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Introduction
A halftone is generally thought of as a bilevel representa-
tion of an image, as illustrated in Fig. 1, with ink dots of 
refl ectance Rk and paper with a refl ectance of Rg.1 However, 
microscopic examination of printed halftones typically 
shows a bimodal distribution of gray values, and often 
each distribution consists of a wide range of gray values.2,3 
Nevertheless, bilevel models have been applied success-
fully for decades to describe tone reproduction in printed 
halftone images. The success of these bilevel models has 
been achieved largely by making signifi cant modifi cations 
to account for the wide distribution of gray values in the 
actual image. In the current work, we describe an alterna-
tive approach for modeling printed halftone images that 
does not assume a bilevel, or even a bimodal image. The 
model is constructed by assuming that the printed image 
is actually a continuous tone image, composed of a contigu-
ous image layer on paper, and modifi cations are applied to 
correct for spatial effects. 

The Bilevel Approximation
Analysis of tone reproduction for halftones generally 

begins with a bilevel model based on the Murray–Davies 
equation, (Eq. (1)). The term Fn is the dot area fraction the 
printing engine is told to print. The dot area fraction is the 
heart of the bilevel assumption. 

 R F R 1 F Rn k n g= ⋅ + −( ) ⋅   (1)

When a halftone is actually printed, problems with Eq. 
(1) emerge. In particular, if Rk and Rg are the refl ectance 
values of the image at Fn = 0 (solid ink) and Fn = 1 (blank 
paper), the printed image at any 0 < Fn < 1 is almost always 
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darker than predicted by Eq. (1). When this darkening effect 
was fi rst noted, it was termed “dot gain”.4,5 The assumption 
behind this term is that the printed halftone image must 
be a bilevel image. Then the only way the measured refl ec-
tance, Rm, can be darker than the predicted refl ectance, R, 
is for the printed dot size, F, to be larger then the dot size, 
Fn, sent to the printer. It follows from this reasoning that 
one should be able to measure the printed refl ectance and 
calculate the printed dot size by a rearrangement of the 
Murray–Davies equation, as shown in Eq. (2). Then dot 
gain can be defi ned quantitatively as in Eq. (3). 4,5 
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 Dot Gain = (F – Fn) (3)

Equations (2) and (3) maintain the bilevel approximation 
of a halftone image, but closer analysis reveals the printed 
image is not bilevel at all. Figure 2 shows a sample of a 
clustered dot halftone printed with an offset lithographic 
printer at 150 lpi. The refl ectance histogram is clearly not 

Figure 1. Illustration of a bilevel representation of an image.
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the histogram of a bilevel image. However, it is a bimodal 
distribution, so we can still maintain the bilevel approxima-
tion by defi ning a dot fraction, Fm, based on some threshold 
value Rt and two mean gray levels, µk and µp. Experimen-
tally it is observed that µk and µp are not constants, but 
vary with Fn.2,3 Nevertheless, with careful experimental 
defi nitions of Fm, µk and µp one can maintain the bilevel 
approximation and model tone reproduction with a form 
of Murray–Davies shown as Eq. (4).2,3 

 R F 1 Fm k m p= ⋅ + −( ) ⋅µ µ   (4)

If one prints a higher frequency halftone image, the 
bilevel approximation becomes more diffi cult to describe. 
Figure 3 shows an example for a Floyd–Steinberg halftone 
printed with a 600 dpi electrophotographic laser-jet printer. 
In this system, a change in the gray level command sent 
to the printer, Fn, results in a shift in the mean value of 
the histogram rather than a change in the proportion of 
two peaks. In other words, the image behaves more like a 
continuous tone image than a halftone, and it becomes more 
diffi cult and arbitrary to defi ne metrics Fm, µk and µp for a 
bimodal model. Nevertheless, the bilevel approximation is 
still used extensively to model high frequency halftones. 

The Continuous Tone Approximation
Corrections needed to force a bilevel model to fi t experi-

mental data focus on the so called “dot gain” effects. These 
effects seem to increase the probability that an ink dot will 
absorb light compared to the ideal Murray–Davies case. We 
have explored an alternative model that starts with the 
assumption that the halftone image is a continuous tone 
image. Corrections to force the continuous tone model to 
fi t experimental data also focus on spatial effects of light 
absorption probability. 

