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the anatomy. Both linear and elastic registration are useful
tools in many medical applications.2−7

While a linear transformation can be simply defined
as a superposition of rotations, translations, scaling and
shear, and is always applied globally, there is no
agreement in the image processing community about the
best way to define and estimate an elastic trans-
formation. Many algorithms for elastic image registration
that have been reported in the literature are based on a
subdivision of the image using a mesh of control points
which is defined at progressively smaller subvolume
sizes.3,8−11 Such algorithms optimize the position of control
points to find the best local transformation. The images
are compared using an image similarity measure. For
multimodality image registration the measure of choice
is typically mutual information.12,13

The use of mutual information for image registration
was first introduced by Wells et al.14 Pluim et al.
presented a comprehensive survey of the literature on
mutual information-based registration.13 The goal of
mutual information-based registration is to find the
transformation that best aligns two images by
maximizing the mutual information between them.
Figure 1 describes the mutual information-based
registration process. The optimization algorithm is used
to find the set of transformation parameters that
maximizes the mutual information between the reference
image and the transformed floating image. Depending
on the particular application, the transformation can be
linear (rigid or affine) or elastic. For linear trans-
formations the parameters being optimized are commonly
the rotation, translation and/or scaling coefficients, while
for elastic transformations defined by a mesh of control
points the parameters being optimized are the control
point locations in the floating image space.

Introduction
Image registration is the process of aligning two images
that represent the same anatomy from different points of
view, at different times or using different imaging
modalities. Image registration is an important tool in
medical imaging, where it is used to merge or compare
images obtained from a variety of modalities, such as
magnetic resonance imaging (MRI), computed tomo-graphy
(CT), positron emission tomography (PET), single photon
emission computed tomography (SPECT) and ultrasound.
In medicine, real-time image registration can be an enabling
technology for the effective and efficient use of many
diagnostic and image-guided treatment procedures relying
on either multimodality image fusion or serial image
comparison.1 Image registration algorithms can be classified
into linear and elastic registration algorithms. Linear
registration algorithms use global transformations with a
combination of rotation, translation, scaling and shear
components. Elastic image registration refers to the case
in which one of the images is transformed using a
nonlinear, continuous transformation. The process of
image registration yields the transformation field that best
locates one of the images (the floating image) into the other
(the reference image), and can be used to track changes in
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Previous attempts to perform image registration in real
time focused on parallel supercomputer implementations,
which achieved real-time performance using large,
expensive supercomputers that are too impractical to be
deployed in a hospital.15−18 Our Fast Automatic Image
Registration (FAIR) architecture accelerated mutual
information-based linear registration.19 In this article we
present a second generation architecture, called FAIR-
II, that has been designed to accelerate both linear and
elastic registration and achieves even higher speeds than
the original FAIR architecture. FAIR-II architecture
achieves registration speeds 30 to 100 times faster than
a 3.2 GHz Pentium III-based PC workstation, depending
on the underlying transformation. The single-module
speedup results from using parallel memory access and
parallel calculation pipelines. Using several modules in
parallel can increase the overall speedup. An imple-
mentation of the architecture can be customized to meet
the particular requirements of most control point mesh-
based elastic registration algorithms.8,10,11,17,20

Mutual Information Calculation
Mutual information is defined as:

    MI RI FI H RI H FI H RI FI, ,( ) = ( ) + ( ) − ( ) , (1)

where RI is the reference image, FI is the floating image
(the one being transformed), H(RI) and H(FI) are the
individual image entropies, and H(RI,FI) is their joint
entropy. The entropies are computed as follows:

    
H RI p a p aRI RI
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( ) = − ( ) ( )∑ ln (2)

    
H FI p b p bFI FI

b
( ) = − ( ) ( )∑ ln (3)
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a b
, ( , ) ln ( , ), ,

,
( ) = −∑ (4)

