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Algorithms for Real-Time Acquisition and Segmentation of a Stream of
Thermographic Line Scans in Industrial Environments
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This article presents a system for acquisition, filtering, and segmentation of thermographic images in real time. Image acquisition
is carried out using an infrared line scanner (IRLS), with which thermographic line scans are captured from hot strips while they
are moving forward along a track. During the acquisition process, a relationship between each sample in the line scan and its
position on the strip is established using a theoretical model of the IRLS, whose parameters have been adjusted using a calibration
procedure. After the acquisition, line scans are filtered using a new signal operator designed to work in real time. Online with
acquisition and filtering processes, segmentation is applied to the stream of line scans to group them into regions with similar
temperature pattern. Two new segmentation algorithms based on well-known approaches, region merging and edge detection,
have been designed to work in real time on a stream of line scans. The algorithms are evaluated using a novel segmentation
assessment method based on the uncertainty of the ground truth, which can also be used for parameter tuning. Experimental
results from a database of 200,000 images taken from manufactured steel strips over a period of three years demonstrate the

efficiency and effectiveness of the proposed system.
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Introduction
In recent decades, much research effort has been
centered on the real time image processing field, where
the processed images are taken mostly from the human
visible spectrum. Real time thermographic image
processing is a branch of the signal processing tree with
some similarities to traditional image processing.
However, due to the lack of appropriate hardware,
thermographic imaging has been often neglected, except
in some specific cases such as military applications.!
Recently, fast and affordable hardware has been
developed making the use of thermography possible in
a new variety of real time applications. One of these
applications is real time thermographic imaging applied
to continuous hot material, such as steel strips
manufactured on a production line.

Images taken of the human visible spectrum have been
widely used in visual inspection applications.?*
However, the use of thermographic images in this field
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is not yet common. In this work several algorithms are
proposed and evaluated for the real time acquisition,
filtering and segmentation of thermographic images. All
these algorithms work in real time, that is, on-line with
the production process, so that the control parameters
of the production process could be modified as soon as
an incorrect temperature pattern appears.

In the Acquisition process, temperature values from
the surface of the material are obtained. Two hardware
elements are used: a high speed IRLS (Infra-Red Line
scanner), and an industrial computer which converts the
temperature from an analog signal to digital samples
with the help of an A/D acquisition card. A new procedure
to associate the samples of a line scan to physical
positions (mm) on the continuous material has been
developed using a theoretical approach based on a model
of the IRLS. The parameters of the IRLS model are
adjusted using an empirical calibration procedure
carried out before the system starts up.

The filtering process reduces the noise of the image
in order to obtain a successful analysis in further steps
of the image processing. Two consecutive filtering
processes are used: a filtering process within each line
scan based on oversampling of each line scan, and a low
pass filtering process between successive line scans to
smooth the final two-dimensional image.

The intra-scan filtering is carried out perpendicularly
to the strip movement. This direction is called the



transversal direction in the final two-dimensional
image. The inter-scan filtering is carried out in the same
direction as the movement of the strip. This direction is
called the longitudinal direction in the two-dimensional
thermographic image.

The objective of real time segmentation is the detection
of significant changes in the pattern of the thermographic
line scans acquired. The set of line scans acquired between
two pattern changes will be considered as a region of the
final two-dimensional image. Two new segmentation
algorithms based on well-known approaches, region
merging and edge based, have been designed to work in
real time on a stream of line scans. The algorithms are
evaluated using a novel segmentation assessment method
based on the uncertainty of the ground truth, which can
also be used for parameter tuning.

Real time segmentation will detect changes in the line
scan thermographic pattern of the strip. This
information is very useful in the control loop of the
manufacturing process since the information can be used
to modify the manufacturing parameters in real time in
order to reach a more stable temperature pattern. Stable
temperature patterns produce high quality products,
while non-uniform temperature patterns produce defects
due to the different contractions of the material during
the cooling. Changes in the temperature pattern will be
detected through the real time segmentation allowing
the feedback of a new pattern in the control loop of the
manufacturing process.

Acquisition

The thermographic image is obtained using a high speed
infrared line scanner (IRLS), which consists of a
pyrometer which turns continuously at a frequency, F.
The IRLS measures the energy radiated by the surface
of an object. Using Plank radiation equations, the
measured energy is converted to an analog signal which
represents the temperature. This signal is sent to the
computer through an electrical line in the range 4 — 20
mA. At every turn, the IRLS generates an analog signal
which represents the temperature of a segment across
the strip perpendicular to the direction of the strip
movement.

The analog signal is sampled by a computer, resulting
in a line scan (range 100— 200°C), that is, a set of samples
in the range 100 — 200°C which correspond to the
temperature measurements of a segment across the strip.
The number of samples obtained in every line scan
depends on the sampling acquisition rate used in the A/
D converter installed in the industrial computer.

The analog signal representing the temperature
contains valid data only while the rotating pyrometer
inside the IRLS is pointing the track. In the IRLS used,
that part of the turn, usually called the scan valid angle,
represents 1/6 of the whole turn, that is, 60° (Fig. 1). A
line scan is obtained through the sampling of the analog
temperature signal only during the scan valid angle (Fig.
2). The IRLS notifies the computer the beginning and
end of the scan valid angle through the activation (5 V)
and deactivation (0 V) of a digital signal.

