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on PCA methods, more channels, or more basis func-
tions, will give more accuracy of reconstructed spectral
information. However, in most cases, more channels or
more basis functions used will yield more noise in the
reconstructed spectral images.5

Another issue is the wavelength increment used in
representing spectra. Different spectral measuring in-
struments provide different levels of accuracy, such as
2 nm, 5 nm and 10 nm wavelength increments. Larger
wavelength increments in spectra will require less im-
age computation time and less space to store spectral
images. There is little information about the impact of
different wavelength increments on the image quality
in spectral imaging. Other issues, like the stability of
the transform matrix and the selection of objective func-
tion in imaging system optimization, will also impact
the image quality of final spectral images.

To investigate those practical questions, image qual-
ity studies for spectral imaging are, therefore, worth
pursuit. It was hoped that this image quality study
could provide us a guide to improve our spectral imag-
ing system for better quality of spectral images in fu-
ture research. The present research does not try to
solve all practical questions, but limits its goal to some
specific issues. This research incorporates visual psy-
chophysical experimental evaluation of image quality
for spectral images rendered on a three-channel LCD
screen. The spectral images were simulated using dif-
ferent noise levels, different eigenvectors (and chan-
nels) and wavelength steps in a spectral imaging sys-
tem. To bridge the gap between the physical measures
and subjective visual perceptions of image quality, ef-
fort has been made to build the image quality metrics.
Four such image quality metrics have been applied in

Introduction
As the applications of spectral imaging in the visible
regime become increasingly popular,1–4 image quality
studies in this field have been of greater practical in-
terest.5,6 Most previous research in spectral imaging
concentrated on the accuracy or optimization for color
and spectral reproduction. However, little has been stud-
ied on the evaluation of overall quality of spectral im-
ages obtained by digital spectral imaging systems. Typi-
cally, when designing a wideband visible spectral imag-
ing system, it is important to select the proper number
of channels to capture the images. For instance, spec-
tral imaging for art work may need more than six chan-
nels to accurately capture the spectral images while
three channels are quite enough in spectral imaging for
human portraits. During the processing stage, while
applying principal component analysis (PCA) methods,
it is important to select the proper number of basis func-
tions and transform matrices to construct the spectral
images. Mostly, however, those selections have been
based only on the accuracy for color or spectral repro-
duction, not specifically for best image quality. Often,
one needs to balance the accuracy of spectral informa-
tion and noise tolerance of the spectral images. Based
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this research. The final goal is to find a single metric
that is in good correlation with the subjective measure,
MOS in this research.

Objective Distortion Factors
Four distortion factors were defined in this research.
They are: color difference factor for color images; sharp-
ness factor; graininess factor; and contrast factor.

Color Difference Factor
When dealing with reproduction of color imagery the

color difference equation using s-CIELAB7 is often se-
lected to evaluate the color reproduction. In this research
a procedure proposed by Johnson and Fairchild,8 with a
small modification of adding a modulation transfer func-
tion (MTF) of the LCD display to the luminance chan-
nel, was followed. The key of Johnson and Fairchild’s
method is to perform filtering in the frequency domain
for opponent color signals in the traditional s-CIELAB
method proposed by Zhang and Wandell.7 The MTF of
the LCD, as shown in Fig. 1, was derived based on
Barten’s9 method with some practical modification. The
mathematical expression of MTF is given in Eq. (1)
where f is the angular frequency at the eye of the ob-
server in cycle per degree (cpd) and k is the pixel dis-
tance of LCD display in visual angle.
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Graininess Factor
Typically, root mean square (RMS) granularity is

popularly used as an objective measure in evaluating
the graininess of the images.10 In this experiment, the
objective measure of graininess was defined as the RMS
error of original and its reproduction images, in the lu-
minance channel of s-CIELAB opponent color space, af-
ter filtering as mentioned in previous section.

Sharpness Factor
To evaluate the effect of resolution on perceived im-

age quality, Barten11–13 proposed so-called square root
integral (SQRI) as shown in Eq. (2).
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where f is the angular spatial frequency at the eye of
the observer in cycle/degree (cpd), fmax is the maximum

angular spatial frequency displayed. M(f) is the modu-
lation threshold function (MTF) of the display, and Mt(f)
is the modulation threshold function of the eye. The in-
verse of the modulation threshold function of the eye is
usually called the contrast sensitivity function (CSF)
which is given in Ref. 13. Instead of using effective dis-
play luminance as in the Ref. 11, luminance values were
calculated here using luminance factors given in Eq. (3).

