMF filtered image; (d) VMF_FAS filtered image; (e) VWMKNNF filtered image
(Simple) (f); VMMKNNF filtered image (Simple); (g) AMN-VMMKNNF filtered image; and (h) VMF filtered image. Supplemental
Material—Figure 3 can be found in color on the IS&T website (www.imaging.org) for a period of no less than two years from the date of
publication.

(a)  (b)  (c)  (d)

(e)  (f) (g)  (h)
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Figure 4. Zoomed part of the error images after filtration of the color images “Mandrill:, “Lena”, and “Peppers” with 10%,
20%, and 30% of spike occurrence, respectively: (a) filtered by AVMF; (b) filtered by VMF_FAS (c) filtered by proposed
VMMKNNF (Simple); (d) filtered by proposed VMMKNNF (Simple); (e) filtered by AVMF; (f) filtered by VMF_FAS; (g) fil-
tered by proposed VMMKNNF (Simple); (h) filtered by proposed AMN-VMMKNNF (Simple); (i) filtered by AVMF; (j) filtered
by VMF_FAS; (k) filtered by proposed VMMKNNF (Simple); and (l) filtered by proposed AMN-VMMKNNF (Simple). Supple-
mental Material—Figure 4 can be found in color on the IS&T website (www.imaging.org) for a period of no less than two years from the
date of publication.

for image “Mandrill”, 10 for image “Lena”, and 12 for
video sequence “Miss America”, and the value r is
changed from 300 for “Mandrill”, 280 for “Lena”, and
290 for “Miss America”.

Therefore, there are some variations of about ±10% of
PSNR performance with use of other parameter values,
different from the ones presented here. Finally, in this
article we have standardized these parameters as
constants to realize implementation of the proposed
algorithms for real-time applications.

The runtime analysis of various filters was realized
using the Texas Instruments DSP TMS320C6711. This
DSP has a performance of up to 900 MFLOPS at a clock
rate of 150 MHz.24 The filtering algorithms were
implemented in C language using the BORLANDC 3.1
for all routines, data structure processing and low level
I/O operations. Then, we compiled and executed these

programs in the DSP TMS320C6711, applying the Code
Composer Studio 2.0.25

According to the restoration performance results
obtained in Tables I and II, the processing time values
are depicted in Table III. The processing time in seconds
includes time of acquisition, processing, and storing of
data. Analyzing this table we found the following results,
namely that the processing time of the proposed
VRMKNNF with different influence functions has values
in the range from 0.3 to 0.5 s. In this table we present
only the values of processing time for the simple cut
influence function because other employed functions
present similar results. The processing time values of
newest filters were for AVMF, 0.1377 s, and for
VMF_FAS, 0.22 s. The times of proposed VMMKNNF
and VWMKNNF are less than for classical reference
filters with exception of VMF, α-TMF, and AMNF, and

(a)  (b)  (c)  (d)

(e)  (f) (g)  (h)

(i)  (j) (k)  (l)
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TABLE III. Processing Times for Different Filters on the Color Images “Mandrill”, “Lena”, and “Peppers” Degraded by 10, 20, and
30% of Impulsive Noise, Respectively

Algorithm Processing Time
Mandrill Lena Peppers

VMF 0.039 0.039 0.039
α-TMF 0.087 0.087 0.087
GVDF 0.533 0.564 0.565

AGVDF 0.505 0.620 0.626
GVDF_DW 0.720 0.721 0.723
MAMNFE 0.832 0.832 0.832

AMNF 0.095 0.095 0.095
AMN-VMF 0.648 0.648 0.648

AVMF 0.137 0.137 0.137
VMF_FAS 0.220 0.220 0.220

AMN-VMMKNNF Simple 3.666 3.687 3.726
VMMKNNF Simple 0.311 0.296 0.316
VMMKNNF Andrew 0.208 0.199 0.227
VMMKNNF Hampel 0.181 0.199 0.196
VWMKNNF Simple 0.499 0.435 0.477
VWMKNNF Andrew 0.751 0.756 0.762
VWMKNNF Hampel 0.413 0.398 0.409

VABSTMKNNF Simple 0.298 0.286 0.315
VABSTMKNNF Andrew 0.346 0.320 0.354
VABSTMKNNF Hampel 0.322 0.264 0.355

are slightly more than for AVMF and VMF_FAS. The
processing time values of AMN-VMMKNNF are larger
than for any other filter, but as it has been proven that
such a filter presents better performance for high noise
corruption.