The repetitive sampling of the analog signal and the
movement of the strip forward along a track, make the
acquisition of temperature discrete samples over the
whole surface of the strip possible. The image obtained
consists of a stream of line scans corresponding to each
analog signal sent by the IRLS while the strip moves
forward along the track.

The image acquisition system must be calibrated
before being started up. Procedures for the calibration
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Figure 1. Temperature measurement over the strip surface.
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of two scales, temperatures and positions, have been
developed.

The temperature scale is calibrated using the
emissivity parameter of the IRLS. The temperature
provided by the IRLS is related to the temperature of
the material through the black body radiation equation,
in which the emissivity of the material is a proportionality
factor. Emissivity settings in the range from 0.2 to 1.0
are supplied to the IRLS as one of its remote control input
signals. When the emissivity parameter is decreased, the
temperature provided by the sensor increases, and vice
versa. An experiment was carried out in the laboratory
in order to obtain the emissivity value for the material
to be measured. The experiment parameter was based
on the comparison of the temperature measured by the
IRLS and the temperature measured by a previously
calibrated contact thermometer, both of them obtained
from the same piece of heated steel at the same time.
The emissivity was modified in the IRLS until the
temperature it provided matched the temperate provided
by the contact thermometer. The result showed that
suitable emissivity for this kind of measured material
(thin steel) was 0.37. The experiment carried out was
possible because the temperature range is low [100—
200°C]. Obviously, this experiment would not be possible
if the temperature range were higher, for example
1250°C, since there is no contact thermometer designed
to work at these temperatures. Another kind of emissivity
calibration experiment could be used in that case.!

The position scale calibration allows the association
of each temperature sample within the line scan with
its physical position on the strip. To obtain this
association, a theoretical approach was developed using
the geometry defined in Fig. 3. In this geometry, a line
scan with N samples in the range [0, N — 1] is used,
where the working distance (from the IRLS to the strip)
is D, the turn frequency of the IRLS is F and the scan
valid angle is o. The turn frequency and the scan valid
angle are known parameters defined by the IRLS. The
objective is to calculate the distance from a single
sample, J, in the line scan to the origin, O (distance
between A and O, both referenced in Fig. 3). Although
in an optimal situation the origin O should match the
central point of the line scan B, the IRLS cannot be
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Figure 3. Geometry of the line scan acquisition process.

installed in the center of the track due to mechanical
problems. For this reason, a non-centered origin is
considered in the model.

The elapsed time during the scan valid angle, T, can
be calculated using Eq. (1). The time interval from the
start of the scan valid angle to the acquisition of sample
J is a part of period T, and can be calculated using Eq.
(2). The angle 6, can be calculated using Eq. (3). By
combining Egs. (1) and (2) into Eq. (3), a simplified
expression for 0J is reached in Eq. (4).
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Once the angular position, 6;, of the sample J is
known, the distance between A and B can be calculated
using the properties of the right angle triangle whose
sides are AB, BC and CA by Eq. (5).

d(A,B) = D+ tan(% -6,) (5)

In the same way, the distance between O and B can
be calculated using Eq. (6), where 6, is the angular
position of origin O.

d(0,B) = D= tan(% ~6p) (6)
Finally, Eq. (7) gives the distance between A and O.

d(A,0) =

d(A,B)-d(0,B) = D[tan(% —0,)- tan(% - eo)} )

The distance from every sample in the line scan to
the origin is obtained using Eq. (7). This final equation
has two unknown parameters: the working distance (D)
and the angular position of the origin (6,). These
parameters will be estimated using an empirical
calibration procedure, which is briefly described below.

In order to calculate the working distance (D), an
empirical calibration procedure was carried out on the
track of the production line where the IRLS is installed.
During the calibration, a hot resistance with sharp edges
was placed in known positions along the scanning
trajectory (turn) of the IRLS. This process is shown in
Fig. 4, where the heated resistance is drawn in only four
different positions for the sake of simplicity. In the
experiment 15 different positions were used starting at

Usamentiaga, et al.



+60cm +30cm Origin -30cm -60cm
Figure 4. Empirical calibration through the placement of a
hot resistance in the IRLS turn trajectory.

+70 cm from the origin and shifting the object every 10
cm until -60 cm (this asymmetry is due to the
displacement of the IRLS to the left of center). Positive
values are shown on the left to be consistent with other
measurements carried out in the area in which the IRLS
is installed.

Each time the hot resistance was placed in a known
position, a line scan was obtained. The line scans
produced at the different placements of the hot resistance
in the trajectory of the IRLS are shown in Fig. 5.

For each line scan obtained after each placement of
the hot resistance, the Ridler thresholding technique®
is applied to calculate the position of the edge. Each
thresholding applied to a line scan provides two edges,
but only the one in the interior part (marked as I in Fig.
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5) will be used in order to avoid the error provoked by
the slanting viewpoint. Finally a lookup table is obtained
relating samples and their physical position (mm across
the track). The position at zero is measured twice (+0
and —0) to confirm position of the origin.

