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mote sensing and, nowadays, their utilization has ex-
panded to industrial applications for example in qual-
ity control. Spectral images constitute a new area for
watermarking technology. The transform domain has
also been popular in spectral image watermarking. One
solution for spectral images is to embed a watermark in
the transform domain of each band. The transform do-
main is calculated with the discrete cosine transform
or the wavelet transform8 or with the Hadamard trans-
form.9 The watermarks in the above references are bi-
nary or gray scale images.

The digital watermark information must be hidden
so that the image stays perceptually unchanged. How-
ever, the watermark must be detectable using a par-
ticular extraction algorithm. Another important demand
for watermarking method is robustness. Users may al-
ter the image in many different ways. For example, they
can compress, crop, smooth, sharpen, or otherwise fil-
ter the image. These alterations can be done intention-
ally in order to remove the watermark or they are
operations that are  performed based on requirements
from the application area. Therefore the watermark
must be robust enough to survive these kinds of attacks.4

Cropping is a particularly significant attack for spec-
tral images. Against cropping the watermark must re-
main apparent in all parts of the spectral image. This
requires a new type of watermark totally different of
the visual watermark previously considered. The em-
bedding procedure must be enhanced from direct sum-
ming to a mixing system. In this study the cropping
attack is not explicably considered further, however.

The contents of this article are as follows. In the next
section we present the embedding and extraction meth-
ods for watermarking and the basic guidelines of the
principal component analysis (PCA) transform. In the
third section we describe the attacks. The fourth sec-
tion contains the experiments. In the last section we
evaluate the results, make conclusions and discuss the
pros and cons of this watermarking method.

Introduction
Since the volume of image data transfers has increased
rapidly in the internet, there has emerged a need for
new techniques to insert copyright information to that
data. Different kinds of digital watermarks bring solu-
tion to this problem. With a digital watermark, the owner
of the image can embed some personal information or a
logo into the image and prove ownership in case of a
copyright violation. Through watermarking the owner
of the image can authenticate the authorized use of the
image.1 In steganography, the purpose is to include the
actual message as a watermark embedded in the infor-
mation carrying image.2

The watermarking technique must carry the follow-
ing requirements to be applicable: readability, security,
imperceptibility, and robustness. Readability means de-
tectable information content, security means conceal-
ing the watermark from unauthorized detection,
imperceptibility is important for visually utilized im-
ages, and robustness guarantees the existence of the wa-
termark in the image after different attacks. The attacks
include image processing operations like compression,
smoothing, blurring, sharpening, or even cropping.

Several techniques have been developed to add digi-
tal watermarks into gray scale and RGB-color images.3,4

Most often the watermark is embedded in the transform
domain of the image,3,5 but the original spatial domain
has also been used.6 For RGB-color images the suitabil-
ity of different color spaces have been considered for
watermarking.7

This study presents a watermarking technique for
spectral images. Spectral images are often used in re-
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Watermarking Method
Embedding the Watermark

Whereas normal RGB images have three color bands
and the information for those bands is integrated from
the wavelengths of visible light, the spectral images have
a large number of bands and they may contain informa-
tion from a wider spectrum, also outside the visible
range. Spectral images are widely used in remote sens-
ing and their usage in computer vision and industrial
applications is growing.10

In our watermarking method we embed the water-
mark in the transform domain of a spectral image. The
spectral domain has been transformed using the princi-
pal component analysis (PCA).11,12 The PCA algorithm
creates the covariance matrix C from the spectral data
and then computes eigenvalues and eigenvectors u of
that matrix. In practical calculations C is replaced by
an estimated     ̂C ,
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where xi is a sample vector,   ̂µ is the estimated mean vec-
tor of the sample set and the sum is over all samples.11

In subspace analysis of the PCA, the eigenvalues are
sorted and then the eigenvectors relating to the p larg-
est eigenvalues are selected. These eigenvectors then
represent the original spectra with a small error depend-
ing on the number p of selected eigenvectors.

