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Building Reusable Components for Real-Time Imaging Systems

Raghvinder S. Sangwan, Robert S. Ludwig, Colin J. Neill, and Phillip A. Laplante▲†

Software Engineering Group, Engineering Division, Pennsylvania State University, Great Valley Graduate Center, Malvern, Pennsylvania, USA

Imaging systems are traditionally developed using structured analysis and design techniques. While there are many reasons
that engineers choose this approach, one is the expected real-time performance benefits. But structured approaches tend to be
rigid with respect to changing needs, technologies, devices, and algorithms. More generally, these systems are difficult or impos-
sible to reuse because each new problem requires a new solution. Object-oriented approaches, on the other hand, can lead to
systems that are more readily reused if certain best practices are followed. However, the conventional wisdom is that the price
for such benefits is degraded real-time performance.1 The contribution of this work is an examination of these best practices, in
the form of patterns and design principles, with reference to imaging systems. Then an extensive implementation of these prac-
tices is done on an existing imaging system, Kahindu, which is a teaching package built using the object-oriented paradigm. We
then show how by applying these best practices not only improved structure is obtained, but surprisingly, improved performance
as well. Our results challenge the conventional belief that the “price” for the improved structure, ease-of-extension, maintain-
ability, etc. of object-oriented systems in imaging systems is degraded performance.
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filtering, warping, and many more. While a Web based
second edition of the Kahindu program is available, we
chose to use the first edition because the source code
was available with the book. In fact, we don’t intend for
our work to be a criticism of this tool, which was
designed for a specific teaching purpose and not
industrial strength applications. We chose to use
Kahindu as a basis for our experiments because we
believe it to be representative of much of the commercial
image processing software available.

In order to analyze the structural characteristics of
Kahindu we used Headway reView, a software vis-
ualization and analysis tool used for code compre-
hension.5 This tool creates hierarchical directed graphs
(or higraphs) to visualize the structure of a software
system. In the highest level view, it shows the system’s
components and subsystems and their relationships. A
user can then drill down into each component uncovering
details of the classes that make up a component and
their interrelationships. At the lowest, class level view,
the methods and attributes of each class are visible. One
can, therefore, use reView to assess the quality of a
software system using static software quality metrics
as described in various works.6−9

Figure 1 shows the first snapshot of Kahindu created
by reView. There are seven packages representing the
different subsystems in Kahindu. The Main class is not
part of any subsystem.

Instead of showing all the arcs for dependencies
between any two packages, reView collapses them into
a single arc and labels it  with the number of
dependencies. For example, The gui package has 30
dependencies on the vs package and the vs package has
four dependencies on the gui package.

An Imaging System and Its Current Design
Imaging systems, like many other scientific and
engineering systems, incorporate complex software
systems. These systems are typically designed and built
with algorithmic correctness as the primary, and often
only, goal. In real-time imaging systems this design goal
is extended to include timeliness and possibly
determinism, but it is very unusual for any other quality
criteria to be considered, such as robustness,
maintainability or reusability, and this is a detriment
to the resulting systems. Neill and Laplante have
studied this phenomenon and proposed the use of
contemporary software engineering practices and
methodologies in the development of such imaging
systems.1−3 This work puts those ideas into practice by
reengineering an existing imaging system, Kahindu, to
make it more maintainable, reusable and generally
simpler to understand and extend.

Kahindu is an image processing system written in the
Java programming language to be used in conjunction
with the first book on image processing in Java.4 The
program supports demonstration of many of the image
processing algorithms described in the book such as
radix-2 FFTs, the Prime Factor Algorithm, convolution,
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From this view it is not particularly obvious that the
design suffers any significant flaws, but on inspection
the package dependency higraph shows the violation of
the acyclic dependency principle8 which advocates there
be no cycles in a package dependency graph. In the
current design, there exists a cycle between the gui and
vs packages, and between gui and dclap packages. By
introducing interdependence among packages, cycles
make the design of a system rigid, fragile and difficult
to reuse. In a rigid system a single change within heavily
interdependent packages can initiate a cascade of
changes in dependent packages. A single change in such
software also has the potential of causing problems in
parts that bear no conceptual relationship with the piece
that was changed, thus making a system fragile. It is
subsequently difficult to reuse individual components
when those desirable parts of the system are tangled
with parts that are not desired.