We can also conclude that the proposed VRMKNNF can
process up to 5 images of 320 × 320 pixels per second
depending on the influence function applied. The processing
time performance of VRMKNNF depends on the image to
be processed and almost do not vary for different noise
levels. These values depend on the complex calculation of
influence functions and parameters of the proposed filters.

We also applied the proposed filters to process video
signals.  Since most video sequences have high
correlation between consecutive frames, it is clear that
the 3D filtering that uses neighboring frames can be
more efficient than the 2D filtering, at least in terms
on PSNR performance.19 Usually, the traditional
methods of 3D filtering employ the central (in time)
sliding window and two other neighboring ones that
follow before and after the central one. Depending on
the applied algorithm either this approach could be used,
or several pixels each from an additional window could
be used, or, maybe even only central ones might be used.
It is not difficult to realize such an idea of 3D filtering
in any multichannel algorithm. It is clear that including
more pixels should increase the processing time for the
algorithm applied. Also, there are some applications
such as computer vision systems or medical imaging
where the consecutive frames of a video sequence have
no correlation, or, as in some medical applications, there
is no permission to use them. For these reasons we only
investigated 2D image processing algorithms in the case
of the video sequences showing potential performance
when any a priori information about the sequence is
absent.

We present in this article the numerical results of
filtering of not only the fixed three images usually
analyzed,7–11 but also three different QCIF (Quarter
Common Intermediate Format) video color sequences.
The QCIF video color sequences “Miss America”,

“Flowers”, and “Foreman” have been processed to
demonstrate that the proposed algorithms can
potentially provide a real-time filtering solution. This
picture format uses 176 × 144 (24 bits per pixel)
luminance pixels per frame. The test video color
sequences were contaminated by impulsive noise with
a different percentage of spike occurrence in each a
channel. The restoration performances (PSNR, MAE,
NMSE, and NCD) in the form of its mean values and
root mean square (rms) ones over the whole video
sequence “Flowers” are presented in Table IV. This table
shows the comparison results for different reference and
proposed filters applied to process the sequences
“Flowers” contaminated by 5%, 10%, and 20% impulsive
noise. One can see that for low impulsive noise
contamination (5 and 10%) better performance is
achieved by VMF-FAS or AVMF filter. At the same time
we can conclude that noise suppression measures (PSNR
and NMSE) obtained by the proposed filtering technique
are often very similar to ones achieved by previously
mentioned reference filters. In the case of 20% of
impulsive noise contamination the AMN-VMMKNNF
and VMMKNNF (Simple) are the best algorithms from
the point of view of color noise suppression measures.
Because the frames in the sequences have different
image texture and changing object structure, by
analyzing the whole video sequence we can justify the
robustness of the proposed algorithms in noise
suppression and fine detail preservation ability.

Figure 5 shows the filtered image illustrating
subjective visual quality for the sequence “Flowers”
confirming good quality of the processed frame by
proposed techniques.

Table V presents the processing time values of the all
frames of sequences for several filters for the cases using
150, 120, and 400 frames of the video sequences “Miss
America”, “Flowers”, and “Foreman”, respectively. One
can see from this table that the processing times of the
proposed AMN-VMMKNNF technique have larger
values in comparison with other filters. The proposed
VRMKNNF can process up to 14 frames per second
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Figure 5. Subjective visual qualities of restored color frame of video sequence “Flowers”, (a) original image; (b)input noisy frame
(corrupted by 10% impulsive noise in each a channel: (c) AVMF  filtering frame; (d) AVMF filtering zoom part of (c); (e) VMF_FAS
filtering frame; (f) VMF_FAS filtering zoom part of (e); (g) VMMKNNF filtering frame (Simple); (h) VMMKNNF filtering zoom
part of (g); (i) AMN-VMMKNNF filtering frame; (j) AMN-VMMKNNF filtering zoom part of (i); (k) VMMKNNF filtering frame
(Simple); (l) VMMKNNF filtering zoom part of (k). Supplemental Material—Figure 5 can be found in color on the IS&T website
(www.imaging.org) for a period of no less than two years from the date of publication.

