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the statistical spectral properties of the objects that are to be 
imaged, as well as the spectral transmittances of the fi lters, 
the spectral characteristics of the camera, and the spectral 
radiance of the illuminant. The main idea is to choose the 
fi lters so that, when multiplied with the illuminant and 
camera characteristics, they span the same vector space 
as the refl ectances that are to be acquired in a particular 
application, as suggested earlier, e.g., by Chang et al.,18 
Schmitt et al.,19 Vora and Trussell,20 and Mahy et al.21 

In the following sections we present different methods 
for selecting fi lters. The differ ent selection methods are 
then subjected to a comprehensive evaluation procedure, 
in which their quality is evaluated mainly in terms of the 
ability of the resulting system to recon struct scene spectral 
refl ectances.

Filter Selection Methods 
In this section we present different methods for selecting 
a subset of  fi lters out of a set of K available fi lters. We 
suppose the spectral transmittances φk(λ), k = 1...K, of the 
fi lters, as well as the spectral sensitivity ω(λ) of the camera 
to be known. After combining these functions, we represent 
the fi lters (or more precisely the associated camera channel 
sensitivities) by the vectors yk, 

 yk = αk[φk(λ1)ω(λ1)...φk(λN)ω(λN)]t, (1) 

for k = 1...K. The normalization factors αk are typically16 
chosen such that = 1.
 The goal is then to select, among a set of K available 
color fi lters, a subset of  fi lters being well suited for our 
application. 

Equi spacing of Filter Central Wavelengths 
A simple, heuristic, strategy is to choose a set of fi lters 

where the dominant wave lengths are relatively equally 
spaced throughout the visible spectrum. This approach is 
being used in many current multispectral color imaging 
systems,9–14 for instance the VASARI scanner implemented 
at the National Gallery in London used seven broad -band, 
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Introduction 
A relatively common approach to acquiring multispectral 
color images is to use a monochrome digital camera coupled 
with a set of color fi lters, as shown in Fig. 1. Given the 
spectral radiance of the light source and the spectral 
sensitivity of the camera including the optics, then the 
spectral sensitivity of the different channels of the acqui-
sition system is determined by the spectral transmittances 
of the fi lters. The quality of a multispectral color image 
acquisition system depends on many factors, the spectral 
sensitivity of the different channels, and thus the choice of 
fi lters, being one of them. 

The design of optimal filters given an optimization 
criterion has been proposed by several authors.1–8 A 
drawback with such methods is the cost and diffi culty 
involved in the practical production of the optimized 
fi lters. 

Another approach encountered in many existing 
multispectral scanner systems is to use a set of heuristically 
chosen color fi lters, which are typically equi spaced over 
the visible spectrum.9–14 Although promising results are 
reported using such systems, there is reason to believe that 
the choice of fi lters remains sub optimal for a given task. 

An intermediate solution can be used where the camera 
fi lters are selected from a set of available fi lters.1,2,15–17 This 
choice can be optimized, for example by taking into account 
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nearly  Gaussian fi lters covering the visible spectrum in its 
original confi gura tion.12,14 

Exhaustive Search 
In this selection method all possible fi lter combinations 

are evaluated. Given any op timization criterion, this 
approach can give the optimal set of fi lters. However, the 
complexity of such an approach could be prohibitive, since 
it requires the evaluation of 
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fi lter combinations. For a small number of fi lters, this 
method may be applicable, see, e.g., Yokoyama et al.22 who 
evaluates the nc = 80730 combinations needed for a selection 
of  = 5 fi lters from a set of K = 27, or Vora et al.1,2 who 
selects  = 3 fi lters from a set of K = 100 Wratten fi lters, 
requiring nc = 1.6 × 105 fi lter combinations. However, when 
the number of available fi lters, as well as the number of 
fi lters to be chosen increase, the complexity grows consid-
erably, as shown in Fig. 2. For the example presented by 
Maître et al.,15 where K = 37 and = 12, the number of 
fi lter combinations to be evaluated would attain nc = 1.8 × 

109, while a selection of 12 fi lters out of 100 would require 
1015 combinations. 

Maximizing Orthogonality in Characteristic 
Refl ectance Vector Space 

This method, fi rst proposed by Maître et al.,15 and later 
modified by Hardeberg16 is more physically related to 
the problem which we have to solve, since it takes into 
account the spectral properties of the available fi lters, 
the acquisition system, as well as the statistical spectral 
properties of the surfaces that are to be imaged. 