Continuing the analysis by drilling down into each
package revealed gui to be the most complex. Figure 2
is a snapshot of this package.

Due to the limited space available, one cannot read the
class names and get a sense of the number of
dependencies from this diagram (in the tool one can zoom
in on the area of interest). However, there are 107 classes
with 5190 connections among them and despite the
limitations of the paper medium; the diagram does give
one a sense of this complexity inherent in the gui
package. Indeed, analysis reveals this package to be
highly unstable. Instability is the ratio between efferent
coupling and total coupling.8 Total coupling is the sum of
afferent (incoming) and efferent coupling (out-going).
Afferent coupling indicates the responsibility of a package
and is measured by how many external packages are
dependent upon it. Efferent coupling indicates the
independence of a package and is measured by how many

Figure 1. Package dependency higraph for Kahindu. Nodes
represent packages, edges represent dependencies. Figure 2. Class coupling higraph for the gui package. Nodes

represent classes, edges represent dependencies.

packages it is dependent upon. By examining the directed
arcs into and out of the gui package from Fig. 1 we find
three packages that are dependent on gui and five
packages that gui is dependent on. The instability ratio,
therefore, is 5/8 = 0.625 implying that it is not very
resilient to change. That is, any changes to the packages
it is dependent upon are likely to cause it to change as
well.

Another measure of design complexity is the average
response factor for the classes in a package.7 The
response factor measures the set of all methods that can
be invoked in response to a single message received by
an object of a given class. The higher the response factor,
the more difficult it is to understand, and therefore,
debug and test such a class. The average response factor
for the classes in the gui package is 15.5 with the worst
case being 103. A single message received by an object
of a class in the gui package, therefore, leads to the
calling of approximately 16 other methods on an average
and 103 other methods in the worst case.

The depth of inheritance hierarchies7 among classes
in this package is also very high which increases the
complexity of the package. While inheritance is often
considered a benefit of object-oriented systems in this
case it has been used merely as a code-sharing
mechanism and those benefits are lost against the
increased code dependencies and general reduction in
clarity. Figure 3 shows the inheritance hierarchy for the
TopFrame class. This turned out to be the central class
to the Kahindu system; the class from which most of
the useful classes in the system are derived. In this view
the inheritance tree is inverted with the TopFrame class
at the bottom. The depth of this inheritance hierarchy
is 19, meaning that there are 19 levels of subclassing
from the topmost class, TopFrame, to the lowest-level
classes. This implies the classes forming the leaves of
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this hierarchy inherit a lot of methods from their
ancestral classes making their design and behavior very
complex, and therefore, harder to understand and test.
As a rule of thumb, an inheritance hierarchy should not
get deeper than five to eight levels of specialization.

In addition the package also suffers from several other
negative characteristics known as code smells.10 It has
a large number (25) of data classes−classes that contain
primarily data and no interesting methods; eight classes

with feature envy methods−methods that are more
interested in the data of classes other than their own
thus breaking the object-oriented principle where a class
is an encapsulation of data and methods that act on that
data (and not the data of another class); and many large
classes with up to 75 methods, far too many responsibilities
folded into a single class.

Patterns
Overall then it is clear that the original Kahindu design
was far from ideal, despite the fact that it works. This
underscores the well known fact that while developing
any software is hard, developing reusable software is
even harder.11 Most designs solve a specific problem, but
they should also be general enough to address future
problems and requirements. In image processing, this
reality manifests as a way to reuse existing designs by
finding recurring patterns and using them as a basis
for new designs. But how can this be done without
adversely impacting performance because of the
necessary abstractions introduced?

Fortunately, when properly employed, object-oriented
design has the capability to include distinct elements
that can cater to future changes and extensions of the
designed system. These “design patterns” were first
introduced to the mainstream of software engineering
practice by Gamma et al.11 and are commonly known as
the “Gang of Four (GoF)” patterns. While many more
sets of patterns have since been published we have
concentrated on the GoF patterns in this study.

The application of patterns to the design of image
processing systems was first discussed in Neill and
Laplante3 and for the purposes of this work we only
describe a small subset of the GoF patterns needed for
our purposes.

First, consider the Strategy pattern. It is intended to
define a family of reusable algorithms that are easily
interchangeable for one another during runtime. Because
the interfaces to the image objects, filters, and display
algorithms should be similar, such an approach makes
sense. The generic structure of the Strategy pattern is
depicted using a UML class diagram in Fig. 4.