L = 2⋅LLCD⋅Y/Ym, (3)

where LLCD is the luminance of LCD at white point, Y is
mean Y tristimulus values of the image and Ym is the Y
tristimulus value of the LCD of the white point. It should
be emphasize that SQRI is independent of image con-
tent. Researchers have indicated that SQRI values were
correlated well to the subjective image sharpness for
each individual image.12–14 Its popular application and
good performance in image sharpness analysis were the
reasons it was selected as the sharpness factor in this
research.

Contrast Factor
Calabria and Fairchild15 proposed an empirical math-

ematical equation of Single Image Perceived (SIPk) con-
trast. This equation provides a tool to evaluate contrast
in an image without reference to an original image.
Though the validity of this equation for other image
experiments requires further study, SIPk was selected
as fourth distortion factor in this experiment. SIPk is
given in Eq. (4).

SIPk = –1.505 + 0.131kc + 0.151kl + 666.216ks, (4)

where kc, kl, ks are image chroma standard deviation,
lightness standard deviation and the standard devia-
tion of high frequency image lightness (filtering by Sobel
filter) respectively. In this experiment, a factor of 10–3

was multiplied to the SIPk as given in Eq. (4).

Visual Assessment Experiment
Spectral Imaging Simulation and Test Images

Four spectral images, fruit and painting,16 and two
human portraits3 (one Caucasian, one Black) were used
as original spectral imaging targets in simulation. Spec-
tral images of fruit and painting were provided by re-
searchers in Chiba University, and spectral images of
human portraits were captured by authors using SONY
DKC-ST5 digital camera. The details of spectral imag-
ing for these four spectral images can be found in Refs.
3 and 16. The rendering images for these four spectral
images are shown in Color Plate 1, p. 235, and were
processed for display on a characterized LCD display in
this experiment. Two imaging systems were simulated
based on two real digital imaging systems. An IBM Re-
search PRO/3000 Digital Camera System was used to
simulate the spectral imaging for the fruit and paint-
ing targets. The SONY DKC-ST5 Digital Camera was
used to simulate the spectral imaging for the human
portraits. The spectral sensitivities of the digital cam-
eras were measured directly using a calibrated measur-
ing system consisting of spectroradiometer, illuminator
and double monochromators. Details of spectral sensi-
tivity measurement and digital camera settings can be
found in Refs. 17 and 18. The spectral images of fruit
and painting targets were simulated using three-chan-
nel, six-channel (by using 202 half C.T. blue filter, Pro-
fessional Lighting Filters, Bogen) and nine-channel (by

Figure 1. MTF of LCD display.
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using 202 half C.T. blue filter and Kodak Wratten filter
#66) wideband methods.19 These filters were not opti-
mized and were used only to avoid a big decrease for
the blue channel signal. Mathematically, the applica-
tion of these filters created additional independent equa-
tions for multi-band imaging. In simulation, these fil-
ters were used individually; they were not attached to
each other during simulation for nine-channel wideband
imaging. The spectral images of human portraits were
simulated using three-channel and six-channel
wideband methods (by using the 202 blue filter) while
the original spectral images were obtained by using the
six-channel wideband method with 2 nm wavelength
steps.3 The basis functions applied to fruit and paint-
ing targets were calculated from Vrhel’s20 data set in-
cluding 170 natural and man-made object spectra, since
those spectral samples are close to the spectra of fruit
and painting. The basis functions used for human por-
traits were calculated from a previous spectral imag-
ing experiment for human portraits,12 since basis func-
tions based on spectra of human portraits should pro-
vide the best color and spectral reproduction for spec-
tral imaging of human portraits.