To illustrate the development of a modifi ed continuous tone 
model, we begin with the ideal image illustrated in Fig. 4. 
This image consists of a contiguous image layer L mm thick. 
The image layer consists of colorant at a coverage of C in 
mass/area. The transmission density of the image layer is DT 
= ε · C, where ε is the extinction coeffi cient of the colorant in 
units mm2/mg and represents the absorption probability of 
the ink. The refl ection density of the paper is Dg = –log(Rg), 
so the overall refl ection density of the image, D = –log(R), 
is given by Eq. (5).

 D = 2· ε · C + Dg (5)

Equation (5) can be compared with experimental data 
for black toner printed with the 600 dpi printer using a 

Floyd–Steinberg halftone, illustrated in Fig. 3. The model is 
calibrated with a measurement of the unprinted paper, Dg, 
and a measurement of the image printed at Fn = 1, Dmax. The 
coverage is expressed in relative units so C = 1 at Dmax. The 
value of ε is then calculated from Eq. (5) as ε = 1/2(D–Dg) in 
relative units of mm2. From gravimetric analysis of printed 
samples, it was found that coverage was directly propor-
tional to the print command, Fn, for the 600 dpi printer. 
Thus, substitution of C for Fn in Eq. (5) results in the solid 
lines shown in Fig. 5. For comparison, the Murray–Davies 
model is also shown. 

The ideal bilevel model of Murray–Davies is linear in R 
versus Fn, and the ideal continuous tone model of Beer–Lam-
bert is linear in D versus Fn. In the example shown in Fig. 
5, neither model rationalizes the data.

The First Correction: Scattering
The Beer–Lambert model assumes no light scattering 

in the image layer. However, solid toner can be expected 
to have a signifi cant scattering coeffi cient. To account for 
this scattering, Kubelka–Munk theory was applied as a 
continuous tone model, as shown in Eq. (6), where S is 
a scattering coeffi cient in mm–1, and K is an absorption 
coeffi cient in mm–1.6 The value of K is related to ε, L, and 
coverage, C, as shown.
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The continuous tone model based on Kubelka–Munk 
introduces two parameters, S and L, that were not in 
the Beer–Lambert model. In addition, the value of ε 

Figure 2. Refl ectance histogram of a cyan ink printed as a 150 lpi 
clustered dot halftone printed on an offset lithographic printer. 

Figure 3. Refl ectance histogram for a black toner printed on 
paper with a Floyd–Steinberg pattern using a 600 dpi electropho-
tographic printer. 

Figure 4. Continuous tone model
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could no longer be estimated experimentally as  ε = 
1/2(D – Dg). Thus the values of ε, S, and L were adjusted 
arbitrarily to fi t the data. Figure 6 shows the result for ε = 
5 mm2, S = 90 mm–1 and L = 0.01 mm. 

Figure 6 shows that the Kubelka–Munk model provides 
a rationale for the effect of scattering on tone reproduc-
tion. However, the model still greatly over-estimates the 
so-called “dot gain” effect and models the mid-tone gray 
values far darker than they are experimentally. To ac-
count for this, the continuous tone model requires a spatial 
modifi cation we call “ink anti-gain”. 

The Second Correction: Ink Anti-gain
The concept of ink anti-gain is analogous to dot gain. It 

is a spatial effect in which the probability of absorption 
of light decreases as the spatial frequency of the halftone 
decreases. In other words, the continuous tone model as-
sumes that the ink can be characterized by an extinction 
coeffi cient, εo. It is assumed the value of εo applies to all 
halftones at Fn = 1 and to all values of Fn for an infi nitely 
high frequency halftone. At fi nite frequencies and Fn < 1, 
the effective value of ε decreases, ε < εo. The concept of a 
variable ε is essentially a mirror image of the concept of dot 
gain, so we use the term “ink anti-gain”. As the value of Fn 
decreases, the absorption effi ciency of the ink decreases. We 
modeled the ink anti-gain effect empirically as shown in Eq. 
(7) with the effi ciency function, f(Fn) shown in Eq. (8).

 ε εF Fn n of( ) = ( ) ⋅   (7)
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For an image layer with a signifi cant scattering coef-
fi cient, S, it is necessary to model S as a function of cover-
age. Otherwise, the modeled R will not approach Rg as C 
approaches 0. The function used in this model is shown in 
Eq. (9).