The central idea of the method is to select fi lters that 
have a high degree of orthogo nality after projection into 
the vector space R(U(r)) spanned by the r most signifi cant 
characteristic reflectances ui, i = 1 ...r, calculated by 
Principal Component Analysis (PCA) of a set R of sample 
refl ectances. The matrix 

 U(r) = [u1u2 ...ur], r ≤ rank(R) (3) 

thus represents the orthonormal basis of the vector space 
R(U(r)). 

The projection of the kth fi lter on the jth characteristic 
refl ectance vector is  and its projection in R(U(r)) is 
denoted as the r × 1 coordinate vector gk = U(r)tyk. Note that 
gk corresponds to the camera responses through the kth 
fi lter to a set of characteristic refl ectances U(r). 
 By this algorithm, given the choice of the number of 
characteristic vectors r that are taken into account, we can 
choose a set of  fi lters, having spectral transmittances of 
φk(λ), k = k1,...,  as follows: 

STEP 1: Considering the set of projections gk, k = 1...K, we 
choose as the fi rst basis vector  the one which transfers 
most energy from the r most signifi cant char acteristic 
refl ectances: 

 
 (4) 

That is, the fi lter that transfers most energy from the 
characteristic refl ectances is cho sen.

STEP 2: The second fi lter is then the fi lter whose 
projection onto R(U(r)) has a maximal component orthogonal 
to : 
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where 

Figure 1. A common setup of a multispectral color image acquisition system using a fi lter wheel. 

Figure 2. Illustration of the computational complexity involved 
when comparing all possible fi lter combinations from a set of real 
fi lters. Note the logarithmic ordinate axis. 
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STEP i: Let G(i) = [gk1
, gk2

,...,gki+1
] denote the projections of 

the i first selected filters in R(U(r)). The filter yki+1 
is then 

chosen such that its projection gki+1
= U(r)tyki+1

has the largest 
component orthogonal to the space R(G(i)). 
 The orthonormal basis of R(G(i)) spanned by the selected 
fi lters projected onto the characteristic refl ectance space is 
denoted Gn

( i ). It could be determined easily by a Singular 
Value Decomposition (SVD) applied to G(i). However, this 
would imply a complete recalculation of the basis for each 
iteration. We propose to determine it in an iterative manner 
as follows. The fi rst component is determined simply in step 
1 by Gn

( i ) = gk1n. 
For the ith iteration step, Gn

( i )=[Gn
( i–1)gin], 

where
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We then choose the (i + 1)th basis vector yki+1
 for the k = ki+1 

that maximizes the following expression: 
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We note that this selection method has one free parameter, 
r, the number of char acteristic refl ectances that are used 
to defi ne the vector space R(U(r)) onto with the projections 
are done. 

Evaluation Procedure 
In order to evaluate the quality of the proposed fi lter 
selection algorithms, it is necessary to consider the quality 
of the resulting multispectral color image acquisition system 
in its entirety. This system quality depends on many factors, 
and is closely related to the task the system is supposed 
to solve. For example, designing an imaging system for 
discriminating objects based on spectral reflectance21 
requires different sensitivities than a system in which the 
goal is to achieve a highest possible colorimetric accuracy. 

To evaluate the resulting systems, we report and compare 
the average RMS spectral estimation error d =  
over the colors of a test target, as well as the maximal 
RMS spectral estimation error. These metrics present the 
advantage of being simple and general. To complement, we 
also report the average and maximal ∆E*

ab using the D65 
illuminant for the colorimetric calculations. This metric 
obviously has the advantage of being closely related to 
human color perception, but on the other hand it has several 
serious limitations, illustrated for example by the fact 
that it does not pick up any difference between metameric 
spectra. Other quality measures could also have been 
used.20,23–27 Depending on the intent, these may be based 
on colorimetric or spectral properties, on mean or maximal 
errors in a data set, or alternatively on critical samples for 
which the reconstruction quality is particularly important 
for a specifi c application. Imai et al.27 argue wisely that a 
combination of quality measures should be used. 
 In our model, the refl ectance spectrum is estimated from 
the camera responses by a linear model16 in order to minimize 
the expected RMS spectral estimation error on a set of 
representative refl ectances. If the - channel camera response 
to a spectral refl ectance r is modelled by  = Ytr, and the 
spectral estimation task as = Qc , then this estimation 
operator is given by 

 Q = RRtY(YtRRtY)–1 (8) 

We could also have used other methods for estimating the 
spectral refl ectance from the camera response values, such 
as the one proposed recently by Ribés et al.28,29 