The joint voxel intensity probability pRI,FI (a,b), i.e., the
probability of a voxel in the reference image having an
intensity a given that the corresponding voxel in the
floating image has an intensity b, can be obtained from
the joint histogram of the two images. The joint histogram
represents the joint intensity probability distribution. In
the process of mutual information-based registration, the
dispersion of values within the joint histogram is
minimized, which in turn minimizes the joint entropy
and maximizes the mutual information. Calculation of
mutual information involves first obtaining the individual
and joint histograms of the two images and then
calculating their individual and joint entropies using the
histograms’ values. Joint histogram calculation is a
memory intensive task that does not benefit from cache-
based memory architecture, i.e., it incurs a large number
of cache misses, in standard software implementations.19

Architecture
As mentioned before, mutual information calculation
can be divided into two steps. In the first step the mutual
and individual histograms are formed. In the second
step, the entropies are calculated and added according
to Eqs. (1) through (4). The individual and joint voxel
intensity probabilities are calculated from the joint and
individual histograms. The time required to perform the
first step is proportional to the image size, while the
time required to perform the second step is proportional
to the joint histogram size. Since typical 3D image sizes
are between 643 and 5123 voxels, and typical joint
histogram sizes range between 322 and 2562 bins, joint
histogram calculation speed will normally be the most
important factor in mutual information calculation time.
We showed earlier that, for large images, joint histogram
calculation can take 99.9% of the total mutual
information calculation time in software.19 On the other
hand, off-chip entropy calculation requires the
additional overhead of transmitting the joint histogram
back to the host computer, which can take a significant
amount of time. Because of this overhead we decided to
implement entropy calculation on-chip. A block diagram
of the FAIR-II architecture is shown in Fig. 2. The
following subsections describe the operation of its
different elements.

Joint Histogram Computation
The first step in mutual information calculation
involves applying the current estimate of the inverse
transformation to each voxel coordinate of the reference
image to find the corresponding voxel coordinates in
the floating image, and updating the joint histogram
at the location dictated by the intensities of the voxel
pair. The corresponding coordinates do not normally
coincide with a grid point in the floating image, thus
requiring interpolation. Partial volume (PV) inter-
polation, as introduced by Maes et al.21 was chosen
because it provides smooth changes in the histogram
values as a result of small changes in the trans-
formation.13 The algorithm for joint histogram
computation is shown in Fig. 3. Step (a) of the algorithm
is performed by the voxel coordinate transformation
unit. Steps (b) and (c) are performed in parallel. The
reference image coordinate values are passed to the
reference image controller, the integer components of
the floating image coordinates are passed to the floating
image controller, and its fractional components to the
PV interpolator. Finally the interpolation weights
calculated by the PV interpolator are accumulated into
the joint histogram.

Figure 1. Mutual information-based registration flowchart.
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Voxel Coordinate Transformation
The voxel coordinate transformation unit performs the
transformation of reference image voxel coordinates into
locations in the floating image space. An elastic
transformation is separated into two components: a
global linear transformation and a local, control point
mesh-based transformation, each calculated by an
independent submodule. Floating image voxel
coordinates are calculated as shown in Eq. (5):

  v T v d vf global r local r= ⋅ + ( ) , (5)

where   vr  is a vector containing the coordinates of a voxel
in the reference image,   vf  is a vector containing the
corresponding floating image coordinates, Tglobal is the
global linear transformation (defined by a 4 × 4 matrix)

Figure 2. Block diagram of the FAIR-II architecture.

Figure 3. Joint histogram computation algorithm.

For each voxel in the reference image,
a. Calculate corresponding floating image

coordinates (apply coordinate transformation)
b. Load corresponding floating image 2 × 2 × 2 voxel

neighborhood (8 intensity values are loaded in
parallel)

c. Calculate the 8 partial volume interpolation
weights (similar to trilinear interpolation, but
weights are not added at the end)

d. Accumulate interpolation weights into corre-
sponding joint histogram bins.
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and   dlocal  is the local deformation function. The local
deformation function is defined by a uniform 3D mesh
of control points, which is stored in the Grid Memory
module. Each control point is mapped to a fixed location
in the reference image space and is associated to the
corresponding value of   dlocal . Local deformation values
for reference image coordinates located between mesh
control points are calculated using interpolation.