Using the lookup table obtained during the empirical
calibration, the angular position of the origin can be
obtained easily as the sample at the origin is now known.
The second unknown parameter in the theoretical
approach was the working distance, which can be
calculated as the value which minimizes the difference
between the position of the samples reported in the
empirical calibration procedure and the position
calculated for those samples using the theoretical
approach. Using the proper working distance, the
relationship between samples and physical positions can
be obtained from Eq. (7), which is represented in Fig.
6(a). The curvature of the function can be observed in
more detail in Fig. 6(b), where the distance between
adjacent samples is represented. It can be seen, the
further the sample is from the center of the line scan,
the longer the distance to its adjacent samples.

After establishing the position of the samples across
the strip (within a line scan), the next step is to obtain
their position along the strip. To obtain the longitudinal
position of the samples, the way in which a line scan is
acquired must be kept in mind. The line scan acquisition
is shown in Fig. 7, where it can be seen that the line scan
is not perpendicular to the strip due to the movement of
the strip.

In Eq. (8), i is the sample number in the line scan, V
is the speed of the strip, F is the turn frequency of the
IRLS, N is the number of samples in the line scan and
L, is the longitudinal position of the line scan starting
sample, which will be received, along with the speed of
the movement of the strip, from the process computer
during the acquisition. This equation is used to calculate
the longitudinal position of every sample in the line scan.

v L
Llil=Ly+ ]31" i (8)
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Figure 5. Line scans obtained during the empirical calibration procedure.
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Filtering independent filters in both directions and not a bi-

The next step after acquisition is filtering. Filtering
reduces the noise of the image in order to obtain a
successful segmentation. Temperature measurement
using non-contact sensors at high frequencies produces
very noisy images.! For example, in the case of steel strip
manufacturing, noise is caused mainly by the products
sprayed on the strips to cool them. These products alter
the surface emissivity of the steel, and provoke highly
variable measurements.

To reduce the noise of the image, two filters are
consecutively applied just after each line scan is
acquired; one transversal and one longitudinal. Firstly,
each line scan is filtered just after it is acquired with
oversampling. This corresponds to the filtering of the
2D image in the transversal direction. Secondly, a new
smoothed line scan is obtained by averaging (low pass
filtering) the latest acquired line scan with the previous
ones. This corresponds to filtering in the longitudinal
direction of the 2D image. The reason for using two
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dimensional filter is because the samples of the two-
dimensional image are not at the same distance in the
transverse and longitudinal directions. The distance
between adjacent samples in the same line scan
(transverse direction) is approximately constant, but the
distance between adjacent samples in successive line
scans (longitudinal direction) varies with the speed of
the continuous material and can be 30 times higher than
the transversal distance.

When the acquisition rate of the A/D converter is high,
the temperature at a specific position is measured by a
set of adjacent samples, that is, oversampling occurs
(Fig. 8). The higher the acquisition rate, the higher the
oversampling carried out.

The filter in the transverse direction is based on
overlapping samples acquired using the highest
acquisition frequency possible in the system. Fig. 8
shows the transformation of an original line scan into
the final line scan without overlapping. Once the line
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Figure 8. Transverse filtering process based on overlapping samples.

scan is acquired, the data is reduced to the minimum
number of samples to fill the scan space without spatial
overlapping.

In order to carry out the filtering process, a signal
operator called SReF (Spatial Reduction Filtering) is
defined. The operator input is an oversampled signal,
x[jl, whose number of samplesis N (j =0... N-1), and
the operator output is a signal, y[i], whose number of
samplesis M (i = 0... M — 1). The only restriction in the
relation between N and M is that N must be greater
than or equal to M.

Every sample in the output signal y[i] is calculated using
the samples from input signal x whose measurement space
includes a part of the measurement space in the sample
ylil, that is, the samples of x which overlap y[i], as can be
seen in Fig. 8. This process involves two steps: first,
determining the set of samples in signal x which overlap
ylil; second, for every sample in that set, calculating its
weight in the calculation of the value of y[i], which
depends on the intersection degree of the samples in x
with y[i]. For example, in Fig. 8, y[1] should be calculated
as is shown in Eq. (9).

_ 0.25x[1] + 0.5x[2] + 0.25x[3]

I
i 025+05+025

9

The set of samples in the signal x used to calculate
yli] will be consecutive, that is, this set can be described
by the first and last indexes of the samples of the signal
x. Two variables will be used for this description: SL
and SD. SL (sample length) is the diameter of the
measurement space, which is a constant, defined both
by the IRLS and by the working distance. SD (sample
distance) is the distance from the beginning of a sample
to the beginning of the next in signal x, and can be
calculated using Eq. (10).

sp=M-1
N-1

—

(10)
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Figure 9. Intersection degree between two samples.

The first and last sample of the signal x which overlap
y[i] can be calculated using Eqs. (11) and (12),
respectively, where CIGT means Closest Integer
Greater Than, and CILT means Closest Integer Less
Than. Both must take into account the different
behavior in the borders.