Results and Discussion 
For our simulations we have defi ned a camera system in 
which the spectral sensitivity corresponds to what we would 
typically achieve with a CCD camera under tungsten light, 
see the dotted lines in Fig. 3. For the fi lter selection method 
which takes into account a priori information about the 
type of refl ectances that are going to be imaged (see above), 
we used a target of 64 oil paints prepared by the National 
Gallery.16 For additional evaluation purposes, we also used 
a database of spectral refl ectances of 218 colored samples 
collected from nature.30,31 

In a fi rst experiment we selected fi ve fi lters from a set of 
20 Hoffman fi lters, us ing four different selection methods. 
The fi rst method employed a heuristic approach (see above), 
in which the fi lters were chosen manually, in order that 
the resulting peak sensitivities were approximately evenly 
distributed over the visible spectrum. In the second method, 
we maximized the orthogonality, us ing the parameter r = 5. 
The fi nal two methods employed an exhaustive evaluation 
of all possible fi lter combinations in order to minimize 
the mean RMS and the maximal ∆E*

ab respectively. The 
resulting spectral sensitivities of the camera channels 
are shown in Fig. 3, while the spectral and colorimetric 
estimation errors are reported in Table I. As an illustration, 
we show in Fig. 4 four examples of spec tral refl ectances from 
the database, along with the spectral estimations using the 
four different fi lter sets.  

We observe that the difference in mean RMS spectral 
estimation error is not par ticularly large between the 
selection methods. The maximal ∆E*

ab, however, varies 
signifi cantly. The overall best result when considering 
all four quality metrics seem to be achieved with the 
combinatorial method minimizing ∆Emax. Examining the 
channel sensitivities of Fig. 3 we note that, as expected, the 
maximum orthogonality methods yields peak sensitivities 
that are distributed over the entire wavelength inter val; 
however, they are not equally spaced. We also note that 
the sensitivities do not fall off to zero at the extremes of 
the wavelength interval we are using in our mod els. In a 
practical system this should obviously be avoided, typically 
by extending the wavelength interval and introducing an 
IR cut off fi lter.16 

In order to evaluate the quality of the fi lter sets when 
used for a different task than what they were optimized 
for, we simulate an alternative system in which the same 
camera is used to acquire images of natural objects under 
D65 daylight. The same four fi lter sets selected before are 
used, but the reconstruction operator is established with 
the new sensitivities and refl ectance database according 
to Eq. (8). From the results reported in Table II, we see 
that all the fi lter sets yield poorer performance compared 
to when used with the original database and illumination. 
The most serious degradation is found with the fi lter set 
selected by the combinatorial method minimizing the mean 
RMS error. This is not unexpected, given the overlapping 
sensitivities as shown in Fig. 3. The fi lter set obtained with 
the combinatorial method minimizing ∆Emax yields the 
overall best performance. 

In a second experiment we started with a set of 20 
Hoffman fi lters and 15 Kodak Wratten fi lters. By allowing 
each fi nal channel fi lter to be a combination of two fi lters, 
this gave us a total 630 fi lter transmittances to choose from. 
However, many fi lter combinations are not feasible since 
the resulting transmittance factor is too low. We therefore 
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proceeded to a pre selection of fi lters by eliminating the 
fi lter combinations which yielded a transmittance factor of 
less than one percent. This left us with 181 fi lters to choose 
from. In Tables III and IV we report the resulting estimation 
errors when selecting from 3 to 12 fi lters with the algorithm 
presented above. In Table III we set the parameter r =  
for each selection, while in Table IV we chose the value for 
r which minimized the resulting average RMS error. 

 Several observations can be made from these results. First, 
if we consider the results for fi ve fi lters, the average RMS 
error is indeed reduced, compared to when only single fi lters 
were used (Table I), although the other measures are actually 
increased. Secondly, we note from comparing Tables III and IV 
that setting the parameter d =  is not far from optimal. 

Furthermore, we see as expected that the estimation errors 
decrease rapidly with increasing number of fi lters. With 9 

Figure 3. Spectral sensitivities of the resulting camera channels obtained by selecting 5 Hoffman fi lters with 4 different selection methods. 
The stapled line represents the joint spectral sensitivity of the camera and the illuminant. 

TABLE I. Quality metrics for the different selection methods, 
applied to the selection of 5 out of 20 Hoffman fi lters. The method 
which maximizes the orthogonality performs better than the 
heuristic approach when considering the spectral estimation 
error, while the combinatorial method always gives optimal 
results with regards to its optimization criterion. 