The effects of both transformations are superimposed
by addition. The main reason to decompose the
transformation into its linear and local components is
to reduce the hardware requirements for the Grid
Memory and the control point coordinate interpolator.
This way the dynamic range of mesh control point
coordinates is restricted to the range of allowable
internal deformations, which is normally much smaller
than the range of the global linear transformation, which
includes the whole floating image space. It also allows
performing linear transformations, by setting the control
point values to zero, i.e.,     d vlocal r( ) = 0.

The particular implementation of the voxel coordinate
transformation unit depends on the algorithm being
accelerated. Some of the most commonly used
transformation algorithms include local l inear
transformations,11 and control-point-mesh-based
transformations using trilinear interpolation8,22 or cubic
(spline) interpolation.9,20,23 Since all the aforementioned
transformation algorithms can be implemented using a
hardware pipeline, the choice of a particular
transformation algorithm does not have any impact in
the final mutual information calculation speed.
However, since more complex transformations require
a larger number of arithmetic units and/or a deeper
pipeline, the hardware requirements of a particular
implementation will depend on the transformation
algorithm being implemented.

Interpolation Weight Calculation
The reference image coordinates coming from the voxel
coordinate transformation unit (  vr  in Eq. (5)) are always
integer and correspond to exact reference image voxel
locations. However, their corresponding floating image
coordinates (  vf ) have fractional components and can land
outside of the actual image. As in the original FAIR
architecture,19 the integer components of the floating
image coordinates are used to locate the corresponding 2
× 2 × 2 floating image voxel neighborhood and thus passed
to the Floating Image Controller, while the fractional
components are used for interpolation. As mentioned
before, Partial Volume interpolation is used.21 As a result
of PV interpolation, eight interpolation weights w0:7 are
generated. Each of these interpolation weights is
associated to a voxel belonging to the 2 × 2 × 2 floating
image neighborhood that contains   vf . These weights are
passed along with the corresponding reference image
intensity value and eight floating image intensity values
to the Scheduler module.

Image Memory Access
Each image memory controller has an independent
memory bus, therefore allowing parallel access of voxel
intensity pairs. The reference image controller loads the
reference image voxel intensity values. At the same time,
the floating image controller accesses the corresponding
2 × 2 × 2 voxel neighborhoods in parallel through a
memory bus implemented using cubic addressing.24 The
reference image memory is accessed sequentially, using
burst accesses. While the image memories are accessed,
the PV interpolator unit calculates the interpolation

weights. Since floating image accesses are not
sequential, it is recommended to use SRAMs to store
the floating image, thus allowing one 2 ×  2 × 2
neighborhood access per external clock cycle.

Joint Histogram Accumulation
For a given reference image voxel, there are eight voxel
intensity pairs, each with its own interpolation weight. Since
the joint histogram memory needs to be read and written
once for each intensity pair, 16 accesses to the joint
histogram memory are required per reference image voxel.
To provide 16 accesses in the time of a single image memory
access, three different techniques are used:
1. The joint histogram is implemented using internal

on-chip memory, running at a higher frequency than
the external image memory. This reduces the number
of necessary accesses per clock cycle by a factor equal
to the ratio between the internal and external clock
rates.

2. Dual-ported memories are used to allow simultaneous
read and write accesses. This reduces in half the
number of necessary accesses per memory port.

3. The joint histogram memory is partitioned to allow a
higher number of accesses to occur at the same time.

The joint histogram memory is partitioned into 2n
blocks. Each partition has its own independent
accumulator pipeline. The number of joint histogram
partitions depends on the internal clock speed. The
following inequality must hold to ensure that the data
flow into the accumulator FIFOs is equal or larger than
their output flow:

