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space, but it is unusable in the case when capturing and
observing illuminations are different. We need to find a
method to represent sets of multispectral images in a
common space with the sufficient accuracy of spectral
information to be estimated from each multispectral
image. Hill2 also pointed out the same problem in build-
ing color reproduction open system architectures, which
assume an arbitrary numbers of bands for both input
and output devices. In the open system, input multi-
spectral images with a certain number of bands have to
be encoded in a generalized form for transportation to
output devices.

Concerning efficiency in representation of the spec-
tral information, the principal component analysis
(PCA) is useful to reduce the high dimensionality of the
spectral information.2,3 With this method, all multispec-
tral images are represented as coefficient images of the
same set of basis functions. Keusen and Praefcke4 in-
troduced a modified version of PCA that is compatible
with the conventional tristimulus model. In their
method, the first three coefficients represent tristimulus
values of a standard color space referred to a standard
illuminant. Murakami et al.5 proposed weighted
Karhunen–Loeve transform (WKLT) which is based on
human visual sensitivities and designed to minimize the
color difference between the original and the reproduc-
tion. Those PCA-based methods theoretically give one
of the best results in a sense of minimizing root mean
square error. However, there are some disadvantages
connected with them. They may cause large differences
in dynamic range between coefficients of the basis func-
tions, and also negative pixel values. Therefore, it is

Introduction
Recent progress in multispectral imaging technologies
has enabled us to reproduce the color of objects accu-
rately under an arbitrary illuminant.1 This advantage
could make it possible to create composites of multi-
spectral images without incongruity, even if those im-
ages are captured under different illuminations. We
are intending to edit multispectral still images and
video as is done with conventional RGB images and
video to create attractive video products with accu-
rate color reproduction.

However, there exist many kinds of MSCs that pro-
duce multispectral images with different numbers of
bands, and there is not yet a simple way of handling
them together. Therefore, when considering editing,
such as blending two or more videos with different num-
bers of bands, we need a method to represent them in a
common space. In addition, we want a simple represen-
tation of the edited result, especially for real-time video
processing and display. Colorimetric representation,
such as CIE XYZ-values, is well known as a common
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difficult to grasp the meaning of the coefficient images
and handling them. In addition, since the basis func-
tions depend on the set of samples, the best set of basis
functions for one group might not be good enough for
another group. Given any kind of multispectral video
as input, it may prove impossible to get perfect PCA
basis functions for all.

König et al.6 reported significant simulation results
by comparing color estimation accuracy using multispec-
tral images from a VMSC (Virtual multispectral cam-
era) using between 6 and sixteen bands. The results
suggested the possibility of keeping mean ∆Eab error
under 0.5 by using more than 10 bands. In this way,
representation of spectral information as output images
of a VMSC with such a small number of bands is rea-
sonable for accurate color reproduction. In this article,
we propose a simple but useful idea to define a VMSC
with a certain number of bands, eight for example, that
transforms real multispectral images with different
numbers of bands into virtual multispectral images with
the same number of bands. Then, the virtual multispec-
tral images are independent from original input devices.
We design our VMSC to have equal sensitivities for each
band located at equal intervals over the visible range.
Our method can avoid the disadvantages of PCA-based
methods described above while keeping color reproduc-
tion accuracy. We experimentally demonstrate how color
reproduction accuracy changes when images with dif-
ferent number of bands are transformed to output im-
ages of the defined VMSC. In addition, some
experimental results comparing our method with con-
ventional PCA-based methods and an example of a vir-
tual multispectral image transformed by our method are
also shown.

Image Model and Unified Representation of Multi-
spectral Images
In this section, we describe the formulation of the im-
age model, and explain the unified representation of
multispectral images with different number of bands.
Suppose that there exist multiple kinds of MSCs with
different number of bands. Let vi be a multispectral
image captured by the ith camera with Ni bands, and r
be the spectral reflectance of the object represented in
an M-dimensional space. Let Si be an Ni × M matrix
whose row vectors represent the sensitivity of the kth
band of the ith camera, and L be an M × M diagonal
matrix whose diagonal elements represent the spectral
radiance of the capturing illuminant. We can then write
an expression for vi in vector representation as follows,

vi = Fir, (1)

where Fi(= SiL) is a linear system matrix with size of Ni × M.
Note that each multispectral image vi has a different
number of bands Ni, while the spectral reflectance r is
represented in the same M-dimensional space. Our prob-
lem is to find a method to represent these vi with differ-
ent number of bands in a common space to handle them
together. We call this kind of representation that has
only one form for all multispectral images as “unified
representation”.