 Selection meth.  RMS  RMSmax  ∆E  ∆Emax 

 Equi spacing  0.0121  0.0472  1.14  5.09 
 Max orthog.  0.0114  0.0483  1.51  9.72 
 Comb. RM S  0.0101  0.0447  2.55  13.37 
 Comb. ∆Emax  0.0106  0.0466  0.45  2.39 

TABLE II. Quality metrics for the different selection methods, 
when the fi lters sets are evaluated for a different acquisition 
task than the one they were optimized for. The fi lter set obtained 
with the combinatorial method minimizing ∆Emax seems to be the 
most robust. 

 Selection meth.  RMS  RMSmax  ∆E  ∆Emax 

 Equi spacing  0.0197  0.0785  1.61  10.55 
 Max orthog.  0.0212  0.0893  3.23  19.02 
 Comb. RM S  0.0177  0.0682  4.93  96.14 
 Comb. ∆Emax  0.0170  0.0610  1.24  6.53 
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fi lters the maximum ∆E*
ab estimation error reaches 1. It is 

important to keep in mind, however, that these results are 
obtained with a simulated camera discarding noise. In a real 
system, when noise is present, it is not necessarily benefi cial 
to increase the number of fi lters too much.16,32 

Figure 4. Spectral refl ectance estimation of four example refl ectances from the database (Emerald green, Ultramarine, Red ochre, 
Mercuric Iodide) using different fi lter sets with fi ve fi lters. 

TABLE III. Results for the selection method which maximizes the 
orthogonality in char acteristic refl ectance space, applied to the 
selection out of a basis of 181 fi lters created by combinations of 
two Wratten and Hoffman fi lters. 

  r  RMS  RMSmax  ∆E  ∆Emax 

 3  3  0.0265  0.0768  12.70  75.89 
 4  4  0.0165  0.0506  2.34  14.68 
 5  5  0.0104  0.0485  1.64  14.31 
 6  6  0.0080  0.0261  0.99  3.96 
 7  7  0.0057  0.0192  0.47  2.29 
 8  8  0.0040  0.0166  0.15  0.74 
 9  9  0.0032  0.0166  0.16  1.12 
 10  10  0.0023  0.0080  0.06  0.60 
 11  11  0.0016  0.0049  0.04  0.24 
 12  12  0.0013  0.0050  0.03  0.15 

TABLE IV. Results for the selection method which maximizes the 
orthogonality in char acteristic refl ectance space. The parameter r 
is chosen between 3 and 15 as the one which minimizes RMS. 

  r  RMS  RMSmax  ∆E  ∆Emax 

 3  13  0.0253  0.0771  7.05  27.43 
 4  12  0.0160  0.0498  2.43  11.92 
 5  5  0.0104  0.0485  1.64  14.31 
 6  5  0.0077  0.0336  0.98  8.80  
 7  15  0.0055  0.0166  0.49  2.43 
 8  8  0.0040  0.0166  0.15  0.74 
 9  5  0.0031  0.0130  0.15  1.01 
 10  10  0.0023  0.0080  0.06  0.60 
 11  11  0.0016  0.0049  0.04  0.24 
 12  11  0.0012  0.0040  0.02  0.09 
 

Conclusion 
One of the factors that determine the quality of a 
multispectral color image acquisi tion system is its spectral 
sensitivity. In a relatively common setup a multispectral 
color image acquisition system is implemented by coupling 
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a monochrome dig ital camera with a set of optical fi lters, 
typically mounted on a fi lter wheel. Together with the 
spectral sensitivity of the sensor and the spectral radiance 
of the illumination, spectral transmittances of the fi lters 
determine the system spectral sensitivity. 

We have reviewed and compared several methods for 
the selection of an optimized subset of fi lters from a set of 
available fi lters. The presented methods present several 
advantages and disadvantages. An optimal solution given 
any optimization criterion can in theory be achieved with 
an exhaustive search approach, in which all possible fi lter 
combinations are evaluated, but this method tend to be 
prohibitive in terms of computational complexity when the 
number of fi lters is large. 

A faster method is proposed, in which the fi lters are 
chosen sequentially in order to maximize their orthogonality 
in a characteristic refl ectance space representative of the 
application area for the system. This method is found to 
yield good results, although suboptimal. In practice, an 
adequate solution might be to fi rst use this method to 
select a set of more fi lters than needed, and then apply the 
exhaustive search method to reduce the set to the desired 
number of fi lters.  
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Figure 5. Spectral sensitivities of the resulting camera channels 
obtained by selecting 12 fi lters out of a set of 180 combined Hoffman 
and Wratten fi lters.


