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Active shape models and active appearance models are getting increasingly popular in medical image segmentation applications.
However, they are not suitable for three-dimensional (3D) images in their original form. This is due to the underlying shape
representation (a point distribution model, PDM), which becomes impractical in 3D. Recently, it was shown that nonlinear
registration algorithms can assist in the automatic creation of a 3D PDM. Based on this idea, we built a 3D active appearance
model of brain structures. The model extracts the mean texture and the image deformation variation information from the
training set of images. A special benefit is the inclusion of an extended region of interest into the model, making it suitable for
segmentation of structures with poorly defined edges. We evaluated the model by applying it to the task of automatic segmenta-
tion of the hippocampi from magnetic resonance brain images. We found high accuracy of the model, which is comparable to the
accuracy of the underlying registration method. The main benefit of the model-based segmentation over the registration-based
segmentation is time, which is reduced from many hours (for registering an atlas to the image) to only a few minutes (for fitting

the model to the image).

Journal of Imaging Science and Technology 48: 166—171 (2004)

Introduction

The Active Shape Models (ASM)!? and Active Appear-
ance Models (AAM)? are well known and widely appli-
cable algorithms for automatic image segmentation. At
the core of the ASMs’ functionality is their ability to
process the pre-segmented training set of images and
learn the mean shape of the Structure Of Interest (SOI),
as well as the plausible variations of the mean shape.
The shape is defined in terms of the Point Distribution
Model (PDM),' which is a set of landmarks, placed on
the SOI boundary. A key requirement for a functional
ASM is the spatial correspondence of the landmarks over
the training set (each SOI from the training set must
be annotated by the same number of landmarks, and
each landmark on a particular SOI must have a spa-
tially corresponding landmark placed on each of the rest
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of the training SOIs). The AAMs are similar to ASMs,
but they also learn the mean SOI texture and its vari-
ability from the training image set. AAMs also use a
different algorithm for fitting the model to the unknown
image, in order to segment it.

Present day three-dimensional (3D) medical image ac-
quirement techniques generate large amounts of 3D
medical image data, which is impractical to objectively
analyze without segmentation. One of the commonly
used strategies for automatic 3D medical image segmen-
tation is the segmentation-by-registration (SBR) para-
digm. It involves a representative, accurately segmented
image of the anatomy, called the anatomical atlas. The
atlas segmentation usually adopts the form of binary or
labeled images. The segmentation of the unknown pa-
tient image is carried out by registering the intensity
atlas image to the patient image, and deforming the
segmentation image along the way into the patient’s
shape, thus achieving segmentation.

Both ASMs and AAMs could be used as alternatives
to SBR, avoiding some of the inherent drawbacks of the
SBR methods (highly time consuming procedure, no a
priori information used). However, most of today’s ASM
and AAM implementations are targeted at segmenting
two-dimensional images only. While direct translation
of the ASM and AAM concepts into 3D is straightfor-



ward in theory, it becomes prohibitively impractical for
real applications. The reason lies in the underlying
shape representation, i.e., the PDM, and the related
requirement for spatial landmark correspondence over
the training set of images. Specifically, it is almost im-
possible for the operator (anatomical expert) to place a
sufficient number of landmarks on each of the 3D SOIs
from the training image set, and achieve satisfactory
spatial landmark correspondence along the way. This is
especially true for amorphous shapes, such as many bio-
logical structures (tissues, organs) with rounded bound-
aries. To solve this problem, an automatic method for
placing spatially correspondent landmarks on a set of
(manually) pre-segmented 3D SOIs is needed. This can
be achieved by means of a nonlinear registration
method: registering all the images of the training set to
the atlas, i.e., warping them into a common shape, dis-
tributing a sufficient number of landmarks on each SOI
in the common shape, and reverting all the warps (now
including landmarks).* This gives a set of SOIs with
spatially corresponding landmarks. The degree of land-
mark correspondence is directly dependent on the accu-
racy of the registration method.