Five different wavelength steps were used to simu-
late the spectral image capture and reconstructing. They
were 2 nm, 5 nm, 10 nm, 15 nm and 20 nm steps that
are commonly used for commercial spectral measuring
instruments. There are many distinct independent types
of noise involved in digital imaging system. For sim-
plicity in simulation and to limit the total number of
target images for visual image quality assessment,
simple uniformly distributed and channel independent
random noise at 3 different levels was added into im-
age capture stage in simulation. More practical and com-
plex noise models are to be considered in future re-
search. The noise levels were defined as zero noise, 1
percent noise, 2 percent noise and 3 percent noise (in
terms of dynamic range of each channel). The random
noise was channel independent and was created by
pseudo-random variable generator using the IDL pro-
gramming environment.22 Therefore, including the origi-
nals, a total of 154 different spectral images were cre-
ated, 46 for each fruit and painting target, and 31 for
each portrait target. These spectral images were then
converted into RGB images for LCD display. The
illuminant D65 was used in spectral image processing
for display.

Display Setup
The first step was to characterize the LCD. The de-

tails of the characterization technique were proposed
by Fairchild and Wyble.23 This research also performed
optimization for LCD characterization that the black
point of the LCD and the transformation matrix were
optimized for best color accuracy. The accuracy of color
difference in this experiment was 0.14 ∆E*ab or 0.09
∆E94 on average for 107 test data sets. In the next step,
spectral images were converted into CIE 1931 XYZ im-
ages using illuminant D65. The obtained XYZ images
were then converted into XYZ images on LCD using
chromatic adaptation.24 Finally, XYZ images were con-
verted to RGB values for LCD display using the LCD
characterization.

The LCD display used in this experiment was a 22′′
Apple Cinema Display. The resolution was 86 pixels per
inch and the brightness was set to a peak luminance of
112 cd/m2. The distance between the observers and the
LCD was 60 cm. Therefore, the visual resolution was
approximately 35.5 cycles per degree (cpd) as given in

Eq. (5) where the d is the viewing distance in inches
and ppi is the resolution. The image sizes displayed on
LCD were 550 × 367 pixels for fruit and painting and
512 × 640 pixels for human portraits.
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Observers
A total of 32 observers, 18 experts and 14 novices, par-

ticipated in this visual assessment experiment. Each im-
age was compared to its original and repeated three times
with random order displayed for the observers. The ob-
servers were asked to evaluate the image quality of re-
produced images based on their corresponding original
images. In other words, the observers were asked to evalu-
ate the image quality based on the difference between a
high quality image captured by a spectral imaging sys-
tem and a “distorted” version of the same image. The fol-
lowing instructions were provided to the observers:

“This is an image quality visual experiment. We will dis-
play two images each time. The image on the left side is
the original image, the image on the right side is the
reproduction of the original or the original. Your task is
to assign an image quality score to the right side image
based on its overall image quality compared to its origi-
nal on the left side. The quality score definitions are given
as the following:
5: Excellent, no distortion is perceptible
4: Good, distortion is perceptible, but not annoying
3: Not good, not bad, slightly annoying
2: Poor, Annoying
1: Very poor, very annoying
0: Bad
You can also assign the score using steps of 0.5.
Thank you for your help and enjoy the experiment.”

Experimental Results
MOS Values

As provided in Eq. (6), the observers were asked to
assign an image quality score A(i,k) to each image dis-
played on the right side on the LCD screen, where A(i,k)
was the score given by the ith observer to image k. For
each reproduced image, the scores were averaged to ob-
tain the MOS value for a specific image where n do-
nates the number of observers.
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To compare the differences of image quality scores ob-
tained from expert and novice observers, the MOS from
the novice observers versus MOS from the expert ob-
servers are plotted in Fig. 2. The correlation between
MOS values from the expert and novice observers is
0.9961. The variation of image quality scores was esti-
mated by the standard deviations of MOS values. The
relationship between the standard deviations of MOS
obtained from novice observers and the corresponding
standard deviations of MOS obtained from expert ob-
servers is plotted in Fig. 3. The corresponding correla-
tion is 0.9998. The mean standard deviation of MOS
values obtained by experts is 0.57 while this value is
0.48 for novices. This indicates that the image quality
scores assigned by the experts have more variation.
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Since the MOS values obtained from expert and novice
observers are highly correlated, in the following they
will not be discussed separately.