The watermark is embedded into the image by add-
ing the watermark to a selected part of the coefficients
for eigenvectors. After the embedding, the inverse prin-
cipal component analysis (IPCA) is performed. It recon-
structs the image into its original format, now
containing the watermark. The estimation of original
data is received from
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where p is the number of selected eigenvectors.11,13 The
procedure of embedding the watermark is illustrated in
Fig. 1.

As a result of the PCA transform the eigenvalues, the
eigenvectors, and the multipliers for the eigenvectors are
obtained. The two last results are stored into two matri-
ces. The first matrix (SEV) contains the spectral eigen-
vectors. The owner must save these vectors in a database
in order to extract the watermark from the watermarked
image. The second matrix is the multiplier matrix (MM),
which contains the coefficients for the eigenvectors. These
coefficients are in planes and these planes can be also
considered as eigenimages, E .  The number of
eigenimages, E, in the multiplier matrix (MM) is the same
as is the number of bands in the original spectral image,
i.e., n. The spatial size of the multiplier matrix is the
same as that of the original spectral image. The eigen-
values are sorted in ascending order and the multiplier
matrix is constructed from the eigenimages correspond-
ing to the order of the sorted eigenvalues.

The owner chooses a set of eigenimages EK from the
multiplier matrix and embeds the watermark W in them.
This can expressed as

EK = s1EK + s2W (3)

where the coefficients s1 and s2 control the strength of
embedding. The set K may contain only one eigenimage
or any number of eigenimages. The summing operation
is a symbolic expression for mixing the watermark and
the original eigenimages in the set K.

After embedding the image is reconstructed with the
inverse PCA transform using the modified multiplier

Figure 1. Embedding procedure using PCA transform.
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matrix (MM’) and the original spectral eigenvectors
(SEV). Naturally the reconstructed image differs from
the original image due to the embedded watermark.

Extraction of the Embedded Watermark
If the watermark is embedded into a spectral image

with the procedure described in Fig. 1 then the owner of
the image can extract the watermark with a procedure
illustrated in Fig. 2. When the watermarked image is
multiplied with the original spectral eigenvectors, the
modified multiplier matrix (MM’) is restored, see Eq.
(2). The watermark can be then found from the same
eigenimages of the modified multiplier matrix in which
it was originally embedded.

The extraction procedure requires the original spec-
tral eigenvectors. They are stored and kept secret in
the database by the owner of the original image. Thus,
the watermark can be extracted reliably only by the
owner.

Attacks
The watermark must be not only imperceptible but also
robust so that it can survive some basic attacks and sig-
nal distortions. Since spectral images are often very
large in both spectral and spatial dimensions, then lossy
image compression is usually applied to them. Lossy
compression lowers the quality of the image and of the
extracted watermark. JPEG 2000 is a new image com-
pression format which is most likely going to become
popular in the near future. It uses the discrete wavelet
transform (DWT) as a compression scheme instead of
the discrete cosine transform (DCT), which is used in
the old JPEG format. The wavelet compression method
stores the image data as a stream of information in-
stead of square blocks.14 JPEG 2000 compression can
be performed at different bit rates, which determines
the quality and file size of the compressed image.15

Fast Discrete Wavelet Transform
The fast discrete wavelet transform is computed us-

ing perfect reconstruction filter banks. Vetterli showed,16

that perfect reconstruction was always possible using
FIR-filters. The multiresolution approximation lead to

two discrete, finite length filters, and, thus, a filter bank
was a solution to a fast implementation.

The original data is f(t). Using the definition
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and the difference between the two levels by
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where g[n] is defined as

g[n] = (–1)1 – nh[1 – n] (8)

Now h[n] and g[n] constitute the filter bank consisting
of a lowpass filter h[n] and of a highpass filter g[n].

At the reconstruction the coefficients are obtained as
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Finally, the discrete values of the original function are
recovered from
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Figure 2. Extraction procedure.
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Since the scaling and the wavelet filters are finite, the
infinite sums in Eqs. (4) through (10) are computed us-
ing convolution.