However, using the registration algorithm for achiev-
ing landmark correspondence can be brought one step
further. Each of the training SOI registrations results
in a transformation, defined as a vector field of voxel
displacements. Having the displacement data for any
chosen voxel, we can determine the spatially correspond-
ing voxel in each of the remaining training images.
Therefore, we can think of each voxel as a sort of a land-
mark. We can build the PDM, using voxels as landmarks.
Such a PDM is quite different from the classic PDM: it
does not represent the shape of the SOI anymore; rather,
it represents the shape of the image. Instead of the mean
SOI shape and its variations, the ASM or AAM then con-
tains information about the mean deformation field (or
mean warp) and its variations. By building the models
in such fashion, more shape information is extracted
from the registrations of the training images. The SOI
shape, which is necessary for performing segmentation,
can still be built into the model in the form of a binary
image, which can always be warped along with the base
intensity image.

A statistical shape model, based on a PDM as de-
scribed above, was presented by Rueckert et al.? Al-
though demonstrative as a proof-of-principle, their
implementation lacks the actual segmentation algo-
rithm. An AAM, following similar principles, has been
reported by Duchesne et al.,® together with the full seg-
mentation application, segmenting the medial tempo-
ral lobe structures (such as the hippocampus) from
magnetic resonance images (MRI). The underlying reg-
istration method of Duchesne’s model is ANIMAL (Au-
tomatic Nonlinear Image Matching and Anatomical
Labeling).” Our model (the building of which we already
outlined in Klemencic et al.®) is in many ways similar
to Duchesne’s model. Our contributions include: a) build-
ing a more compact, fixed texture 3D AAM, b) building
and evaluation of the model, based on a more accurate
nonlinear registration method (confirming the conse-
quent higher accuracy of our model), and c) some addi-
tional informative experiments, providing insight into
the model’s properties.

Data

To evaluate the performance of our model, we tested it
on MRI brain images and used the right hippocampus

as the SOI. Our data consisted of 28 images: T1-weighted
3D fast field echo (FFE) scans with 160-180 1.2 mm
contiguous coronal slices (TE = 4.6 ms; TR = 30 ms; flip
angle = 30 degrees; FOV = 256 mm/80%; in-plane voxel
sizes 1 x 1 mm?) of the whole heads of adult, healthy
persons, obtained on a Philips 1.5T MR scanner. For
each T1 image, a corresponding binary image was avail-
able, depicting hippocampi segmentations. All the im-
ages were provided by the Department of Psychiatry,
University Medical Center Utrecht, The Netherlands.
The segmentations were performed manually by a
trained expert at the same institution.?

Methodology

Pre-Processing

Before building the model, all the training images
were subject to four pre-processing steps: shading cor-
rection,' intensity normalization,™ affine registration'?
and extraction of Region Of Interest (ROI). The pre-pro-
cessed images were used for building the model, and
also as test images for evaluating the model performance
via hippocampus segmentation.

The affine registration is needed in order to align all
the images globally to the common atlas. To save on com-
puter resources, it is sensible to model only a smaller
ROI, not the entire head images. Modeling a relatively
small region around the SOI also makes the models more
specific. Our ROI is a block of voxels, centered on the
SOI (hippocampus), 92 x 92 x 88 voxels in size.

Creating a 3D AAM

As indicated in the introduction, a high-dimensional
nonlinear registration method is needed as the founda-
tion for our 3D PDM. We used the method of Rueckert
et al.’? It features a regular grid of control points (nodes),
distributed within the image volume, and displaced dur-
ing registration. Voxel displacements are computed via
the B-spline interpolation of node displacements. Nor-
malized mutual information is used as the voxel-based
similarity measure. We will term this registration
method a free-form deformation registration (FFDR).