The MOS values for four image sets are shown in Fig.
4 where MOS values are plotted in terms of different
number of basis functions. In Fig. 4, the notation Origi-
nal represents the original images, 10 nm1N represents
the reproduced images using 10 nm steps in wavelength
and 1 percent noise under a certain number of basis
functions. The rest of the notations follow similar defi-
nitions. Figure 4 indicates that image quality, as we
expected, does relate to the number of channels or basis
functions used in the imaging system when noise is in-
volved. Considering Fig. 4(a), when using three basis
functions, image quality was not significantly affected
by the noise involved in the capture stage (within the
noise range used in this experiment) for the relatively
complex paint and fruit image sets. On the other hand,

image quality was relatively more sensitive to noise for
portrait image sets. This may be due to observers’
greater ability to judge noise appearing on human faces
compared to that of more complex images of painting
and fruit. The human portrait images contain greater
regions of low spatial frequency content. With the same
noise levels, generally speaking, wavelength steps had
no significant impact on image quality for all four im-
age sets.

When using six basis functions as shown in Fig. 4(b),
the image quality was impacted significantly by dif-

Figure 3. Standard deviations of MOS obtained from novice
observers versus corresponding standard deviations of MOS
obtained from expert observers.

Figure 4. MOS values from image quality visual experiment.
(a) Using 3 basis functions; (b) using 6 basis functions; (c) us-
ing 9 basis functions.

Figure 2. MOS from novice observers versus MOS from ex-
pert observers.
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that the sharpness factor of spectral images is more sen-
sitive to noise when more basis functions are employed;
the more basis functions employed and more noise
(within the range of this experiment), the sharper of the
images. This is a combined phenomenon previously re-
ported by Sun and Fairchild,3 and Johnson and
Fairchild.25 Sun and Fairchild reported that the spec-
tral images were sharper when more basis functions
were used, probably also due in part to greater noise.
Johnson and Fairchild indicated that additive noise, up
to a certain level, increased perceived sharpness.

ferent noise levels; more noise provided lower image
quality. Image quality of painting image sets was less
sensitive to the noise compared to that for the other
three image sets. This may be due to the fact that paint-
ing image sets contained relatively more high frequency
information and could mask much of the noise effect
compared to that of other three image sets. Generally
speaking, with the same noise levels, the wavelength
steps played no significant effect with respect to the
image quality for all four image sets with the excep-
tion of using wavelength steps of 15 nm for painting
and fruit image sets. The reason is unknown at this
stage.

When using nine basis functions for painting and
fruit image sets as shown in Fig. 4(c), the image qual-
ity effects were similar to those discussed for Fig. 4(b).
Considering image quality using different number of
basis functions, the image quality was impacted sig-
nificantly; the more basis functions or channels used,
the greater the noise effect shown and the poorer the
image quality. This is consistent with the noise propa-
gation theory in multispectral imaging systems pro-
posed by Burns.5

Color Difference Factor Values
The color difference factor values for all image sets

using different basis functions are plotted in Fig. 5; cau-
tion should be paid to the different scales used in Fig. 5.
Figure 5 indicates that the color difference of all image
sets was impacted significantly by noise; the more ba-
sis functions used and the more noise involved, the
larger the color difference for the images. At the same
noise levels, for painting and fruit image sets, the color
difference was not significantly sensitive to different
wavelength steps used with the one exception of using
15 nm steps while applying six basis functions. On the
other hand, at the same noise levels, the color differ-
ence was significantly impacted by using different wave-
length steps for portrait image sets; the larger the wave-
length steps, the larger the image color difference. The
reason is because it is more difficult for human observ-
ers to detect the color difference in relatively complex
scene images, such as the painting, due to the noise
masking effect of high frequency image content, than
for the images of relatively lower frequency content, such
as human portraits. This also suggests that to get the
same image quality, a higher quality imaging system is
required for human portraits than that for other rela-
tively complex scenes.

Graininess Factor Values
The graininess factor values for all images sets, ap-

plying different basis functions, are calculated and plot-
ted in Fig. 6. The situations are very similar to those of
color difference factor values. The relationship between
graininess factor and color difference factor is demon-
strated in Fig. 7, and the correlation coefficient between
graininess and color difference may be as high as 0.9027.
Therefore, no further details will be discussed here.