The transform coefficients are the values of aj+J and
dj+i, i = 1,...,J where J is the number of levels in the
transform. Downsampling by two (↓ 2) is performed in
the transform and upsampling by two (↑ 2) in the in-
verse transform. In practice, Eq. (5) is not used and the
values for a0 are obtained directly as discretized values
f[n] of f(t). Due to the perfect reconstruction property,
the inverse transform returns the discretized values f[n]
directly as coefficients a0.

With higher dimensional data the one-dimensional
transform is applied to each dimension separately. For
example, for images, the one-dimensional transform is
applied to the rows and to the columns of the image.
This results in four separate blocks containing approxi-
mation coefficients in one block and three different de-
tail coefficients in three other blocks.

The justification for the wavelet transform in signal
compression comes from the nonlinear approximation,17

where the linear combination of N basis functions is used
instead of the first M basis functions. In the linear ap-
proximation, the space Sn spanned by the first M basis
functions Φn is
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and in the nonlinear approximation the space Sn is
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In nonlinear approximation the wavelet coefficients
are ordered according to their significance and the most
significant coefficients and their addressing are included
in the bit rate. The most significant coefficients may
originate from any of the blocks.

Filtering the Image
Other possible attacks are different kinds of filtering

operations, such as mean filtering, median filtering and
vector median filtering. Mean filtering softens the im-
age by calculating the mean of the pixel neighborhood
in the image. Median filtering removes occasional bit
errors or other outliers of a pixel value. It also removes
exceptional spectral values even though they would be
results of actual measurements.

Vector median filtering is suitable for vector valued
signals.18 The vector median filter for vectors x1, x2, …,
xL is a vector xvm defined as

    x x i Lvm i∈ ={ }| ,...,1 (13)

such that for all j = 1, …, L

    
dist x x dist x xvm i

i

L

j i
i

L
, ,( ) ≤ ( )

= =
∑ ∑

1 1
(14)

where dist(x, y) is the selected distance between the two
vectors x and y.

Experiments
We applied the watermarking method defined above to a
multispectral image from the AVIRIS set.19 The spectral

range of the original AVIRIS-image covers a range from
400 nm to 2500 nm and has 224 spectral bands. We se-
lected every seventh band from the Moffet Field image
and cropped the image in the spatial dimensions. This
resulted in an image of size 256 × 256 × 32 with 16-bit
resolution. The test image is displayed in Fig. 3(a). The
Moffet Field image contains forests, fields, mountainous
terrain, rivers, lakes, and also urban areas.

The watermark was a simple one-band logo contain-
ing the letters L, U and T, each with different gray scale
value. The size of the watermark was also 256 × 256,
but with 8 bit resolution. The watermark is displayed
in Fig. 3(b). The purpose of this watermark was only to
carry visually a record of the watermark existence in
the spectal image. Other types of watermarks may carry
authorization information, timestamps or other textual
information.

The PCA transform results in 32 spectral vectors and
the watermark was embedded in various eigenimages
of the multiplier matrix (MM). The purpose of this ex-
periment was to define a suitable eigenimage such that
the watermark is not visible and the watermarked im-
age can still survive attacks.

Finally, the watermark was extracted from the image
with the detection algorithm for evaluation. We evalu-
ated the quality both from the reconstructed image and
from the extracted watermark by using the quantita-
tive difference between the original image and the re-
constructed image or between the original watermark
and the extracted watermark. The difference was calcu-
lated using Signal-to-Noise Ratio (SNR) and Peak Sig-
nal-to-Noise Ratio (PSNR), which are defined for
spectral images as
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where Eo is the energy of the original image, Ed is the
energy of the difference between the original image and
the watermarked image, M is the number of bands in
the image, N2 is the number of pixels in the image and s
is the peak value of the original image.20

In addition to SNR and PSNR we used 12 different
similarity measures for vectors21 and calculated a
weighted mean of those 12 measures. The weight for
each measure was defined experimentally based on each
measure’s adaptability on spectral images. The value of
the weighted mean SM is SM = 1.0 if the images com-
pared are identical. The lower the SM, the lower the
similarity between the two vectors or in our case, be-
tween the two images. The same measures were used in
comparison of the extracted watermark with the origi-
nal watermark.