    
JH Partitions

f
f

RI

acc
_ ≥

⋅8
, (6)

where fRI is the reference image clock frequency and facc

is the accumulator clock frequency. The joint histogram
memory is arranged such that the address of a joint
histogram bin is obtained by concatenating the
corresponding reference image and floating image voxel
intensity values. Joint histogram partitioning is based
on the recognition that the neighboring voxels even in
relatively uniform regions in clinical images vary
slightly, in terms of a few LSBs. Partitioning is,
therefore, performed according to the n LSBs of the
memory addresses (n = log2(JH_Partitions)). The least
significant bits (LSBs) of the joint histogram memory
addresses correspond to the LSBs of the floating image
voxel intensity values. This partitioning scheme
maximizes the likelihood that different floating image
voxel intensity values in the same neighborhood will be
assigned to different joint histogram memory blocks,
thus allowing a higher degree of parallelism in joint
histogram RAM accesses. An example with a joint
histogram of size 8 × 8 and four partitions (n = 2) is
shown in Fig. 4. In this example the intensity values
are three bits wide. Therefore, a voxel intensity pair
will have six bits. The three most significant bits, labeled
vr2:0, contain a reference image voxel intensity value,
while the three least significant bits, labeled vf2:0,
contain the corresponding floating image voxel intensity
value. To map the voxel intensity pair to a given joint
histogram partition, its least two significant bits, labeled
JHP1 and JHP0, are used. These bits correspond to
vf1:0. The remaining four upper bits of the voxel
intensity pair, labeled JH3:0, are used to address a
location within the joint histogram partition. For
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example, if a voxel intensity pair consists of the
reference image value vr2:0 = 0102 (the subscript denotes
the base), and the floating image value vf2:0 = 1102, the
corresponding voxel intensity pair will be 0101102, which
will be mapped to Partition 2 (since JHP1:0 = 102 = 2),
at the address 01012 (since JH3:0 = 01012).

A limitation of this partitioning scheme is that, in the
presence of large image areas of identical intensity, it
would not provide the desired parallelism. To prevent
this problem, the scheduler groups equivalent voxel
intensity pairs and adds their corresponding
interpolation weights together before sending them to
the accumulators. This operation also prevents read-
after-write hazards in the accumulation pipeline due to
consecutive accesses to the same voxel intensity pair.
FIFOs are used as buffers to handle traffic spikes to
individual joint histogram blocks.

While the joint histogram is computed, the row and
column accumulator unit computes the individual
histograms. The architecture of the row and column
accumulator is similar to the joint histogram
accumulation pipeline. The global sum module keeps
track of the number of voxels accumulated into the
histograms and calculates its reciprocal value, i.e., it
applies the 1/n function to it. The resulting value is used
during entropy accumulation to calculate the voxel
intensity probabilities from the individual and joint
histogram values.

The size of the internal joint histogram memory
must be equal to the largest joint histogram size being
used in the algorithm of choice. However, variable joint
histogram sizes can be implemented in hardware by
performing a bit AND operation against the contents of
a bit mask register. Having a one-bit mask register for
the floating image and a different mask register for the
reference image allows independent control over the
lateral joint histogram dimensions. This is useful when
dealing with multimodality images and also when
performing nonrigid registration, since performing local
refinements to the transformation at small scales affects
smaller portions of the floating image, thus requiring
the use of smaller joint histogram sizes to reduce the
dispersion of values in the joint histogram.

Entropy Accumulation
In the second step of mutual information calculation,
the accumulator modules send the partial joint
histogram values to the entropy accumulator. In the
entropy accumulator the individual and joint voxel
intensity probabilities are calculated from the joint
histogram values, and the p ⋅ ln(p) function is applied
to them. The results are then accumulated, thus
obtaining the mutual information value.

To calculate mutual information, it is necessary to
evaluate the function f (p) = p ⋅ ln(p) for all the individual
and joint intensity probabilities. Since the probabilities
range from 0 to 1, the ln(p) function will have a range of
[−∞, 0], with the problem that it is undefined for p = 0.
Fortunately, the p ⋅ ln(p) function has a much more
limited range of [−e−1, 0] and is defined in the full range
of 0 ≤ p ≤ 1. Hardware-based logarithm calculation is
usually performed using series approximations or a
combination of series approximations and look-up tables
(LUTs).25−29 Using series approximation requires
implementing a series of arithmetic units that consume
significant hardware resources, and take several clock
cycles to finish calculation. Existing LUT-based
approaches for logarithm calculation have a limited
accuracy (up to 24 fixed-point bits) that makes them
unsuitable for the current application.28,29 In this
subsection we present an algorithm for the calculation
of p ⋅ ln(p) that allows simple, LUT-based implementation
in FPGAs and has a small enough error range acceptable
for its application in mutual information calculation.