In order to create a 3D PDM, describing the complete
3D warp, the nodes of the FFDR can be used as PDM
landmarks. The nodes are evenly distributed within the
ROI of the atlas image, forming a rectangular mesh.
Therefore, the pertinent PDM models the whole ROI,
not only the SOI. Based on such a PDM, the correspond-
ing 3D ASM can be built. The pose correction (as in origi-
nal ASMs) is not necessary here, since all the images
are affinely aligned before training. Similarly, global
intensity normalization parameters are unnecessary,
due to the pre-processing intensity normalization step.
We will briefly review the model-building mathemati-
cal treatment in the following paragraphs.

Each deformation field can be decomposed into three
orthogonal components of node displacement data, x, y,
and z. The components can be concatenated into a single
3n-dimensional column vector s, where n is the number
of nodes in the deformation field.

A set of N training ROIs gives a set of N deformation
fields s; i = 1, 2, ..., N), linking each ROI to the atlas
ROIL. The set of N deformation fields can be thought of
as a cloud of N points in the 3n-dimensional space. By
moving around within this cloud of points, new defor-
mation fields can be generated, which are broadly simi-
lar to those from the training set. Through statistical
analysis (principal component analysis, PCA?'), the high
dimensionality of this space can be reduced: the shape
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Figure 1. The variance distribution over 27 variation modes of the statistical deformation field model: (left) The variances for
each mode of variation; (right) Cumulative variance; the horizontal dashed line marks the 99% threshold of the total variance.

of the cloud can be modeled by relatively few model pa-
rameters. To achieve this, the first step is to compute
the mean deformation field s by

_ 11X
s=ﬁi=21si. 1)

The mean deformation field is subtracted from each
original deformation field and the (3n x 3n) covariance
matrix S of the data is created:

ds; =s. -8, (2)

S= dsidsiT . (3)

M=z

1
N4

2

Then, the unit eigenvectors p, (k = 1, 2, ..., 3n) and
the corresponding eigenvalues A, of S are computed and
sorted, such that A\, = A,,;. The eigenvectors correspond-
ing to the largest eigenvalues describe the principal axes
of the data cloud. In effect, they describe the principal
modes of variation of the deformation field.

Most of the variation can usually be explained by a
small number of modes ¢, where ¢ << 3n. The value of ¢
is chosen such as to explain a given proportion of the
total variance exhibited in the training set (in our ex-
periments, we used 99% of the total variance).

Collecting the eigenvectors p, in a matrix P, = (p, |
P. | ... | P, any deformation field can be approximated

by
s=5+Pb,, (4)

where b, = (b, by, ..., b)T is a t-dimensional vector of
model parameters, given by

b, =P, (s-5). (5)

By varying the elements of b,, the model can generate
synthetic deformation fields, using Eq. (4). The variance
of the i-th parameter b, across the training set is given
by A;. By limiting each parameter b, to 3,4, i.e., three
standard deviations around the mean, we ensure that
the generated deformation field will be similar to those
from the training set.

In the treatment above, PCA was used to build a com-
pact statistical shape model (specifically, a statistical
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deformation field model). Similarly, PCA can be applied
to build a model of gray level intensities within the ROI,
or statistical texture model. Instead of node displace-
ment data (vector s), voxel intensities are concatenated
into the PCA input vector, denoted by g. The dimen-
sionality of g now corresponds to the number of voxels
within the ROI, while the rest of the mathematical treat-
ment remains the same. The resulting model can gen-
erate synthetic, but plausible textures, using the texture
equivalent of Eq. (4):

g=§+Pgbg, (6)

where g is the mean texture vector, P, is a matrix, de-
scribing the modes of texture variation (eigenvectors of
the covariance matrix), and b, is a set of texture model
parameters. The complete statistical appearance model
is created by combining the deformation field model and
the texture model into a unified model.

Following the mathematical framework outlined
above, we built the statistical deformation field model,
based on the MRI data provided (we will show in the
next section, that the statistical texture model is not
needed for successful segmentations). Using the set of
28 training images, we obtained 27 modes of deforma-
tion field variation. Figure 1 shows the variance for each
mode of variation. Regular as well as cumulative charts
are given. In the regular chart, we can observe that con-
siderable amount of variance is still present in the high-
est modes of variation. This indicates that our training
set is not large enough to adequately cover the anatomi-
cal variability of the population. Consequently, our mod-
els are overly constrained (too specific). In the
cumulative chart, we can observe that the 99% variance
threshold is reached in the highest mode.