The fourth method for quality measurement was the
correlation coefficient CC,22 which is calculated between
two images as
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A A B B
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where Amn and Bmn are the values from the images of a
same size.     Â  and     ̂B  are the respective means for the
two images A and B. The value of CC = 1.0 if the two
images are identical.
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In Fig. 3(a) the band 5 from the original spectral im-
age is shown and in Fig. 3(b) the gray scale watermark
applied in the experiments is shown.

Embedding and Extraction of the Watermark
The watermark can be embedded in any set of

eigenimages in the multiplier matrix after the PCA
transform. In this study the following selections in Eq.
(3) were made:
• set of eigenimages K: K = H, where H is a single

number. Thus, the watermark is embedded in a sin-
gle eigenimage. The value for H can be selected.

• coefficient s1: s1 = 0. This means, that the watermark
replaces the eigenimage K.

• coefficient s2: s2 = s. The coefficient s controls the
strength in embedding. Now s multiplies the values
of the watermark and thus, s can also be considered
as extending the resolution of the watermark.

In PCA and in embedding the eigenimages are con-
nected to the sorted eigenvalues. The larger the respec-
tive eigenvalue the more visible the watermark will be.
Similarly, the selection of a band with a lower eigen-
value means less visual interference but at the same
time, lower resistance in attacks.

Figure 4 illustrates the quality of the embedding of
the watermark in various eigenimages K of the multi-
plier matrix. The number of the eigenimage where the
watermark was embedded is on the horizontal axis and
on the vertical axis, there is the the quality of the
watermarked spectral image expressed as PSNR from
Eq. (15). The value of strength was s = 1.0.

In addition to visual interference the embedding in
an eigenimage with too low eigenvalue results in addi-
tional discrepancies in spectral domain of the image.
This is not acceptable since it may lead to unwanted
results in later usage of the watermarked image. Fig-
ure 5 shows the average spectra from the original im-
age and from the watermarked image when the strength
s = 1.0. In Fig. 5(a) the watermark was embedded in the
eigenimage K = 10 and in Fig. 5(b) the watermark was
embedded in the eigenimage K = 2. In Fig. 5(b) the larg-
est change is on band 2. In Fig. 5( a) the changes are
less significant. The qualities of the average spectra are
PSNR = 44.25 dB and PSNR = 42.67 dB for the embed-
ding in band 10 and in band 2, respectively. More clearly

the disturbance is seen in the differences in the stan-
dard deviations. When the embedding is in eigenimage
K = 10, the standard deviation curves for the two im-
ages are overlapping. When the embedding is in
eigenimage K = 2, the standard deviation has clearly
decreased for the watermarked image. This means that
the values in the bands of the original image have moved
closer to the average value of each band. These changes
may induce incorrect results as, for example, in classi-
fication applications.

The strength, s gives an additional freedom to design
the embedding procedure. In our case the strength, s,
changes the resolution of the watermark. Thus, the
higher the strength s, the more visible the watermark
will be in the image. With lower values of strength s,
the watermark will be more vulnerable in attacks. The
value of H for this experiment was set as H = 10. In Fig.
6 we illustrate the variable values of strength s, s = 1.0,
s = 2.0, s = 4.0. The figure contains average spectra from
the three watermarked images.

(a) (b)

Figure 3. (a) Band 5 from the original image, (b) the watermark.

Figure 4. Quality of embedding the watermark in eigenimages
K = 1 … 20.
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With higher values in strength s, s = 4.0 clear spectral
discrepancies can be seen. The same phenomenon appears
also in the spatial domain of the image as seen in Fig. 7.