 S(C) = So · C (9) 

Combining Eqs. (6), (7), (8), and (9) forms a continuous 
tone model with ink anti-gain correction with adjustable 
constants So, L, εo, k and Fc. Adjusting these values produces 
reasonably good agreement with experimental data, as il-
lustrated in Fig. 7.

Figure 7 also compares the model and experimental 
data for black toner printed with a 300 dpi laserjet using a 

Floyd–Steinberg pattern. For the 300 dpi printer, gravimet-
ric analysis revealed a non-linear relationship between Fn 
and C, which was modeled with a 2nd order polynomial. 

Halftone ramps were printed with both the 300 and the 
600 dpi printers using both a black and a cyan toner, with 
both a Floyd–Steinberg and a traditional clustered dot 
pattern. All combinations were printed and modeled with 
Eqs. (6) through (9). The values of the parameters used to 
fi t the data are shown in Table I. 

Exploring the Limits
The agreement between the data and the model, as sum-

marized in Table I, is not too surprising since the model 
contains fi ve adjustable parameters. Thus, it is of interest 
to explore the values of the parameters used to fi t the data 
to see if they make physical sense. In particular, changes in 
toner (black vs cyan), changes in printer (300 vs 600 dpi) and 
changes in halftone type (Floyd–Steinberg versus Clustered 
dot) should result in rational changes in the ink absorption 
effi ciency (constants k and Fc) invoked for this model. To 
explore these effects, we begin by examining characteristics 
of the absorption effi ciency function, f(C). 

We begin with the simplest case of S = 0 so that Eq. (6) 
reduces to Eq. (5). Combining this with Eq. (7) and solving 
for the effi ciency function, f(C), we have Eq. (10). Knowing 
the relationship between C and Fn for both the 600 dpi 
printer (linear) and the 300 dpi printer (polynomial), we can 
measure all of the terms in Eq. (10) and calculate experi-
mental values of absorption effi ciency, f, for each gray value 
on the printed ramp. Some results for the 300 dpi printer 
are shown in Fig. 8. The solid lines were drawn from the 
model Eq. (8) using the corresponding model parameters 
in Table I. The results indicate the empirical choice of Eq. 
(8) is a useful approximation of the process.
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The area under the curve of f(C) versus C was chosen as 
a metric for comparing the relative absorption effi ciency 
of each printing system. This metric, calculated from the 
model equations, is shown as Aeff in Table I and has a value 
in the range 0 ≤ Aeff ≤ 1. In addition, a single spatial fre-
quency metric can be defi ned as the lines per inch (lpi) of the 
halftone. These are also shown in Table I. Both the printer 
addressability (dpi) and the halftone pattern determine the 
overall lpi of the pattern. Figure 9 shows Aeff versus lpi for 
all of the printed samples of Table I. The dashed lines were 
hand sketched to suggest trends. It is apparent that the 

Figure 5. Comparison between the ideal Beer–Lambert model 
and the ideal Murray–Davies model and experimental data black 
toner printed with the 600 dpi electrophotographic printer using 
a Floyd–Steinberg halftone. 

Figure 6. The halftone data from Fig. 4. The solid line is the 
Kubelka–Munk continuous tone model with ε = 5 mm2, S = 90 mm–1, 
and L = 0.01 mm. The dashed line is same model but with S = 0. 
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Figure 8. Experimentally estimated effi ciency functions, f(C) for the 300 dpi printer using cyan toner and (A) Floyd–Steinberg and (B) 
a clustered dot halftone. Lines are Eq. (8) with the parameters shown in Table I.

Figure 7. R versus Fn and D versus Fn for 300 and 600 dpi printers using black toner and Floyd–Steinberg. Measured data are indicated 
with circles, and the Kubelka–Munk model with a variable ε is ——. Fit parameters for both printers are: 600 dpi: εo 5 mm2, S = 90 mm–1, 
L = 0.01 mm, Fc = 0.40, and k = 9; 300 dpi: εo = 4.3 mm2, S = 90 mm–1, L = 0.01 mm, Fc = 0.50, and k = 6.