We can get the estimated reflectance from each vi by
using Wiener estimation7,8:

 r̂i  = Gi vi ,

Gi  = RrFt
i (FiRrFt

i )–1 (2)

where, Rr is a correlation matrix of r, which is related
to a priori knowledge about the reflectance r of objects
in the image. Gi is a matrix with size of M × Ni.

Since r̂i in Eq. (2) is represented in the same dimen-
sional space for all i, this could be considered as one of
the unified representations we demand. However, ̂ri use
in general a so high dimensional space to approximate
the continuous value of the spectral reflectance, which
is not appropriate for practical applications in the sense
of amount of data. Therefore, we have to encode r̂i to
reduce amounts of data. At that time, we need to con-
cern about efficiency, accuracy and usefulness of this
unified representation.

Virtual Multispectral Camera
Before explaining our idea and defining a unified rep-
resentation of multispectral images, we recall PCA-
based methods as a comparison. By using a PCA method
basically, the estimated spectral reflectance r̂i can be
encoded into a coefficient image xi in a lower dimen-
sional space. This xi theoretically gives one of the best
representations in the sense of minimizing square er-
ror between the original r̂iand the one that is recalcu-
lated from xi.

However, they may cause large differences in dynamic
range between coefficients of basis functions, and also
negative pixel values. Therefore, it is difficult to grasp
the meaning of the coefficient images and handling
them. In addition, since the basis functions depend on
the set of samples, the best set of basis functions for
one group might not be good enough for another group.
Considering any given kind of multispectral video as
input, it may be impossible to get perfect PCA basis func-
tions for all inputs.

Our method, on the other hand, can avoid these dis-
advantages of PCA-based methods described above. The
idea relies on the simulation results reported by König
et al.,6 which suggested the reliability of a multispec-
tral image from a VMSC with a relative numbers of
bands to reproduce accurate color. A VMSC here means
a virtual and unreal device with virtual spectral sensi-
tivities that can transform spectral radiant distribution
into a VMSC response. We utilize this VMSC to repre-
sent the estimated spectral reflectance ̂ri. We design this
camera properly to have equal sensitivities for each band
located at equal intervals over visible range of wave-
length in order to be independent from input data, and
not to produce negative pixel values. Since the VMSC is
physically defined, it is easy to grasp and handle the
multispectral image from the VMSC. Further details are
explained below. First of all, using Eqs. (1) and (2), we
can transform both a real multispectral image vi with
arbitrary number of bands and the estimated spectral
reflectance  r̂i to a virtual multispectral image       ̃vi  as

      ̃vi  = Fφ r̂i  = FφGivi (3)

where Fφ is a matrix with size of Nφ × M that defines the
properties of this transformation. Equation (3) defines
our VMSC. Since there are no differences between the
form of ~

      ̃vi and vi, we can estimate spectral reflectance
again from ~

      ̃vi  using Eq. (2) as

      
(
ri  = Gφ 

~
      ̃vi  , (4)

where Gφ is a matrix that corresponds to Gi in Eq. (2),
but that is independent from the linear system ma-
trix Fi. In addition, any applications for real multi-
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spectral images vi can be applied to virtual multispec-
tral images       ̃vi .

Now, let us show the design of the matrix Fφ, which is
the key of our method. We should design Fφ properly in
the sense of efficiency, accuracy and usefulness. We take
a different approach from PCA-based methods to avoid
the explained disadvantages. In order to cover all kind
of objects to be captured, we design our VMSC to be not
optimized for particular sample data. To realize this,
we used Gaussian curves to define the kth spectral sen-
sitivity as
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where λ is wavelength and σ, µ0, ∆µ are constants, the
capturing illuminant is represented by a unit matrix.
Since all elements in matrix Fφ are positive values, this
does not cause negative pixel values.

An example of spectral sensitivities of an eight band
VMSC of Eq. (5) is shown in Fig. 1. Next, we confirm
the color reproduction accuracy of our method through
experiments.