The middle coronal cross-section of the model is shown
in Fig. 2 (first mode of variation) and Fig. 3 (second mode
of variation). The middle columns show the model in
the mean state. The left and right columns show the
variations of the model (offsetting the pertinent param-
eter by +3 standard deviations around the mean). In
the bottom row, the difference images towards the mean
are given. In the difference images, it is easier to visu-
ally perceive and asses the (occasionally rather slight)
variations.

Appearance-Based Segmentation: Using Variable
or Fixed Texture

Model-based segmentation application requires an
algorithm for fitting the model to the unknown image.

Klemencic, et al.
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Figure 2. The first mode of the deformation field variation
around the mean. The middle column shows the mean image
(upper row). The left and right columns show the deformed
images, obtained by adjusting the first model parameter by 3
standard deviations around the mean. The lower row gives the
difference images between the mean image and the correspond-
ing deformed image. On all images, the middle coronal cross-
section of the 3D ROI block is shown.

There is a fundamental difference in the original ASM
and AAM fitting algorithm implementation. The ASM
tries to align itself to some chosen image features, found
at the SOI boundaries. On the other hand, the AAM is
able to generate complete synthetic images, based on
the set of model parameters. The goal of the fitting al-
gorithm is to minimize the difference between the gen-
erated image and the image to be segmented.

Usually, the parameters of the AAM vary its shape as
well as its texture. We note however that the statistical
deformation field model (as proposed above) is also ca-
pable of generating synthetic images. The model param-
eters control the generated deformation field, which can
subsequently be used to deform the (fixed texture) mean
anatomy image. Such a model is a hybrid between the
original ASM and AAM paradigms. While it does not
model the SOI texture as classical AAMs do, its overall
functionality seems closer to the AAM than to the ASM,
due to the fact that it still contains the mean SOI tex-
ture, and its ability to generate synthetic images. Con-
sequently, also the AAM-like fitting algorithm can be
implemented for such a model.

In view of the above, we will refer to our model as to
the 3D AAM model. Duchesne’s model® is similar, but
includes the texture variation information into the
model. The imminent practical advantage of our model
over the variable texture model is size, since modeling
the texture variations requires a lot of computer re-
sources, even for a relatively small ROI. Also, the tex-
ture variations are rather slight and therefore may not
contribute much to the accuracy and efficiency of the
automatic segmentation method.

We built and evaluated the fixed texture 3D AAM,
proving that the fixed texture segmentation scheme is
practical and feasible. We implemented a similar model
fitting algorithm to the one proposed for 2D images®'?
and adapted it for 3D images. A short outline is given in
the following section.

Appearance-Based Segmentation: Model Fitting
The goal of the model-fitting algorithm is to find such
parameters, that the magnitude of the difference vector

-3 std.dev.

mean +3 std.dev.

Figure 3. The second mode of the deformation field variation
around the mean. The middle column shows the mean image
(upper row). The left and right columns show the deformed
images, obtained by adjusting the second model parameter by
+3 standard deviations around the mean. The lower row gives
the difference images between the mean image and the corre-
sponding deformed image. On all images, the middle coronal
cross-section of the 3D ROI block is shown.

di between the voxel intensities of the (pre-processed)
unknown image and the voxel intensities of the gener-
ated image is minimized. Let b, denote the vector of
model parameters in a particular optimization iteration
(a vector of zeros is used for the first iteration). Let b,
denote the vector of optimal model parameters (the goal
of the optimization). Then, the error in model parameters
for the pertinent iteration is b, = b;, — b,,.. A linear
model, linking &i to db,, can be constructed:

b, = Rdi, )

where R is a so-called prediction matrix. The computa-
tion of R is time-consuming (around 9 minutes on a 1.6
GHz Pentium PC), but it can be approximately computed
off-line (before the segmentation). In each optimization
iteration, 4i is first determined. Then, db, is computed
using Eq. (7), and the model parameters are updated
accordingly. As only an approximation of R is available,
a few such iterations (typically between 2 and 20) are
usually necessary before the fit can not be improved any-
more, and convergence is declared.