Sharpness Factor Values
The sharpness factor values of all image sets are plot-

ted in Fig. 8. Overall, different noise levels and wave-
length steps did not significantly impact the sharpness
factor of painting image sets. The sharpness factor was
also not significantly impacted by different wavelength
steps. As shown in Figs. 8(a) and 8(b), the sharpness
factor was more sensitive to the noise for the black im-
age sets. Figure 8 also indicates, more or less distinctly,

Figure 5. Color difference factor values from image quality
visual experiment. (a) Using 3 basis functions; (b) using 6 ba-
sis functions; (c) using 9 basis functions.
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Contrast Factor Values
The contrast factor values of all image sets are plot-

ted in Fig. 9. Contrast factor was not significantly im-
pacted by different levels of additive noise and differ-
ent wavelength steps when using three basis functions
as shown in Fig. 9(a). However, the contrast factor
showed three distinct groups when using six basis func-
tions, as shown in Fig. 9(b). The contrast of portrait
images increased with more additive noise. However, the
contrast of paint images displayed just the opposite di-
rection of portrait images. The contrast of fruit image
sets, on the other hand, showed their own distinct char-
acteristics. With one percent additive noise, the contrast

of fruit images decreased. The contrast of fruit images
would then increase when adding two percent noise.
When using nine basis functions, as shown in Fig. 9(c),
the contrast of paint and fruit images displayed the simi-
lar characteristics as in Fig. 9(b). Overall, the wave-
length steps did not significantly impact contrast for
all four image sets.

MOS Values versus Color Difference Factor
The relationship between the MOS values and their

corresponding color difference factor values comparing
the original images and their reproductions is shown in
Fig. 10. The correlations between MOS values and color
differences were 0.9876, 0.9865, 0.9706 and 0.9762 for
Figs. 10(a) to 10(d) respectively. However, Fig. 10 indi-
cates that the relationship between MOS values and
color difference factor is image dependent, which means
the same MOS values will have different color differ-
ence factor values for different images. This suggests
that the image quality is not a single function of color
difference, though color difference factor may predict
image quality quite well. Figures 10(a) and 9(b) show
that color differences in the fruit image sets were more
noticeable than those in even more complex images of
the painting. Similarly, the color differences for the two
portrait image sets were also more noticeable. This
might be due to the mechanism of frequency filtering in
the human visual system. Figure 10 also indicates that
larger color differences are proportional to the lower
image qualities.

MOS values and their corresponding standard devia-
tions of image color difference (compared to the origi-
nal image) also correlated very well. They are plotted in
Fig. 11 where the correlation coefficients are 0.984,
0.991, 0.993 and 0.990 for Figs. 11(a) to 11(d) respec-
tively. Higher standard deviation of image color differ-
ence corresponds to lower image quality.

MOS versus Graininess Factor
Figure 12 shows the relationship between graininess

factor and MOS value for painting, fruit, Caucasian and
Black image sets respectively. MOS and graininess fac-

Figure 6. Graininess factor values from image quality visual
experiment. (a) Using 3 basis functions; (b) using 6 basis func-
tions; (c) using 9 basis functions.

Figure 7. The relationship between graininess factor and color
difference factor.
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factor is shown in Fig. 13. The sharpness factors corre-
lated with MOS values very well with correlation coef-
ficients of 0.946, 0.949, 0.850 and 0.952 for Fig. 13(a) to
13(d) respectively. Except for the Caucasian images set,
MOS values correlated with sharpness factor values
quite well. The reason this generalization does not ex-
tend to the Caucasian image set is unknown at this

Figure 8. Sharpness factor values from image quality visual
experiment. (a) Using 3 basis functions; (b) using 6 basis func-
tions; (c) using 9 basis functions.

tor correlated very well with the correlation coefficients
of 0.95, 0.93, 0.93 and 0.93 for each image set, with high
graininess value corresponding to low image quality.

MOS Values versus Sharpness Factor
The sharpness factor values were calculated using Eq.

(2). The relationship between MOS value and sharpness

Figure 9. Contrast factor values from image quality visual
experiment. (a) Using 3 basis functions; (b) using 6 basis func-
tions; (c) using 9 basis functions.

(c)
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Figure 10. MOS versus image color difference factor. (a) painting images; (b) fruit images; (c) Caucasian images; (d) Black
images.