Experiments
We evaluated the color reproduction accuracy of our
method by simulation. The object data we used for the
simulations were sets of spectral reflectances of the
Gretag Macbeth Color Checker measured by a
spectroradiometer (Topcon SR-2), the natural objects
measured by Vrhel, Gershon and Iwan,3 and flowers,
leaves, and paints from the SOCS (Standard Object
Colour Spectra database for color reproduction evalua-
tion).9 As real input devices, we used spectral sensitivi-
ties of real three- and six-band multispectral video
cameras and a sixteen band multispectral still camera.1

In our simulation, the illuminant for image capture
was CIE D65, and the ones used for color reproduction
were CIE D65, CIE A, CoolWhite, and TL84. We used
Eq. (5) as definition of our VMSC with constant values
σ, µ0, and ∆µ adjusted to cover the range between 380
nm to 780 nm at equal intervals. The numbers of VMSC
bands Nφ were 4, 6, 8, and 10. Actually, we selected them
as follows. As Eq. (5) shows, center wavelength of k-th
band of a VMSC with Nφ bands can be written as

µ = µ0 + k∆µ, (k = 1,. . . ,Nφ), (6)

and we selected µ0 and ∆µ by

µ0 = 380(nm) + ∆1,

µ0 + (Nφ + 1)∆µ = 780(nm) – ∆2, (7)

where ∆1 and ∆2 are offsets to increase spectral resolu-
tion of VMSC’s sensitivities. We experimentally selected
∆1 and ∆2 as 25 nm and 65 nm respectively. Then we
chose σ by σ = 3∆µ. As seen in Eqs. (1) to (4), there are
three different types of reflectances, which are
1. The authentic original spectral reflectance r of objects.
2. The spectral reflectance r̂i estimated from a real

multispectral image.
3. The spectral reflectance ři re-estimated from a vir-

tual multispectral image whose input is r̂i.

We evaluated the differences of the re-estimated re-
flectance ři against the original reflectance r to check
the total system performance. Since there already exist
estimation errors in the estimated reflectance r̂i, differ-
ences of the re-estimated reflectance ři against the esti-
mated reflectance r̂i are also confirmed. For evaluation
of the color reproduction accuracy from the re-estimated
spectral reflectance, we computed the root mean square
errors (RMSE) between the re-estimated and the esti-
mated reflectances, and we also computed the ∆Eab av-
erage color differences of the reproductions under the
four illuminants.

In Wiener estimation (Eq. (2)), we used the correla-
tion matrix Rr which is modeled as a first order Markov
process covariance matrix8 of the form
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M

M

M M

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

−

−

− −

1 ρ ρ ρ

ρ ρ ρ

ρ ρ

ρ ρ

2 1

2

2

1 2

1
1

1

L

L

L L

L L L L L

L L

,
(8)

where 0 ≤ ρ ≤ 1 is the adjacent element correlation fac-
tor and we selected ρ = 0.999 for this experiment.

We compared our method with two kinds of PCA-based
methods, which are a normal PCA method and WKLT.5

The reflectance that is recalculated from the coefficient
image of these PCA-based methods corresponds to the
re-estimated reflectance of our method. For ease of ex-
pression, we will use the term re-estimate for both
reflectances. Since we want to represent arbitrary mul-
tispectral images in a common space, the basis func-
tions of the PCA should be also common. Therefore, we
derived a set of basis functions from the estimated
reflectances of the mixed set of all kinds of input data
groups. In addition, we also derived sets of basis func-
tions from each individual input data group for refer-
ence. We indicated them by “(mix)” and “(ind)”
respectively in Figs. 2 to 6.