. , *SL - SL

First = CIGT(-—2=—2%
irs ( <D ) (11)

*SL + SL

Last = CILT Iom v oL
as ( SR ) (12)

To calculate the intersection degree between a sample
in x and y[i], the intersection area between these
samples must be calculated. The problem lies in the

Algorithms for Real-Time Acquisition and Segmentation...in Industrial Environments Vol. 49, No. 2, March/April 2005 143



calculation of the shaded area of Fig. 9. Once the
intersection area is obtained, it must be divided by the
measured area of a sample (circle) to get the intersection
degree in the range [0, 1].

Using the geometrical properties of the area measured
in the samples (circles), the intersection degree (ID) can
be calculated using Eq. (13), where the numerator
represents the intersected area, and the denominator
represents the area of the sample.

DG, j)=
2 _ Pk _ %
o2 arCCOS[SL SLji*SL - j SD|]
4
16 -
2 . . 2
(st s S -k SL-550
2 2
8
o SLY
2 (13)

Using both, the information from the samples in the
signal x which overlap sample y[i], and their intersection
degree, the filtering operator can be calculated using
Eq. (14). The denominator of the equation is used for
normalization.

7k
j=crrSE+SLy
SD

Z IDG, j)* x[j]
j:CIGT(M)
L 3 SD
Iy[l] = SR@FN’M,L(x) = - CILT i*SL+SL)
Jj= <5 (14)

In the longitudinal direction, the filtering is carried
out by averaging line scans. To define the number of line
scans to average, all the strips obtained during a typical
manufacturing campaign were analyzed in order to find
the highest gradient of temperature per longitudinal
meter. The number of line scans averaged is selected as
the maximum that allows the system to track the fastest
temperature changes in the longitudinal direction
without losing information. This number is calculated
using the information provided by the messages received
periodically from the process computer. Applying the two
filtering we find that the steps space needed to store the
data in memory and later in disk is reduced by 75%.

Segmentation

The segmentation of an image consists of the division
of the image in a set of segments which have similar
attributes, in this case, temperature. In this work, two
segmentation algorithms are proposed and tested. Both
are adapted versions of the well known approaches,
region merging and edge based, which must work in real
time on a stream of line scans.

The segmentation process for the type of
thermographic images considered in this work differs
in some aspects from the usual process carried out for
images taken from the human visible spectrum. Usually,
the segmentation process tries to extract objects from
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the image which correspond to real world objects. In this
case, the result of the segmentation can be objectively
assessed. Furthermore, in the case of thermographic
images, the segmentation tries to find regions of
homogeneous temperature, that is, regions formed by a
set of adjacent line scans which have a similar
temperature pattern. This makes the result of the
segmentation much more difficult to assess, due to the
inherent subjectivity of the homogeneity definition.

Different regions in the thermographic image appear
as a consequence of the changes of the manufacturing
conditions of the strip over time. The following is an
example of how different regions can appear in an
image. For an instant during strip manufacturing (Fig.
10, moment A) the speed is reduced, which produces a
decrement in the temperature of the strip. Before the
speed reduction the line scans acquired show a high
line scan temperature pattern (Fig. 10, pattern 1), and
after the speed reduction they show a lower one (Fig.
10, pattern 2). Later (Fig. 10, moment B) the speed
strip is recovered and the pattern is again high (Fig.
10, pattern 3). After this, a typical change in the
manufacturing conditions occurs (Fig. 10, moment C),
which consists in the application of excessive pressure
on one part of the strip. The excess of pressure
generates heat and the temperature pattern rises
where high pressure is applied to the strip (Fig. 10,
pattern 4). When the excess of pressure disappears
(Fig. 10, moment D) a flat temperature pattern appears
again (Fig. 10, pattern 5). Finally, a new decrement of
the speed (Fig. 10, moment E) produces a new
temperature pattern (Fig. 10, pattern 6).

In summary, the segmentation procedure will group
similar line scans in real time, producing, finally, a set
of line scan temperature patterns.

The IRLS acquires line scans which contain
thermographic information about the strip, (the
foreground item of the image) and about the strip track
(the background item of the image) as can be seen in
Fig. 10. To extract the information about the strip from
the image, a thresholding technique based on Ridler’s
algorithm is used before the segmentation algorithm is
applied.

Region Merging Segmentation

Region merging segmentation methods search for
adjacent regions within an image which meet some
defined similarity criteria to merge them into a bigger
one. One of the most important aspects in this kind of
segmentation technique is how the similarity criterion
is defined, which is mainly based on the description of
the region. Several well-known similarity criteria for
specific applications have been proposed.®

Region Description

The objective of the segmentation is to divide the image
into a set of regions in real time. Since a region is a set
of line scans with similar temperature attributes in the
longitudinal direction, the region will be described by
the average line scan of all the single line scans which
belong to it. For every sample in the average line scan a
confidence interval will be calculated using the average
plus-or-minus the standard deviation of the average of
each sample multiplied by a factor.