TABLE I. Fit Parameters for the Modifi ed Kubelka–Munk Continuous Tone Model

 Printer dpi Halftone Pattern Toner Dot Pitchlines/inch Fc k Aeff  εo mm
2 So mm–1 L mm

 600  F–S Black 600 lpi 0.40 9 0.60 5.0 90 0.01
 600  CL Black 120 lpi 0.50 6 0.50 4.3 90 0.01
 600  F–S Cyan 600 lpi 0.20 9 0.78 0.48 0 ––
 600  CL Cyan 120 lpi 0.33 5 0.64 0.36 0 ––
 300  F–S Black 300 lpi 0.40 9 0.60 5.0 90 0.23
 300  CL Black  60 lpi 0.80 5 0.26 5.0 90 0.23

 300  F–S Cyan 300 lpi 0.10 15 0.89 0.34 0 ––

 300  CL Cyan  60 lpi 0.23 5 0.72 0.34 0 ––
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cyan (S = 0) and the black (S > 0) represent two different 
kinds of behavior, but both groups show an increase in Aeff 
as lpi increases, in agreement with expectation. 

In the limit as lpi approaches infi nity, the printed images 
are assumed to behave as perfect continuous tone systems 
at all values of C. Thus in the limit lpi → ∞, Aeff = 1. Figure 
9 suggests this limit is reached only for very high frequency 
halftones (lpi ≥ 1200 lpi). Of much more interest is the limit 
as lpi → 0. In this limit the halftones should behave as ideal 
Murray–Davies halftones, Eq. (1). In this limit, we substi-
tute the Murray–Davies equation for R into Eq. (10) to fi nd 
the limiting behavior of f(C), shown in Eq. (11). This should 
represent the lowest ink effi ciency (maximum ink anti-gain) 
one would observe for a halftone image with non-scattering 
ink. This equation can be integrated for both the 300 dpi 
and the 600 dpi systems to fi nd limiting values of Aeff. The 
result depends somewhat on the functional relationship 
between C and Fn, so the results are Aeff = 0.45 for the 300 
dpi printer and Aeff = 0.32 for the 600 dpi printer. These 
limiting values are shown in Fig. 8, and it is evident the 
data for the cyan toner (S = 0) is approaching the generally 
expected limit, within experimental uncertainty.
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The limiting behavior for lpi → 0 for the black toner (S 
> 0) requires investigation of the Kubelka–Munk Eq. (6). 
We write the expression for the absorption coeffi cient, K, 
using the absorption effi ciency function, f(C), as shown in 
Eq. (12). 
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In the low frequency limit of lpi → 0, the halftone behaves 
as an ideal Murray–Davies halftone. This is true for the 
toner with S > 0 as well as S = 0. Conceptually we could 
substitute the Murray–Davies equation for R and Eq. (12) 
for K into the Kubelka–Munk Eq. (6) and solve for the 
absorption effi ciency f(C). However, it is diffi cult to invert 
the Kubelka–Munk equation analytically, so it is diffi cult to 
estimate a limit for f as C → 0. Nevertheless, some insights 
can be gleaned by replacing C in Eq. (12) by the assumed 
scattering function S(C) = C · Smax and solving for the ef-
fi ciency function, Eq. (13).
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The value of the ratio on the right hand side of Eq. (13) for 
black toner is approximately 0.1 based on values in Table 
I. The value of the ration K/S is diffi cult to extimate as a 
function of C. However, both have been modeled as linear 
functions of C. If this is approximately so, then the ratio 
K/S is expected to be approximately independent of C. At C 
= 1, the ration Kmax/Smax is a small number < 0.1. Thus, the 
expectation is that f < 0.1 at C → 0. This is consistent with 
the data in Table I, displayed as shown in Fig. 8. 

Conclusions
For halftone images printed in the typical range 100 < lpi 
< 600, a continuous tone model appears to be as reasonable 
as a bilevel mode for describing tone reproduction. Both 
require signifi cant modifi cations in order to fi t experimental 
data. Much research has shown that modifi cations required 
for a bilevel model are mechanistically associated with spa-
tial effects typically called dot gain. In this report, modifi ca-
tions required for a continuous tone model also appear to be 
mechanistically associated with spatial effects. To highlight 
the analogy with dot gain, we have called these effects “ink 
anti-gain.” This report has shown the potential capability 
of the continuous tone approach and has suggested only a 
preliminary link to mechanistic effects. Nevertheless, the 
con-tone approach appears capable of rationalizing tone 
reproduction in halftone images, and it is suggested that 
further consideration of this approach both for empirical 
printer calibration and for mechanistic insights might be 
of value.      
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