After convergence, the deformation field s, corre-
sponding to optimal model parameters b,,, is obtained.
S, is then used to deform the atlas segmentation of the
SOl into the shape of the unknown image, thus segment-
ing it.

Results

We compared the 3D AAM segmentation method to the
established SBR segmentation method (we used the
FFDR for performing the SBR segmentation). The SOI
was the right hippocampus. To assess the segmentation
accuracy, manual segmentations were used as the
ground truth with which to compare the automatic seg-
mentation results. The same atlas of segmentations was
used for all experiments, enabling an objective compari-
son of the approaches. To quantify the agreement be-
tween the segmentations, we applied a common
binary-image similarity measure: &k = (2a)/(2a+b+c),
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TABLE I. Results of the Two Segmentation Methods: SBR and
AAM. Statistics of k Over all 28 Images is Given.

SBR AAM
mean k 0.84 0.80
std. dev. of k 0.03 0.05
maximum k 0.90 0.86
minimum k 0.76 0.68

where a is the number of intersecting, labeled voxels, b
is the number of voxels only labeled automatically, and
¢ is the number of voxels only labeled manually.

The results are listed in Table I. Mean and standard
deviation of £ as well as the maximum and minimum %
over the 28 images is given. It is important to note that
all 3D AAM experiments were performed on a leave-one-
out basis, where the model was built from 27 images,
excluding the segmented image (meaning that 28 dis-
tinct models were built, one for each of the 28 images).
The processing time for 3D AAM segmentation was in
the range of 1 to 3 minutes (excluding the affine regis-
tration), which is extremely low in comparison to the
SBR algorithm (around 5 hours). All experiments were
performed on a 1.6 GHz Pentium platform. Following
these basic experiments, we performed some additional
experiments to further asses the model.

First, we wanted to check how good the pre-computed
approximation of the prediction matrix R was. There-
fore, we performed regular segmentations, re-computed
the exact value of R for the obtained model state, and
used this value in an additional pass of the complete
optimization procedure, thus refining the model fit. The
results of these experiments are listed in the first col-
umn of Table II.

Secondly, we performed the segmentations using the
model, built from all of the training images (including
the segmented image). In contrary to all other, leave-
one-out tests, we call these experiments leave-all-in
experiments. The results are listed in the middle col-
umn of Table II.

In the third set of experiments, we used an alterna-
tive to the regular model fitting algorithm. Instead of
the iterative parameter optimization, we computed the
deformation parameters in a single step, using Eq. (5).
This was possible because the deformation field s was
known in advance (from the model building stage) for
each of the ROIs. Such approach is not feasible in a real
segmentation application. The results of these experi-
ments are listed in the last column of Table II.

Discussion

From Table I the SBR method appears slightly more ac-
curate (k = 0.84) than the 3D AAM methods (£ = 0.80).
We feel that the slightly lower AAM accuracy is mainly
due to the lack of a more extensive training set. Twenty
seven images (in the case of leave-one-out experiments)
are clearly not enough to cover the anatomical variabil-
ity of our chosen ROI. This explanation is also supported
by the variance distribution chart (Fig. 1) and by our
further experiments (see below). Still, even by using a
relatively small training set, we showed that the much
faster model based method gives results almost as good
as the underlying registration method.