Algorithm

Initially, an empty region is defined, which will be
considered the current region. Every time a new line
scan is acquired the following steps are carried out:
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Figure 10. Thermographic image segmentation in regions with a similar line scan temperature pattern.
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e When the current region does not contain enough line modified to include the new line scan in the average,
scans for initialization purposes, the new line scan that is, the region description will be re-calculated.
is merged with that region without homogeneity This calculation can be done recursively, both for
determination. average and standard deviation, allowing a better

e Each sample in the new line scan has a corresponding performance for the real time implementation.
sample in the region description. The number of
samples in the new line scan which fall within the Figure 11 shows an example of the process of

confidence interval of its corresponding sample in the homogeneity determination between a new line scan and
region will be counted, and their percentage among aregion, where the new line scan, the average line scan
all the samples in the new line scan is calculated. describing the region, and the confidence interval for

e If the calculated percentage is greater than a every sample in the region, are represented. In this
determined threshold, the new line scan is said to be example, 6 samples of 20 fall outside of their confidence
homogeneous with the region, and so, they are merged. interval, which means 20%.

e To merge the new line scan and the region, the Since there could be some very noisy line scans in the
average line scan describing the region will be thermography acquired, a robust method has been

Algorithms for Real-Time Acquisition and Segmentation...in Industrial Environments Vol. 49, No. 2, March/April 2005 145



z
2
g

Ther mography map

200

180
180

160

I
(=]
(2e) 2peibuao aaibag

LET LT R L
]
o

541 —
406 — &
A 270 —
E -
E e ---,--"r.-r-.-l. i
Y 5 '
i Ul Trquﬂr
= -135 — .".J- i lFJ'-I "lT . i -
= 18 A
270 — i
-a068 —
sa1 ]
878 T T T T T T T T 100
1 1190 2379 3569 4758 5947 7136 8325 2515 10704 11883
Operator Meter [m)

Figure 12. Typical thermographic image.

developed to decide when a new region appears. In this

method, the terms “open region” and “closed region” will

be used to identify when a region is able to include new
line scans and when it is not, respectively.

When there is a new line scan not homogeneous with
the current region, a new region is not automatically
created. Instead, a transitory region is opened and the
current region is not closed. Using successive line scans,
the segmentation algorithm will check to see if the
transitory region was created due to noise in the
temperature signal or if it was the beginning of a real
new region. This will depend on the homogeneity
between the future line scans with the last open region,
or with the transitory region. When there are a number
of successive line scans homogeneous with the transitory
region, the last open region is closed and the transitory
region is converted to the new open region.

The configuration parameters of this segmentation
algorithm are the following:

e The factor by which to multiply the standard
deviation of the samples in the average line scan
describing the region to obtain the confidence
interval.

e The percentage threshold of samples which fall
within the confidence interval of its corresponding
sample in the region among all the samples in the
line scan.

¢ The number of line scans in a region that will be
merged without any homogeneity determination for
initialization purposes.

e The necessary number of homogeneous line scans in
a transitory region to be considered as a real region.

Edge Based Segmentation
Edge based segmentation techniques rely on edges found
in an image by edge detection operators. These edges
mark image discontinuities regarding some image
attribute. Usually, the attribute used is the luminance
level; in this case, the temperature level will be used.
The general edge based segmentation process consists
of several steps. It starts by applying a convolution kernel
(or gradient operator) over an image.” The result obtained
from the convolution is the gradient of the image, which
is obviously dependent on the gradient operator used.
The next step involves the analysis of the gradient in
order to eliminate the noise while keeping the real edges.
Usually, this process is carried out by using thresholding
techniques or morphological operators. The last step
consists of linking the edges in order to determine the
boundary of the regions,” and in this way, to accomplish
the segmentation of the image in regions.
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In the new algorithm presented in this article, the
segmentation is carried out in real time. However, a delay
is necessary in the edge detection, since to calculate the
gradient in a longitudinal position, the gradient operator
needs line scans previous and posterior to that position.
The number of line scans needed depends on the size of
the operator. Fig. 12 shows a typical final two-
dimensional thermographic image which will be used to
show the steps involved in the edge based segmentation.

Edge Operator

One of the most important issues in the edge based
segmentation is the selection of the gradient operator.
Many different gradient operators have been analyzed
in the literature.” The selection of the operator depends
mainly on two aspects: the expected direction of the edge
and the edge profile. With regard to the first aspect,
and keeping in mind that the objective of the
segmentation is to divide the image longitudinally, it
can be stated that the edge detector applied will only
search for edges in the longitudinal direction, that is,
from left to right in Fig. 12.

The edge profile in the analyzed thermographic
images could be classified as a noisy ramp. Fig. 13 shows
an edge profile obtained from the center of the image
shown in Fig. 12 where ramps and edges can be
appreciated. After examining different edge types, it was
concluded that neither the slope nor the height of the
ramps were constant, so this information cannot be used
in the design of the edge operator.

Different gradient operators were tested to choose the
best suited for this kind of edge profiles, including
Boxcar (extended Prewit), LoG (Laplacian of Gaussian)
and FDoG (First Derivative of Gaussian).” In Fig. 14
and Fig. 15 the gradients obtained after applying the
Boxcar and FDoG operators can be seen.