LUT-Based Entropy Calculation
The function f(p) is approximated in the range [0, 1] by
using the piecewise-polynomial function     

ˆ
,f pN m ( )  with

m segments, defined in Eq. (7) below.
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where ∆p = 1/m is the segment size of     
ˆ

,f pN m ( )   and Pi is
a polynomial of order N − 1. To minimize the maximum
approximation error, each Pi is obtained by calculating
the Chebyshev approximation for f(p), defined in Eq. (8)
for i ⋅ ∆p ≤ p < (i + 1) ⋅ ∆p.30 The Chebyshev approximation
is simple to calculate for continuous functions and has
the advantage that it is very close to the minimax

Figure 4. Joint histogram partitioning example
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approximation, the most accurate polynomial
approximation.31 Equation (9) is used to calculate the
coefficients.
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The Chebyshev polynomials are defined by Tn(x) = cos(n
⋅ arccos(x)), for −1 ≤ x ≤ 1. The Chebyshev polynomials of
order zero to three are shown in Eq. (10). Since each
polynomial is used to approximate f(p) in a specific [i ⋅
∆p, (i + 1) ⋅ ∆p] range, whereas the Chebyshev polynomials
are defined in [−1, 1], the variable conversion shown in
Eq. (11) was applied to the equations.

T0(x) = 1, T1(x) = x, T2(x) = 2x2 – 1, T3(x) = 4x3 – 3x  (10)

    x p p p p= ( ) −( )2 mod ∆ ∆ ∆ (11)

To keep our arithmetic pipeline simple, we considered
only first, second and third-order approximations in our
architecture. Equation (12) defines the ith polynomial
component of     

ˆ ( )f pN :

    P p k p k p k p ki d i d i d i d i( ) = ⋅ + ⋅ + ⋅ +, , , ,3
3

2
2

1 0 , (12)

where pd = pmod∆p. The polynomial coefficients ki,j are
stored in the ith entry of the LUT. They are calculated
from the Chebyshev coefficients as shown in Eqs. (13)
through (16), which are derived from Eqs. (8), (10) and
(11):

    k c c c ci i i i i, , , , ,.0 0 1 2 30 5= ⋅ − + − (13)
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Error Characteristics
The approximation error in the ith segment of     

ˆ
,f pN m ( )

is given by:

    ε i N m ip f p f p P p p f p( ) = ( ) − ( ) = ( ) − ( )ˆ mod, ∆ (17)

The position pmax_ei of the maximum absolute error ei

in this segment is obtained by numerically evaluating
p when the derivative of the error is equal to zero:
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The maximum absolute error is then found by inserting
pmax_ei into the error equation:

    
e p pi

i p p i p
i i ei= ( ) = ( )

⋅ ≤ < +( )⋅
max max_

∆ ∆1
ε ε (20)

Since using an Nth-order piecewise-polynomial
approximation assumes that the Nth derivative of f(p)
is constant in each segment of     

ˆ ( ),f pN m , the segment size
∆p must be determined by the rate of change of the Nth
derivative and the desired maximum error. The first and
second derivatives of f(p) are     ḟ  (p) = 1 + ln(p) and     

˙̇f (p)
= 1/p. The rate of change of all derivatives approaches
infinity as p nears zero and decreases steadily as p
increases. Therefore, the approximation error is higher
for smaller values of p, which further implies that this
error is largest in the first segment of     

ˆ
,fN m (p), i.e., emax

= e0 = ε0(pmax0)).
For a given ∆p, using a higher-order polynomial

approximation yields a lower maximum error. Therefore,
for a given number of LUT entries, emax will decrease as
the polynomial order increases. The plot on Fig. 5
illustrates the dependence between ∆p, emax and the
polynomial order. To be able to store the LUT using
internal memory, a reasonable maximum number of
entries is 16K (214 bins). For a LUT with 16K entries,
the maximum error is in the order of 10−8 to 10−10 for
first- to third-order approximations.