By comparing the first column of Table II to the regu-
lar experiments in Table I, we see that the on-line re-
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TABLE Il. Results of the Additional AAM Experiments (for
Details see Main Text). Statistics of kK Over All 28 Images is
Given.

updated R leave-all-in  pre-computed parameters
mean k 0.80 0.87 0.79
std. dev. of k 0.04 0.03 0.06
maximum k 0.86 0.92 0.89
minimum k 0.69 0.79 0.61

computation of the prediction matrix R only gives very
slight improvements. We conclude that the pre-computed
approximation of R is good enough. The on-line recom-
putation is not economical, as it extends the model fit-
ting time by around 9 minutes on a 1.6 GHz Pentium
PC for the given ROI.

The leave-all-in experiments give very good results
(k = 0.87; see the middle column of Table II). This con-
firms that the model fitting algorithm works well. We
can again conclude that in order to further improve the
regular (leave-one-out) results, a model with greater
anatomical variability information, i.e., a larger train-
ing set, is needed.

The same conclusion can once again be drawn from
the results with pre-computed model parameters (the
right column of Table II). A & of only 0.79 indicates that
the model is too restricted in shape. It is interesting to
note that the iterative model fitting algorithm finds a
better match than computing the parameters from a pre-
computed deformation field.

Since Duchesne et al.f use the same binary-image simi-
larity measure & and also segment the hippocampus from
MR images, a direct comparison of the results is possible.
Duchesne builds a variable texture AAM (we will term it
a VI-AAM), and uses ANIMAL? as the underlying regis-
tration method. Their training set comprises 70 MR brain
images. Duchesne reports an accuracy of around & = 0.66
for the VI-AAM method, and an accuracy of around % =
0.70 for the SBR method using ANIMAL. We note the
considerably lower accuracy of Duchesne’s VT-AAM ex-
periments in respect to our 3D AAM experiments (k& =
0.66 vs. k = 0.80), in spite of his much larger training set
of images (70 vs. 27). We also note the considerably lower
accuracy of SBR using ANIMAL in respect to SBR using
FFDR (£ = 0.70 vs. k = 0.84). We observe that in ours as
well as in Duchesne’s experiments, the accuracy of the
model-based methods is slightly lower than the accuracy
of the underlying registration method. We can conclude
that the accuracy of the model-based methods depends
on the accuracy of the underlying registration method to
some extent. Apart from the lower ANIMAL accuracy,
another reason for lower accuracy in Duchesne’s experi-
ments might be that the manual segmentations of their
training set are less consistent than ours. Also, differ-
ences in MR imaging might cause some of the difference
in the outcome of the experiments.

Conclusions

Segmentation of 3D medical images is an ongoing re-
search topic. We presented a method which is fully au-
tomatic and generally applicable to any 3D medical
image modality; its basic requirement is a representa-
tive training set of manually segmented images. The
method, which we term a 3D AAM, successfully joins
the benefits of the two widely used segmentation ap-
proaches: SBR and AAM.

Klemencic, et al.



With respect to the regular AAM implementations, our
3D AAM adds automatic and straightforward 3D imple-
mentation. Additional benefit is the inclusion of the SOI
surroundings into the model; consequently, the model-
fitting algorithm does not rely on the SOI edges only,
and is therefore suitable for segmentation of poorly de-
fined SOIs (SOIs with fuzzy boundaries) and low qual-
ity images. With respect to the SBR, the 3D AAM
features two major advantages: it embeds a priori knowl-
edge about the appearance of the images, and most im-
portantly, the processing time is brought down from
several hours to only a few minutes.

We evaluated the segmentation accuracy of the 3D AAM
on the task of hippocampus segmentation from MR im-
ages. With respect to the accuracy of the underlying reg-
istration method, we found our model to be slightly less
accurate, but we confirmed with additional tests that the
main bottleneck for improving the accuracy of the model
is simply a too restricted training set of images. This in-
dicates that the 3D AAM method has the potential to re-
place the registration methods in many practical
segmentation settings, especially due to its high speed.

Our future work includes testing the method on a
larger training set of images. Also, an objective com-
parison of the 3D AAM model with fixed texture to the
3D AAM model with variable texture is needed. /&
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