Projection of the Gradient
Once the edge operator is applied, a gradient for the
image is obtained. The next step of the segmentation is
the projection of the gradient onto the londitudinal axis.
This step simplifies the thresholding that must be
carried out to eliminate the noise from the gradient.
Figure 16 and Fig. 17 show the projection of the
gradients obtained using the Boxcar and FDoG gradient
operators. As can be seen, the Boxcar operator seems to
identify the edges of the image more clearly and with
more response per edge, which corroborates the
conclusions drawn by Canny?® about the proper gradient
operator under his constraints of SNR (signal to noise
ratio) and simple response.

Usamentiaga, et al.
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Figure 16. Projection of the gradient obtained from Boxcar edge operator.
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Once the projection of the gradient is available, it is
thresholded. The objective of the thresholding is to
differentiate noise from real edges. An edge is inferred
when there is data in the projection over the threshold
value. When adjacent edges are found (adjacent values
of the projection over the threshold), only the edge with
the higher value in the projection of all of the adjacent
positions will be considered, which can be interpreted
as a morphological operator.

Figure 18 shows an example of the thresholding
carried out over a projection of a gradient. As can be
seen, the noise is under the threshold value and edges
are obtained from the peaks over it. Only the highest
value of each peak will be considered to establish the
longitudinal position of its corresponding edge.

Summary
Although the projections obtained (Fig. 16 and Fig. 17)
from the generated gradients (Fig. 14 and Fig. 15) from
the two operators are different, the positions obtained
for the edges after the thresholding were quite similar.
In fact, the main difference between both edge
operators is their behavior in the presence of noise,
and this effect is eliminated when positions are only
considered as the tops of the peaks in the thresholding.
Since different operators produced a similar result,
Boxcar is used because its recursive implementation
was faster than the others. Finally, the operator used
is the following:

-1 0 41 +1

(1 -1 - 1 +1 +1]
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A two-dimensional operator is not used because it
would require a longer execution time without a
noticeable improvement on the final result.

The configuration parameters of the algorithm are the
following:

e The length of the edge operator.
e The threshold used to extract the edges in the
projection.

Segmentation Assessment
Since segmentation is one of the most important steps
of image processing, its accuracy must be assessed.
Segmentation assessment determines the effectiveness
of an algorithm, allows the comparison of several
algorithms, and the tuning of the configuration
parameters of a specific algorithm. In recent decades,
many segmentation algorithms have been developed for
different kinds of applications. However, less effort has
been made in their evaluation.

Zhang® proposes a classification of existing assessment
methods as “analytical”, “empirical goodness”, and
“empirical discrepancy”. Yang!'® proposes a different
classification as “supervised” and “unsupervised”. The
“unsupervised” group of Yang’s classification corresponds
to the “analytical” group of Zhang’s classification;
“supervised” corresponds to the others.

e “Analytical” methods attempt to characterize an
algorithm by itself in terms of principles,
requirements, complexity, etc. without any reference
to a concrete implementation of the algorithm or test
data, such as the time complexity or the response to
a theoretical data model.

Usamentiaga, et al.



e “Empirical goodness” methods evaluate algorithms
by computing a “goodness” metric on the segmented
image without a priori knowledge of the desired
segmentation result. For example Levine,' uses
intra-region gray level uniformity as his goodness
metric.

e “Empirical discrepancy” methods calculate a
discrepancy measurement between the result of the
segmentation algorithm, and the desired correct
segmentation for the corresponding image. In the case
of synthetic images, correct segmentation can be
obtained automatically from the image generation
procedure, while in the case of real images it must
be produced manually by an experienced operator.
Many discrepancy metrics have been proposed, some
of them treat segmentation as a classification problem
where each pixel is associated to a correct class
(usually edge and non-edge).'*'® Other methods
calculate the distance between mis-segmented pixels
and the nearest correctly segmented pixels.”"

In order to apply the proper assessment method to
the segmentation of the thermographic images being
analyzed, the following requirements are established:
1. The set of ideal edges between regions for each image

must be known, so that errors in the segmentation

can be detected and assessed one by one.

2. The assessment procedure must produce a continuous
magnitude, so the adjustment of the parameters of the
segmentation algorithm can be carried out accurately.

3. Due to the length of the thermographic images and
to the existing noise, there will be a degree of
uncertainty in the determination of the edge position
by the experienced operator; therefore, the
assessment method needs to take the uncertainty of
the ideal segmentation into account.

4. The values of the magnitude generated by the
assessment procedure must be limited to a range, so
they can be analyzed and compared easily.

5. The assessment method must weigh up the error
committed to detect each edge using the distance
between the detected edge and the real edge.
However, this must only happen when the position
of the detected edge is in the influence area of the
position of a real edge (when both positions are close
enough), and also when that real edge is closer to the
detected edge than any other.

Since none of the available segmentation assessment
methods fit all these requirements, a new one will be
proposed, which can be classified as an “empirical
discrepancy” method.

When the performance of a segmentation algorithm
is determined empirically, it is necessary to use an ideal
segmentation, usually known as the ground truth. The
ideal segmentation defines the optimum result of the
segmentation.

Some authors, like Yitzhaky,!* propose the creation of
the ground truth based on a set of automatic
segmentations. However, it seems difficult to determine
the right parameters to choose in these automatic
segmentations. Yitzhaky uses a statistical approach to
provide a discrepancy metric.