(a)  (b)  (c)  (d)

(e)  (f) (g)  (h)

(i)  (j) (k)  (l)

TABLE IV. Mean Values and Root Mean Square Values for Criteria PSNR, NCD, NMSE and MAE Over the Whole Video Sequence
“Flowers” for 5%, 10%, and 20% of Impulsive Noise Contamination

Impulsive noise Algorithm  PSNR NCD NMSE MAE
Percentage Mean RMS Mean RMS Mean RMS Mean RMS

5 VMF 27.67 0.4342 0.0113 0.0010 0.0032 0.0004 5.3542 0.3740
GVDF 25.54 0.3297 0.0144 0.0012 0.0053 0.0006 6.7207 0.3759
AMNF 25.61 0.4050 0.0156 0.0012 0.0052 0.0004 7.4921 0.4016
AVMF 28.00 0.4610 0.0091 0.0009 0.0030 0.0004 4.3030 0.3375
VMF-FAS 30.61 0.5409 0.0031 0.0003 0.0016 0.0002 1.4689 0.1563
AMN-VMMKNNF Simple 25.36 0.3706 0.0159 0.0013 0.0055 0.0004 7.5084 0.3877
VMMKNNF Simple 27.87 0.4028 0.0119 0.0011 0.0031 0.0004 5.7233 0.3864
VWMKNNF Simple 29.39 0.2846 0.0063 0.0005 0.0022 0.0002 3.1507 0.1605

10 VMF 27.08 0.3848 0.0120 0.0011 0.0037 0.0005 5.7464 0.3954
GVDF 24.36 0.3489 0.0156 0.0011 0.0069 0.0004 7.4187 0.3335
AMNF 25.40 0.2940 0.0168 0.0012 0.0054 0.0005 8.1917 0.3934
AVMF 27.32 0.3985 0.0102 0.0010 0.0035 0.0004 4.8792 0.3563
VMF-FAS 27.71 0.3201 0.0058 0.0004 0.0032 0.0003 2.7550 0.1252
AMN-VMMKNNF Simple 25.47 0.2770 0.0164 0.0013 0.0053 0.0005 7.7487 0.4125
VMMKNNF Simple 27.20 0.3601 0.0126 0.0011 0.0036 0.0004 6.1614 0.4004
VWMKNNF Simple 25.86 0.3296 0.0097 0.0006 0.0049 0.0002 4.9352 0.1798

20 VMF 25.02 0.3377 0.0145 0.0013 0.0059 0.0006 7.0759 0.4556
GVDF 21.83 0.5884 0.0193 0.0006 0.0123 0.0008 9.5250 0.3461
AMNF 23.57 0.2713 0.0216 0.0012 0.0083 0.0007 10.9625 0.3947
AVMF 25.12 0.3406 0.0134 0.0012 0.0058 0.0006 6.5605 0.4322
VMF-FAS 23.,66 0.2630 0.0123 0.0008 0.0081 0.0008 5.9295 0.2401
AMN-VMMKNNF Simple 25.13 0.3069 0.0178 0.0015 0.0058 0.0007 8.5624 0.4654
VMMKNNF Simple 25.21 0.2766 0.0150 0.0012 0.0057 0.0005 7.5060 0.4316
VWMKNNF Simple 21.35 0.3761 0.0165 0.0004 0.0137 0.0003 8.6580 0.3147
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depending on the influence function employed. The
VMMKNNF (Hampel influence function) has the ability
to process any sequence investigated with speeds from
10 up to 14 frames per second.

It is clear that in the case of an image that has three- or
four-times less than 320 × 320 pixels, the proposed
VMMKNNF and VWMKNNF filters can preserve the edges
and small details, and remove impulsive noise sufficiently
well in comparison with other filters with standard film
velocity for computer vision applications.

Finally, numerous simulation results presented in this
article show two important criteria for choosing the
multichannel RM-filter type, restoration performance and
processing time. We propose to use the VMMKNNF or
VWMKNNF when it is necessary to realize on-line
processing, for example, for video color sequences, because
such the filters have the minimum processing time. In this
case, the simple cut influence function with the VMMKNNF
is more convenient for applications because it provides
shorter processing times. For other applications in the case
of high impulsive noise corruption we recommend the use
of AMN-VMMKNNF insofar as it provides better
performance in noise suppression and detail performance
in comparison with other filters, but processing time values
can be large.

Conclusions
In this article, the novel VRMKNN and AMN-VRMKNN
filters for impulsive noise suppression and fine detail
preservation in color imagery have been provided. The
designed VWMKNNF and VMMKNNF have demonstrated
good quality color imaging with fixed images, as sequences,
both, in the objective and subjective senses for most of the
cases for mid-level impulsive noise intensity corruption
(from 8% to 15–20%), and outperform different known color
imaging algorithms. Another proposed filter, AMN-
VRMKNNF uses an adaptive non parametric approach and
can provide good impulsive noise suppression for high levels
of noise contamination, i.e., more than 20–25%.

The VRMKNNF filters can potentially provide a real-
time solution for quality video transmission. The processing
time can be reduced if we utilize a DSP with better

performance than that used here, for example the
TMS320C8X Multiprocessor DSP.    
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