The second pattern that is used in our reengineered
system is the Decorator pattern. This pattern is used to
attach additional functionality (to “decorate”) an object
after it has been created (Fig. 5). Decorators allow for
the flexible and transparent addition or deletion of
responsibilities (functionality) from an object at
runtime. Moreover, decorators embody the notion that
composition is preferable to inheritance as it avoids the
fixed overhead and enables easier reuse.

Figure 3. Inheritance hierarchy for the TopFrame class. Nodes
represent classes, edges represent the inheritance chain.

Figure 4. The structure of the strategy pattern.11
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Finally, the Abstract Factory pattern provides an
interface for creating families of related or dependent
objects without having to specify their concrete (specific)
class. The Abstract Factory pattern is useful when there
are multiple “families” of products and their
implementation details must be hidden. Figure 6 shows
the generic structure of the Abstract Factory pattern.

In the next section we will show how these patterns
were used to restructure the Kahindu imaging system
to eliminate the negative characteristics previously
identified.

Refactored Design
To improve the overall design of the Kahindu system we
started by considering its basic requirements. The
refactored design was then driven by those requirements.
The basic requirements of the system are as follows. First,
the user selects an image that is displayed by the system.
The image may be stored in various image file formats,
including JPG, GIF, and PPM. The user may transform
the image in a number of ways, such as making the image
darker or lighter. Other transformations may include
converting a color image to grayscale, or creating a

negative image. The user may apply one of several noise
reduction filters, or may apply a sharpening filter to
bring out details in an image. Finally, the user may apply
one of several edge detection algorithms to outline the
boundaries of objects in the image.

The transformation of images is a sequential process.
The user may make the image darker (one or more
times), convert the darkened image to grayscale, convert
that grayscale image to a negative, and so on. Also, the
user may navigate backwards through the chain of
transformations to a particular point in the chain to
undo a sequence of changes, or the user may simply want
to begin again with the original image. This dynamic
layering of views is also common in applications
involving text formatting.12

These are the basic functional requirements of the
image processing system. An important non-functional
requirement that will impact the refactored design of the
system is the need for flexibility. Future requirements
may include the ability to handle additional image file
formats, additional filters, and different transformation
algorithms. The system needs to be designed so that
these extensions can be made with a minimum of

Figure 6. The structure of the abstract factory pattern.11

Figure 5. The structure of the decorator pattern.11
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changes to the existing code. The need to be easily
adapted due to frequent changes will fundamentally
affect the refactored design.

The domain model of the image processing system is
shown in Fig. 7. A domain model is a visual representation
of real-world conceptual classes in the problem domain.
It reflects the abstractions, vocabulary and information
content of the domain. It is not a representation of
software objects. The domain model is a fundamental
aspect of object-oriented analysis.13

The fundamental conceptual classes of the image
processing system are an image, an image model, an
image loader, and an image transformer. The Image
class is the internal, packed pixel representation of a

graphical image. The ImageLoader loads the Image
from a storage device. The ImageModel is extracted
from the Image. The ImageModel is the representation
of the unpacked, red, green and blue color plane arrays
that can be transformed by an ImageTransform and
can be converted to an Image for display. The state
changes of domain objects that result from system
operations are also defined in this stage of the analysis.
The domain model  narrows the gap between a
conceptual model of the domain and a software
representation of the domain.

The assignment of responsibilities to classes and
objects leads to the class diagram for the image
processing system shown in Fig. 8. Responsibilities of

Figure 7. Domain model for image processing system.

Figure 8. Design class diagram for image processing system.
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an object may include performing a calculation, creating
an object, or collaborating with other objects. The
principles for assigning responsibilities to objects are
expressed as patterns.

Several patterns have been applied in the refactored
design. For example, consider the application of the
Strategy pattern to the design of spatial filters shown
in Fig. 9. The Strategy pattern separates behaviors from
an object, and represents these behaviors in a separate
class hierarchy. These behaviors can be flexibly plugged
in during runtime. Additional behaviors can be easily
added without changing any of the other classes by
deriving a new subclass of SpatialFilterStrategy
class that encapsulates the additional variant behavior.