The watermark is clearly visible in Fig. 7(c) where
the strength is s = 4.0. Thus the values of the strength,
s should be limited such that the discrepancies are ac-
ceptable and there are no visible distortions, i.e., the
strength should be limited to values s ≤ 2.0.

Attacks Against the Watermarked Image
A series of experiments was run to test the robust-

ness of the watermark. The watermarked image was
compressed band-wise with JPEG 200015 using vari-
ous bit rates. After reconstruction the quality of the
extracted watermark was evaluated. The total bit rate
was apportioned to the 32 bands according to the en-
tropy of each band. The experiment was performed with
variable strength in embedding, s = 0.1, 0.2, 0.4, 0.6,
1.0, 2.0.

The results of lossy compression are displayed in Fig.
8. In Figs. 8(a) and 8(b) the qualities of the extracted
watermarks are shown and in Figs. 8(c) and 8(d) the
qualities of the reconstructed images are shown. In Figs.
8(a) and 8(c) the error measure is the correlation coeffi-
cient and in Figs. 8(b) and 8(d), the error measure is the
peak signal-to-noise ratio (PSNR).

The experiments show that the vulnerability of the
watermark in compression is high compared to the vul-
nerability of the image (see Fig. 8). For example, the
correlation coefficient between the original image and
the compressed image is constant even though the
strength, s, is changing. With the PSNR measure, at low
compression ratios there are clear changes, but they are
beyond the perception of human eye. The quality of the
watermark undergoes more extensive changes. There-
fore the quality of the image is not endangered by
watermarking, but the watermark conveys information
of the degraded image.

The visual degradation of the watermark in lossy com-
pression is shown in Fig. 9. Each column contains a con-
stant strength s and each row has a constant bit rate
expressed in bits/value. The bit rate means the number
of bits allocated to store each value of the spectral im-
age. With gray scale images the respective quantity is
bits/pixel.

The second set of attacks consisted of filtering opera-
tions which were a trimmed mean filter and a median
filter, each with two different window sizes, and a vec-
tor median filter. The mean filter and the median fil-
ters were applied to each band of the spectral image.
The trimmed mean filter excluded the smallest and the
largest value from mean calculation. The spatial sizes
for both the trimmed mean and the median filters were
3 × 3 and 5 × 5.

Visual presentations of the watermark and of band 5
from the spectral image after different attacks are shown
in Figs. 10 and 11. After the filtering operations the wa-
termark can be clearly identified visually. The mean fil-
tering softens the bandwise images, with the larger
window there is more softening, as shown in Fig. 10.
Vector median filtering selected one of the original spec-
tra as a result from filtering and now the largest changes
can be seen in the edges of the watermark.

(a) (b)

Figure 5. Average spectra from the watermarked image. (a) embedding in eigenimage 10, and (b) embedding in eigenimage 2.

Figure 6. Average spectra from watermarked images. Vari-
able strength s, s = 1.0, s = 2.0, s = 4.0.
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(a) (b) (c)

Figure 7. Band 5 from the watermarked image, variable strength s. (a) s = 1.0, (b) s = 2.0, and (c) s = 4.0.

Figure 8. Compression of the watermarked image. The strength s was changing. Top row, watermark: (a) Correlation coefficient,
(b) PSNR. Bottom row, spectral image: (c) Correlation coefficient, and (d) PSNR.
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Figure 9. Compression of the watermarked image, quality of the watermark. Bit rates are 8 bits/value for each coefficient, 4 bits/
value, 2 bits/value, 1 bit/value from the top row to the bottom row, respectively. Strength is s = 1.0, s = 0.4, s = 0.2 in left, center,
and in right column, respectively.
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Figure 10. Attacks against the watermarked image. Left column: watermark. Right column: band 5 from the spectral image.
First row: trimmed mean filtering with 3 × 3 window. Second row: trimmed mean filtering with 5 × 5 window.