Figure 11. MOS versus standard deviation of image color difference factor. (a) painting images; (b) fruit images; (c) Caucasian
images; (d) Black images.
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Figure 12. MOS versus graininess factor. (a) painting images; (b) fruit images; (c) Caucasian images; (d) Black images.

Figure 13. MOS versus sharpness factor. (a) painting images; (b) fruit images; (c) Caucasian images; (d) Black images.
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Figure 14. MOS versus graininess factor. (a) painting images; (b) fruit images; (c) Caucasian images; (d) Black images.

Figure 15. MOS versus Qm

stage. Perhaps it is necessary to include other image
parameters, such as color hue and gamma,26 into Eq. (2)
for better image quality prediction. Similar to the situ-
ation in Fig. 10, Fig. 13 indicates that the relationship
between MOS values and sharpness factor values is
image dependent, which means the same MOS values
will have different sharpness factor values for different
images. This suggests that image quality is also not a
single function of sharpness factor. Figure 13(a) indi-
cates that the sharpness factor values for painting im-
ages fell over a very small range compared to other im-
age sets. Figure 13 also shows an interesting phenom-
enon that the larger sharpness factor values correspond
to the lower image qualities in this research. This might
also indicate that the original images were already sharp
enough.

MOS versus Contrast Factor
The relationship between MOS and contrast factor

values are shown in Fig. 14. The correlations between
MOS values and contrast factor values are 0.988, 0.709,
0.873 and 0.901. Figures 14(a) and 14(b) indicate that
these images with high contrast values displayed high
quality. However, for human portraits, higher contrast
factor values would display lower image quality. The
reason is unknown and needs further investigation. Also,
the correlations between MOS values and contrast fac-
tor values for fruit and Caucasian image sets were not
high enough. Those are the issues need for future im-
provement and further investigation.

Empirical Quality Metric
A multiple regression analysis (MRA) was carried out

between MOS values and distortion factors to determine

one single image quality metric. The result is given in
Eq. (7), where E is the color difference factor, G is graini-
ness factor, S is sharpness factor, C is contrast factor
and Qm is the quality metric. The correlation between
MOS and Qm is 0.974. Figure 15 shows the relation-
ship between MOS and Qm.

Qm = (7)
6.07 – 0.1455E0.831 – 0.625G0.51 – 0.00387S1.305 + 0.254C0.351

The distortion factors may be correlated since some
of the image distortions contribute to several or all fac-
tors. A principal component analysis was performed to
quantify the correlation between distortion factors. Re-
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sults indicate that in this experiment, the first two
eigenvectors will cover 98.9% and 99.9% of distortion
factor variance respectively. Therefore, two eigenvec-
tors are sufficient enough to represent these four dis-
tortion factors. This result may provide us with some
direction to find more efficient distortion factors in
future research.27

Conclusions
In this research, an image quality investigation in vis-
ible spectral imaging was performed. Spectral images
were simulated using different numbers of imaging chan-
nels, wavelength steps, and noise levels, based on two
practical spectral imaging systems. A mean opinion score
(MOS) was determined from subjective visual assessment
scale experiment for image quality of spectral images. A
set of partial image distortion measures, color difference
for color images, graininess, sharpness and contrast, were
defined based on classified and quantified actual distor-
tions produced by spectral imaging systems. When noise
was involved in capture and reconstruction of spectral
images, the number of channels or the number of basis
functions selected had a significant effect on final image
quality. With more basis functions employed, a higher
noise effect is perceived. The wavelength steps did not
have a significant effect on image quality, especially when
no noise is involved. Apparently a wavelength increment
of 10 nm is adequate for image quality in spectral imag-
ing system. The results also indicate that a higher qual-
ity imaging system in terms of noise is required for spec-
tral imaging of human portraits. The MOS and distor-
tion measures were highly correlated, though further
improvement in predictive modeling is a potential area
for further research. The contrast factor shows opposite
image quality effects on human portraits and other com-
plex scene images in this experiment. The distortion fac-
tors defined in this experiment are highly correlated and
need to be further investigated and refined.    
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Color Plate 1. Four spectral imaging objects for simulation. (1) Caucasian; (2) Black; (3) Painting; (4) Fruit. (Sun and Fairchild,
pp. 211–221)