In the image processor, the primary difference
between spatial filters is that each has a unique
convolution kernel. By applying the Strategy pattern,
the various convolution kernels can be implemented as
separate classes, each with a common interface. The
appropriate convolution kernel can then be referenced
at runtime, and additional convolution kernels can be
added without any code changes.

The implementation of the Strategy pattern is as
follows. The SpatialFilterImageModel is the class
that uses the different strategies for different filtering
tasks. The SpatialFilterImageModel  keeps a
reference to the Strategy instance that has been
specified at runtime. The SpatialFilterStrategy is
an interface that defines the getKernel() method that
all  SpatialFilters  must implement. Each
SpatialFilter , such as the HighPassFilter ,
implements a getKernel() method that returns its
unique kernel. To implement a different Spatial-
Filter, the new class implements its kernel and none
of the other classes need to be changed.

Multiple EdgeDetector strategies have also been
implemented using a similar Strategy pattern, as can
be seen in Fig. 8. The primary benefit of the Strategy
pattern, that makes it useful in image processing
applications, is the ability to extend the system without
extensive recoding.

The refactored image processing system also uses the
Decorator pattern to provide the functionality for

Figure 9. Implementation of strategy pattern for spatial
filters.

chaining together various image transformations. This
pattern allows layers to be added to and removed from
a base object. The Decorator pattern is appropriate for
applications which use dynamically built overlays and
views, as is the case in the image processing system.
The layers can be chained, which provides complex
object behavior from a set of fairly simple building
blocks.

The implementation of the Decorator pattern is shown
in Fig. 10.

The DecoratorImageModel is an abstract class that
defines the behavior of Decorators. The Decorator-
ImageModel  class maintains a reference to the
DecoratorImageModel that is being transformed. The
DecoratorImageModel has an abstract doTrans-
form() method which is implemented by all Decor-
atorImageModels . The base ImageModel  is an
ImageSourceModel, which is the root of the decorator
chain. The ImageSourceModel, is an ImageModel
loaded from a storage device. By using the Decorator
pattern, coding is simplified, since a series of relatively
simple, lightweight decorator classes, each with very
specific behavior, is used instead of a complex,
heavyweight class that contains all the possible
decorator behaviors. Also, like the Strategy pattern,
additional behaviors can be added without recoding any
of the existing classes. The flexibility of the system is
further enhanced by combining the Decorator pattern
with the Strategy pattern, as is the case with the
SpatialFilterImageModel and the EdgeDetector-
ImageModel that were described previously.

Another pattern that is used to provide flexibility
and extensibility is the Abstract Factory pattern. The

Figure 10. Implementation of decorator pattern in image
processing system.
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image processing system supports various image file
formats, and may need to support additional formats
at some time in the future. One way to provide this
flexibility is to use an interface for the various
ImageLoaders. However, it is not possible to create
an object instance from an interface, so the application
needs to instantiate specific implementations of the
ImageLoader interface. In this case, a code change
would be required when a new image file format is
added to the system. Alternatively, an object factory
can be used to instantiate concrete classes that
implement the ImageLoader interface.

The implementation of the Abstract Factory pattern
in the image processing system is shown in Fig. 11. The
GifImageLoaderFactory and PpmImageLoader-
Factory  are the classes that create specific
implementations of the ImageLoader  interface,
specifically the GifImageLoader and the PpmImage-
Loader. The specific type of ImageLoader to create is
determined by the ImageLoaderCreator , which
maintains a list of file extensions and the corresponding
factory instance for each file extension. Thus, a new
image format such as TIF can be added to the system
with little change to the existing code.

The design of the refactored image processing system
emphasizes flexibility to add functionality, algorithms,
and image formats while minimizing code changes and
maximizing code reuse. The use of patterns has helped
to accomplish these design objectives. The patterns used
in this application have also led to the design of

Figure 11. Implementation of abstract factory pattern for
image loaders.

Figure 12. Package dependency high graph for the refactored
system.

Figure 13. The imagemodel package.
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lightweight, loosely coupled, highly cohesive classes,
which improves the maintainability, reliability and
integrity of the system.

Analysis and Comparison of the
Restructured Design
We performed an analysis similar to the one for Kahindu
on the refactored design. Figure 12 shows the first
snapshot the new system.