Experiment 1
We used the sixteen band real MSC and an eight band

VMSC or eight dimensional PCA-based methods. The
number of VMSC bands Nφ was chosen by the assump-
tion that the maximum and average color differences of
∆Eab had to be fewer than 2.0 and 0.5 respectively for
both the Color Checker and natural objects sets. We com-
pared the color reproduction differences for various sets
of objects. A comparison of average RMSEs for the re-
estimated reflectance against the original reflectance is

Figure 1. An example of spectral sensitivities of a VMSC



A Method for the Unified Representation of Multispectral Images with Different Number of Bands   Vol. 48, No. 2, March/April 2004  123

shown in Fig. 2, and a comparison of color differences is
shown in Fig. 3. In the figures, “MSC” means the esti-
mated reflectance from the real MSC, that is shown for
reference to see how much the re-estimated reflectance
of each method lost color information from the estimated
reflectance. PCA(mix) and PCA(ind) gave the best results
for the average RMSEs in Fig. 2, but results were quite
worse in color differences in Fig. 3. To get better results
of color reproduction, human visual sensitivities have to
be considered. As it was expected, WKLT(mix) and
WKLT(ind) that are based on human visual sensitivities5

gave better results on measured color differences than
PCAs. However, our method, which is not optimized for
the sample set, gave the best result of all the methods
except on the leaves set. One reason for this may be that
our method used a priori knowledge about reflectance,
which is the smoothness assumption as defined in Eq.
(8), and the object data for the experiments actually pre-
sented smooth reflectance.

Experiment 2
We used the eight band VMSC, and the object sets of

the Color Checker and the natural objects. We changed
the number of input real MSC bands to see the influ-
ence to the color differences. A comparison of the re-

sults for the computed average color differences of the
re-estimated reflectance using natural objects against
the original reflectance and the estimated reflectance
respectively are shown in Figs. 4 and 5.

In Figs. 4 and 5, the performance of our method was
equal or better than the other four methods for almost
all cases. The color differences of the recalculated re-
flectance against the estimated reflectance of PCA(ind)
and WKLT(ind) for three and six band MSCs are zero in
Fig. 5, because the estimated reflectance  ̂ri represented
in Eq. (2) has the same or less rank than the number of
its MSC bands and it can be represented by higher di-
mensional PCA without error.

Experiment 3
We used the sixteen band real MSC, and the object

sets of Color Checker and the natural objects. We
changed the number of bands of the VMSC and the di-
mensions of the PCA-based method to see the effect on
the color differences. A comparison of the results about
the computed average color differences of the re-esti-
mated reflectance against the original reflectance us-
ing natural objects is shown in Fig. 6. The performance
of our method was equal or better than the other four
methods in higher than six-dimensional spaces, but it

Figure 2. Average RMSEs for the re-estimated against the
original reflectance about various object sets.

Figure 3. ∆Eab average color difference for various object sets.

Figure 4. ∆Eab average color difference versus the number of
MSC bands (against the original reflectance).

Figure 5. ∆Eab average color difference versus the number of
MSC bands (against the estimated reflectance).
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was worse than WKLT(mix) and WKLT(ind) in four di-
mensional space. This means that our method is effec-
tive in a higher dimensional space where the total color
reproduction accuracy is high.

Finally we show an example of a virtual multispec-
tral image (the Gretag Macbeth Color Checker) trans-
formed by our method in Fig. 7. The original
multispectral image is captured by the camera with six-
teen bands under Xenon lamp illumination. As shown
in Fig. 7, each band image presents the reflectance of
the corresponding wavelength of the virtual multispec-
tral camera (see Fig. 1). Since the VMSC is physically
defined, it is easy to grasp and handle these data. In
addition we checked the color differences about all the
24 patches in the Gretag Macbeth Color Checker of Fig.
7. The average RMSEs of estimated reflectances from
MSC r̂ and re-estimated reflectance from VMSC ř
against the original data are 0.047 and 0.062. The aver-
age color differences ∆Eab of estimated from MSC and
re-estimated from VMSC under the capture illumina-
tion are 0.80 and 0.83. The average color differences ∆Eab

of estimated from MSC and re-estimated from VMSC
under the four il luminations (CIE D65, CIE A,
CoolWhite, TL84) are 0.87 and 0.98. Thus, the virtual

multispectral image may preserve enough spectral in-
formation for accurate color reproduction.

Conclusion
We have demonstrated the color reproduction accuracy
of our method by means of experiments. Since the VMSC
is physically defined, it is easy to grasp and handle the
virtual multispectral imagery. According to the results
of the experiments, our method also shows the same or
better accuracy in color reproduction compared with con-
ventional PCA-based methods. This result also suggests
the effectiveness of our method for representing multi-
spectral images with different numbers of bands into a
unified common space. We propose that the reason for
this result was the smoothness assumption of reflectance
as we intend to confirm in future work.    
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