Multi-LUT Approach
It was shown in the previous section that the maximum
error will occur in the first segment of     

ˆ ( ),f pN m . Figure
6(a) shows the error magnitude plot for an LUT with 214

bins, using third-order polynomials and double precision
floating point numbers. As predicted before, the error
decreases as p increases.

To further reduce LUT size and improve accuracy, we
used a multi-LUT approach, where each LUT had a
different ∆p value and was based on a different

Figure 5. Plots of maximum approximation error emax versus
∆p for different approximation polynomial orders.
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approximation function
    
ˆ ( ),f pN ml

. The general n-LUT
form of this approximation is shown in Eq. (21), where
∆p1 < ∆p2 < … < ∆pn. Having larger values of ∆p for higher
values of p is equivalent to approximating the function
using variable segment sizes, which allows us to reduce
the LUT size while keeping the approximation error
below the allowable maximum.
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Let 
    
p pmin maxi i

=
−1

 and 
    
pmax0

0= . Given a maximum
allowable error and polynomial order, we can vary ∆p
and use Eqs. (18) and (20) to determine the range [pmin,

1] over which the error criterion is satisfied. As
explained above, the smaller the ∆p, the wider is the
[pmin, 1] interval, and hence smaller is pmin. In our
analysis, we considered only those ∆p values that were
powers of two to make the selection of the LUT and LUT-
segment simple. For a given probability range, a higher-
order approximation leads to a larger ∆p value, thus
resulting in smaller LUT sizes. The following algorithm
was used to determine the number and the probability
range of the LUTs, given a target size (number of
samples) for each LUT:
1. Given the target LUT size m1, obtain the desired Dp1

for the segment starting at pmin = 0 using Eqs. (18)
and (20). The probability range of the first LUT thus
equals [0,     pmax1

], where     p p mmax1 1 1= ⋅∆ .
2. Use     pmax1

 from the first LUT to obtain ∆p for the
second LUT. Determine the range of the second LUT.

3. Iterate step 2 to obtain the ∆p values and LUT ranges
for the subsequent LUTs, until the entire [0, 1] range
has been covered.

As stated before, the range of f(p) for p in [0, 1] is
[−e−1, 0] ⊂  [−0.5, 0]. Since the desired accuracy is 10−9

(~2−30), a 30-bit fixed-point representation will have
sufficient dynamic range for the f(p) calculation. Using
a higher number of bits will reduce the rounding error.

Using this approach we designed the first-order
polynomial, 4-LUT configuration shown in Table I. The
maximum error was in the order of 10−8 for a total of 8K
entries. Figure 6(b) shows a plot of the error magnitude
versus p for this configuration. Using lower-order
polynomials has the advantage of reducing the LUT data
width and the number of arithmetic components in the
pipeline.

Implementation and Results
The system was implemented as a proof of concept using
an Altera Stratix EP1S40 FPGA in a PCI prototyping
board manufactured by SBS, Inc.32 The FPGA ran at a
maximum internal frequency of 200 MHz, with a 50 MHz
reference image RAM bus and a 100 MHz floating image
RAM bus. Joint histogram RAM was partitioned into
eight blocks, and implemented using internal 4 Kb
memory blocks. Reference and floating image memories
were implemented using standard PC100 SDRAMS and
high-speed SRAMs, respectively. Entropy calculation
was implemented using the 4-LUT, first-order
polynomial configuration shown in Table I. As shown
before, for a given LUT, the error magnitude decreases
as p increases. All LUTs were implemented inside one
internal 512 Kbit memory block. Mutual information
was calculated using 32-bit fixed point numbers.

As implemented, the system was able to process 50
million reference image voxels per second. Timing
characteristics of the system were compared against
optimized software implementations and the hardware
implementation of the previous FAIR architecture.19 Table
II shows the characteristics of the different systems used

Figure 6. (a) Error magnitude plot for a single LUT with 214

entries; and (b) Error magnitude plot for 4 LUTs with 211 entries
each.