The loader package is assigned the responsibility of
loading images from various file formats. The
imagemodel package transforms the loaded image into
an internal representation for ease of manipulation. The
view package displays the image. The packages have no
cyclic dependencies. Figure 13 shows a snapshot of
imagemodel, the most complex package in this system.

The edgedetector and spatialfilter subpack-ages
contain four or five classes each for edge detection and
spatial filtering strategies. The imagemodel pack-age is,
therefore, much simpler when compared to the gui
package of Kahindu. Table I provides a summary of the
comparison between Kahindu and the refactored system.

Performance Analysis
The performance analysis was performed on a 1.79 GHz
Intel Pentium 4 with 1.0 GB of RAM running under
Microsoft Windows XP. We ran ten iterations of Kahindu
and the refactored system on each of the three commonly
used images, “Baboon”, “Lena”, and “Peppers” shown in
Fig. 14. The images from each of the ten trials for each
system and transformation were identical since there
is no variation in the algorithm from trial to trial. The

TABLE I. Comparative Analysis of Kahindu and the Refactored System

Object-Oriented Metric Kahindu New System Analysis

Cyclic dependencies among packages Yes No Cyclic dependencies make a system more rigid, fragile and difficult
to reuse

Response factor for a class Average: 13.503 Average:7.31 Classes with high response factor are more difficult to understand,
Maximum: 103 Maximum: 54 test & debug.

Depth of inheritance hierarchy Average: 1.567 Average: 0.207 Large depths of inheritance hierarchy imply complex design that is
Maximum:19 Maximum: 1 harder to understand and test

Data classes 25 1 Data classes violate object-oriented design

Classes with feature envy methods 8 0 Feature envy methods break encapsulation

Large classes Avg. MC: 9.737 Avg. MC: 5.44 Large classes have too many responsibilities
(measured through method count or MC) Maximum MC: 75 Maximum MC: 35

Figure 14. The images used for performance analysis.

only variation in performance for the ten trials is due
to the varying time needed for loading classes, garbage
collection, and I/O.

The result of the analysis is shown in Fig. 15. The
title of each graph indicates the operation, the Y-axis
gives the execution time for each operation in
milliseconds and the X-axis shows the iterations.
Iterations 0 to 10 are timing results for Baboon, 11 to
20 for Lena and 21 to 30 for Peppers. As can be seen,
the refactored system consistently outperformed
Kahindu for all operations on all images.

We had anticipated that while using design patterns
would make our solution more understandable and
maintainable, it would introduce layers of indirection
slowing down the system. However, the results turned
out to the contrary. Our experiments showed real-time
performance improvements in the range 8% to 87% for
the refactored system over the original system, with a
mean improvement of 44% and a median of 47%.

The improved performance of the refactored solution
can be attributed to a number of factors. Primarily,
however, we believe the use of design patterns simplified
the solution and in the process may have eliminated
needless indirection. For example, the original Kahindu
system incorporated very deep inheritance hierarchies
and therefore significant indirection. These inheritance
hierarchies are also suggestive of heavy usage of
polymorphic code. Polymorphism, while allowing one to
write highly dynamic code, can be expensive with respect
to performance. We intend to do further analysis of the
Kahindu code in our future work to get a better
understanding of these results.
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Conclusions
Object-oriented design has long been believed to provide
substantial benefits in terms of code maintainability,
understandability, reusability, and many other qualities.
But imaging engineers have tended to avoid object-
oriented designs because of the belief that such code had
to have poor real-time performance. This work, however,
shows that the benefits of reusability and good real-time
performance can be had when best design practices, in
particular, the use of patterns are followed. The work also
suggests general guidelines to follow when restructuring
an existing system into a well designed object oriented
system. The domain model derived from the requirements
of the system under consideration is used as a motivator
for the software classes. The software classes are then
systematically assigned responsibilities using the
software design patterns.

We have made an observation that depth of inher-
itance, and interdependencies among software packages
and classes influence performance. We intend to study
the feasibility of quantifying the impact of these
qualities from structural analysis of the system under
consideration.

Future work also includes comparing performance
between well written object-oriented code and structured
code using a procedural paradigm. Structured
programming using abstract data types has been shown
to result in systems with considerably smaller code size

Figure 15. Performance analysis results of Kahindu (upper) and the refactored system (lower).

and overhead. We will examine the extent of reuse provided
by such systems when compared to well-written object-
oriented code.    
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