In our work, a set of 30 real images are used as a test
set to assess the segmentation results. Although the
creation of the ideal segmentation of each real image
must be manual, and thus, time consuming, it avoids
the problems derived from the validation of synthetic
images. It is important to note that synthetic images
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Figure 19. Match function for the edge comparison.

should represent real images; therefore, some kind of
validation should be carried out. In order to obtain the
ideal segmentation for each image, several experienced
operators were employed to compensate for the
subjectivity of finding the edges in the images. Each of
the operators provided an ideal segmentation for each
image in the test set.

After the experts provided the ideal segmentation for
each image, the next step consists of defining a single
ideal segmentation for each image, where only those
edges established by more than half of the experts will
be considered. The data for each edge in the ideal
segmentation will include: the average of the positions
established by the experts, the standard deviation of
the average position, and the number of experts who
established that edge. Once the ideal segmentation is
available, a discrepancy metric is calculated between
the ideal segmentation and the segmentation produced
by the algorithm using a match function applied to each
edge. The match function proposed in this work is based
on the statistical properties of the ideal segmentation
established by the experts.

Considering the set of positions established by the
experts for each edge as a set of independent
observations, we can expect that the average position
of the edges follows a normal distribution if the number
of experts is more than 30. If the number of experts is
under 30 (the case presented here), the average of the
position of the edges follows a Student’s ¢-Distribution
with n — 1 (number of experts less 1) degrees of freedom.
To compare the distribution of the position of one edge
provided by the experts with the position of the edge
provided by the segmentation algorithm, the P-Value,
which measures the significance level, provides an
optimal statistical method. So, the match function (M)
of an edge using statististical properties is that shown
in Eq. (15), where E’ is the average of the ideal edge
position, S is the standard deviation of that average, ES
is the position of the found edge by the algorithm, and n
is the number of experts.

ME!ES)=P |2 - £°] s

\/; n-1

Figure 19 shows an example of a graphical
representation of the match function for E’ equal to 100,
S to 10, and 6 degrees of freedom.

Once the match function is specified for each edge of
the image, the segmentation empirical assessment
metric (SEAM) of a whole image can be expressed as
(16), where NE is the number of edges in the ideal
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Figure 20. Results of the edge based algorithm.

segmentation, and NF is the number of edges found.
Equation Eq. (16) can be seen as a joint probability of
error since it takes into account the two kinds of errors
which can occur in the segmentation: non-existing edge
detected (false detection) and existing edge non-
detection (missed detection).

2
NF
[2 M(ELES )]
SEAM =0

(16)
(NE- NF)?

This assessment method fits all the requirements
previously established since it takes uncertainty into
account, is continuous, and is limited to the range of [0,1]
(where a value of unity means perfect segmentation).

Results

The performance of both segmentation algorithms must
be assessed using the new assessment method, for which
a set of images was selected. The selected test image
set included images with different patterns of
temperature changes. The test set was manually
segmented by a group of seven experts using a software
tool to carry out the segmentation more easily.

All the images in the selected test set were segmented
by the two proposed algorithms with different values
for their configuration parameters. The procedure is
based on a complete factorial experimental design. The
number of different combinations of parameters for the
region merging algorithm was 1728 for each image. The
number of different combinations of parameters for the
edge based algorithm is 144 for each image. This lower
number is due to the lower number of parameters of the
second algorithm.

The segmentation of the test image set using the region
merging algorithm provided a value for the segmentation
empirical assessment metric (SEAM) of between 0 and
0.78, where only five combinations of the configuration
parameters produced a SEAM of over 0.7. The optimal
configuration parameters were 2.25 as the multiplying
factor, 70 as the percentage threshold, 60 initialization
line scans, and 60 line scans to consider a transitory
region as a real region. The importance of the method for
opening and closing regions was demonstrated when tests

were carried out without including it and the maximum
of the SEAM decreased to 0.13.
The segmentation of the test image set using the
edge based algorithm provided a value for the SEAM of
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between 0 and 0.88 where most of the combinations of

the configuration parameters produced a SEAM of over

0.75. The optimal configuration parameters were 120

as the operator length, and 25 as the threshold of the

projection gradient. Fig. 20 shows the SEAM values

produced by the edge based segmentation algorithm.
The edge based segmentation algorithm performs

better than the region merging algorithm, of the best
25 configurations of both algorithms, 23 correspond to
the edge based algorithm. Also, it is more robust since
it reached a correct segmentation for nearly all of the
strips. Robustness is an important issue for industrial
applications. To assess robustness, a large number of
images taken from strips manufactured in different
months were segmented using the edge based algorithm.
After this, a small random percentage of images were
reviewed, showing an appropriate segmentation for all
of them

The length of the operator used in the edge based
algorithm introduces a delay of 6 seconds in the
detection of the edge, which in a strip whose processing
lasts about 8 minutes, is an acceptable delay.

During the segmentation process, the thermographic
image is divided into a set a regions, each of them
representing a line scan pattern, which is available in
real time as soon as the edges of the regions are detected.
Figure 21 shows the segmentation of the image shown
in Fig. 12 along with the different line scan patterns
obtained. In this figure each line scan pattern is shown
with a polynomial fit, which could be used as a compact
description of the pattern.