TABLE I. Characteristics of a 4-LUT Implementation of the
Entropy Calculation Pipeline

     LUT Range
 LUT Number Number of Entries (m) pmin pmax  ∆p

1 2048 0 2−13 2−24

2 2048 2−13 2−6 2−17

3 2048 2−6 2−2 2−13

4 2048 2−2 2−0 2−11
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for benchmarking, and Table III shows the timing results.
The number of subvolumes refers to the number of 2 × 2
× 2 control point neighborhoods in the control point mesh
used to define the local deformations, and is an indicator
of the resolution at which local deformations are defined.
When local deformations are used the software
implementations become roughly three times slower due
to the extra computational load from accessing the grid
memory and performing the extra interpolations. The
software execution times prove the fact that mutual
information calculation time is more dependent on the
external memory speed than the processor speed,
especially for large image sizes. FAIR-II delivered a
speedup of 30 for linear registration and 100 for elastic
registration against the corresponding software
implementations on a 3.2-GHz PIII Xeon workstation
with 1 GB of 266 MHz DDRAM.

Conclusions
Elastic image registration is currently an active field of
research in the medical imaging community, far from
being considered a solved problem. Most current
algorithms for elastic image registration are tailored to
specific applications, although many of them share
significant characteristics. The FAIR-II architecture
presented in this paper does not aim to accelerate a
specific algorithm, but rather any algorithm based on a
uniform control point mesh-based transformation that
uses mutual information as an image similarity
measure. Mutual information was chosen because it is
widely accepted in the imaging community as the best
image similarity measure currently available for single-
or multimodality image registration. FAIR-II achieves
speedup rates an order of magnitude higher than those
achieved by the first-generation FAIR architecture for
linear registration and also supports elastic registration.

Future work on the acceleration of mutual information
calculation can be performed on the estimation of the
joint voxel intensity probability distribution, which is
calculated from the joint histogram. The current
architecture uses Partial Volume interpolation to update
the joint histogram. When performing elastic
registration, a more accepted way to calculate the joint
histogram of small image segments is using Parzen
windowing. The use of Parzen windowing for calculating
the joint intensity probability distribution has been well

TABLE III. Comparison of Mutual Information Calculation Times for Different Implementations

      Mutual information calculation time (milliseconds)
Image Size (voxels) 218 221 224

Number of subvolumes 1* 8 64 1* 8 64 1* 8 64
SW1 562 1682 1685 4712 13434 13530 38500 106269 105972
SW2 120 499 485 1025 3547 3945 10200 32351 33983
FAIR19 62 ** ** 430 ** ** 3370 ** **
FAIR-II 5 5 5 42 42 42 335 335 335

*In the 1-subvolume case an linear transformation was used in the software version
**FAIR supports only linear transformations

TABLE II. Comparison System Characteristics

System Name Processor Type Processor Speed Memory Type Memory Speed

SW1 Intel PIII Xeon 500 MHz SDRAM 100 MHz
SW2 Intel PIII Xeon 3.2 GHz DDRAM 266 MHz
FAIR19 Altera Acex EP1K100 FPGA 80 MHz SDRAM 80 MHz
FAIR-II Altera Stratix EP1S40 FPGA 200 MHz SRAM 50 MHz

documented in the literature.14,33−36 It is based on
accumulating the joint histogram using a Gaussian
kernel centered at the location corresponding to the
current voxel intensity pair. Using Parzen windowing
implies accessing the joint histogram more often than
when using Partial Volume interpolation. Since the joint
histogram is accessed at different locations by definition,
implementing Parzen windowing will require the use of
deeper partitioning than presented, but with simpler
accumulation pipelines.

Acceleration of elastic image registration algorithms
is widely recognized as one of the current requirements
to bring these algorithms into use in clinical procedures,
especially in the operating room.13,37 The FAIR-II
architecture is an important step in this direction since
it allows the implementation of image registration
systems that are economical and compact and thus
suitable for clinical deployment.    
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