The numeric results on robustness against different
attacks are summarized in Tables I and II. The columns
in the tables are: first column contains the attack type;
the second and third column contain the signal-to-noise
ratio (SNR) and the peak signal-to-noise ratio (PSNR)
respectively; the fourth column contains the value of the
similarity measure (SM); the fifth column shows the
value of the correlation coefficient (CC). All these mea-
sures were calculated between the original image and
the filtered, watermarked image.

With these filtering operations the watermark con-
taminates more than the original image, see Tables I,
II, column SNR and PSNR. Also the results with differ-
ent quality measures vary. The similarity measure (SM)
suggests a different order for quality than do the oth-
ers. For example, the vector meadian filtered watermark
is considered better than the trimmed mean filtered
watermark.

In the experiments we found that the PCA eigenval-
ues of the watermarked image differ from the PCA eigen-
values of the original image. Especially, the lower

TABLE I. Robustness Against Attacks, Image

Attack SNR PSNR SM CC

Vector median 21.68 40.80 0.8337 0.9933
Median 3x3 21.85 40.98 0.8337 0.9936
Median 5x5 17.92 37.05 0.7505 0.9842

Trimmed mean 3x3 22.04 41.16 0.8166 0.9938
Trimmed mean 5x5 18.08 37.21 0.7394 0.9845

TABLE II. Robustness Against Attacks, Watermark

Attack SNR PSNR SM CC

Vector median 15.35 23.26 0.9756 0.9798
Median 3x3 12.70 20.61 0.8154 0.9633
Median 5x5 11.66 19.57 0.7915 0.9529

Trimmed mean 3x3 18.40 26.32 0.9421 0.9900
Trimmed mean 5x5 16.18 24.10 0.9370 0.9833

TABLE III. PCA Eigenvalues for the Original Image and the
Watermarked Image.

Original image Watermarked

0.00001665211 0.00000000554 Smallest eigenvalue
0.00002150161 0.00000000555
0.00002725959 0.00000000555
0.00003234345 0.00000000558
0.00005029566 0.00000000561
0.00006773485 0.00000000561
0.00007915329 0.00015242413 10th eigenvalue
0.00015247704 0.00016977910
0.00017041822 0.00024182648
0.00024212787 0.00061432684
0.00063347959 0.00068490515
0.00100949009 0.00101096671
0.00991701110 0.00991701114
0.02382752031 0.02385282182
0.13277486301 0.13277488686
7.35281051838 7.35307004786 Largest eigenvalue
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Figure 11. Attacks against the watermarked image. Left column: watermark. Right column: band 5 from the spectral image.
First row: vector median filtering, Second row: median filtering with 3 × 3 window. Third row: median filtering with 5 × 5 window.

approaches mixing of the watermark with the spectral
image. Embedding a watermark into an image using
the PCA transform results in only minor influences on
the quality of the spectral image. The watermark sur-
vives quite well through various attacks and the water-
mark remains clearly recognizable visually. Even
though the values of the parameters selected produced
good results, the procedure introduced in this study
requires further enhancement.

The robustness of the watermark was explored with
a set of attacks which included lossy compression and
filtering operations. Lossy compression at low bit rates
and with low strength has a larger effect on the water-
mark quality than other attacks. It can also be noted

eigenvalues for the eigenimages after the eigenimage
with the watermark embedded, are almost random. Test
results for embedding the watermark in eigenimage 10
of the multiplier matrix are show in Table III. The val-
ues up to the tenth eigenvalue are similar, but from
eleven forward the eigenvalues differ heavily. This char-
acteristic is a clear drawback for the embedding proce-
dure, insofar as it can be used to detect if the spectral
image is watermarked.

Conclusions
We propose a watermarking technique which operates
on spectral images. We defined a model which various
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that the visual quality of the extracted watermark is
not always accurately comparable with the SNR results.
The similarity measure (SM) proposes a new approach
to the quality evaluation between vectorized quantities.

The embedding procedure has an effect on the PCA
eigenvalues of the image and this implies that the
method requires enhancements both in the embedding
procedure and in the definition of the watermark.
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