After all the layers of the system have been developed,
the next step is to analyze the real time performance of
the whole system. There are two sets of tasks in the
system, the first set will be called acquisition pipeline; it
is triggered at every sensor turn, and will be executed at
high priority. The second set will be called segmentation
pipeline; it is triggered when a message from the process
computer is received with the current strip length and
speed, and will be executed at a lower priority.

Tasks in the acquisition pipeline are sequentially
executed after the activation of the digital line which
indicates the beginning of the scan valid angle in the
thermographic sensor. These tasks are the following:

e Acquisition: this task is carried out in the A/D board,
using a thermographic sensor of 80 Hz: A new line
scan is ready to be acquired every 12.5 ms (at every
turn of the sensor), which means acquisition will take
2.086 ms, that is 1/6 of the whole turn, the scan valid
angle. After the acquisition is finished, the board
sends an interrupt to notify it to the system.
Interrupt latency: the interrupt sent when the
acquisition finishes is received by the operating
system, which forwards it to the board driver. The
driver notifies the user developed acquisition
software through a callback procedure. This task is
carried out mainly in the OS.
Acquisition rearming: when the callback procedure
in the user developed acquisition software is
executed, two minimum actions are carried out: the
line scan acquired is stored in a circular buffer; and
the acquisition is rearmed.
e Transversal filtering: this task is blocked until there

is a new line scan available in the acquisition circular

buffer (input). This task applies the filter defined by

Eq. (14) and stores the result in a new circular buffer.

The interaction of all these tasks can be seen in the
sequence diagram in Fig. 22, where the vertical

Usamentiaga, et al.
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Figure 21. Description of the segmentation.

dimension representing time is only approximate for the

sake of simplicity on the figure.

Tasks in the segmentation pipeline are sequentially
executed only when a message from the process
computer is received (every 500 ms approximately),
including the current strip length and speed, since only
then is there information to carry out the longitudinal
filtering and thus the segmentation. This set of tasks is
run at a lower priority than the tasks in the first set.
The tasks are the following:

e Longitudinal filtering: this task filters longitudinally
the line scans using the information about the speed
and length of the strip and produces a set of
longitudinally filtered line scans. Both line scans
input and output are stored in circular buffers.

e Segmentation: blocked until there is a new
longitudinally filtered line scan available in the
longitudinal filtering circular buffer (input). This task
applies to each line scan the segmentation process
described above.

The interaction of all these tasks can be seen in the
sequence diagram in Fig. 23, where the vertical
dimension representing time is only approximated for
the sake of simplicity on the figure.

Table I shows the average execution time of the tasks
running on a Pentium 3 computer at 1 GHz with 512
MB of RAM.

Figure 24 shows the chronogram of the system
operation, where the execution time of the tasks is only

TABLE I. Tasks of the System

Task Measured time
Acquisition pipeline Acquisition 2.083 ms 4.64 ms
Interrupt latency 2.5ms
Acquisition rearming 0.0002 ms
Transversal filtering 0.060 ms
Segmentation pipeline Longitudinal filtering 0.178 ms 0.23 ms
Segmentation 0.050 ms

represented in an approximate manner in order to
simply the figure. Labels A, B, and C, are used to
indicate that there are different cases of CPU
competition in the execution of both pipelines. In case A
there is no CPU competition. Case B shows a possible
parallelism where tasks in the segmentation pipeline
are executed during the acquisition, but where there is
no CPU competition either since the acquisition task is
carried out by the A/D board (task represented by the
filled bar). Case C shows how tasks in the segmentation
pipeline are preempted by the higher priority tasks in
the acquisition pipeline if their execution overlaps.
The interrupt latency is very high because of the lack
of determinism of the operating system used, Win2000.
It is important to note that if the interrupt latency lasts
more than 10.4 ms, the A/D board will not be rearmed
before the deadline and a line scan will be missed.
After many tests under extreme circumstances it can
be concluded that the system is able to manage all the
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tasks without missing line scans, being able even to use
a thermographic sensor with a higher frequency. The
use of circular buffers to communicate tasks proved its
efficiency as a proper mechanism to handle spurious
delays in the task execution time probably caused
because of the lack of determinism in the operating
system used.

Conclusions
In this article, new algorithms for real time acquisition,
filtering and segmentation of thermographic images
have been proposed and assessed. Calibration
procedures for temperature and spatial scale have also
been developed. Two different segmentation algorithms
have been proposed, and to measure their
performances, a novel segmentation assessment
method based on the uncertainty of the ideal
segmentation was developed and applied. The
assessment method allowed a clear identification of the
best segmentation algorithm of the two proposed
initially, that is, edge based segmentation.
Segmentation produces a set of line scan patterns
which describe the thermographic behavior of a
manufactured strip and detects changes in the line scan
pattern in real time. As soon as a new line scan pattern
is detected, and only then, the pattern change is sent to
the control loop of the manufacturing process. Only
sending patterns change leads to smoother and more
effective process control than sending the entire line
scan sequence. Segmentation is also very important, in
order to carry out data mining over large image sets.

Another line of investigation is the description of each
region in a reduced way. Current research shows that
one of the best methods could be the polynomial fit. &
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