JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY® « Volume 47, Number 6, November/December 2003

Binary Proportional Interpolation for Color Space Conversion

Steven F. Weed 4 and Tomasz J. Cholewo
Lexmark International, Inc. Software Research, Lexington, Kentucky, USA

An algorithm which exploits binary data representation for efficiently interpolating lookup tables (LUTs) is developed. Some
implementation cost and accuracy trade-offs among trilinear, tetrahedral and binary proportional interpolation (BPI) when
constrained to no more than one LUT access per pixel are compared for color space conversion of digital images. A simpler sample
dither implementation of BPI, called Neighborhood Mask Dither Interpolation (NMDI), is also described.

Journal of Imaging Science and Technology 47: 525-530 (2003)

Introduction

Interpolation among sparse table entries is venerable
technology. Often employed for color space conversions,!
with printing as the predominant application, some
video display technologies such as LCDs also require
relatively complex processing for good color rendition.
Color space representations with higher information
coding density than RGB are also candidates for con-
version by table interpolation. Digital processing costs
continue to decrease, but simpler and faster color con-
version methods with good quality could accelerate the
acceptance of advanced color devices and interchange
representations.?

There are many applications for which color conver-
sions by other methods, including matrix multiplication,
neural networks, Neugebauer or other algebraic equa-
tions?® can be digitally implemented for a required accu-
racy with better efficiency than conventional
interpolations with multidimensional LUTs. For appli-
cations where use of LUTSs is indicated, a wealth of op-
timization techniques is available.* This article
examines other approaches for increased efficiency us-
ing LUTs.

LUTSs capture relationships between perceived colors
and control values for processes such as printing which
often defy terse analytical definition and may also
change over time. Sparse LUTs work well when these
relationships can be approximated as linear among ad-
jacent table entries. For custom digital processing, in-

Original manuscript received February 3, 2003
A IS&T Member
phone: (859) 825-4377; fax: (859) 232-7345; email: weed@lexmark.com

Color Plates 13-16 are printed in the color plate section of this issue,
pp. 586-603

Supplemental Materials—An Appendix containing Figures Al and A2 can
be found on the IS&T website (www.imaging.org) for a period of no less
than two years from the date of publication.

©2003, IS&T—The Society for Imaging Science and Technology

terpolation speed is ultimately constrained by access
times for LUT entries stored in random access memory.
Faster memory supports higher pixel conversion rates,
but reducing LUT accesses per conversion is more effi-
cient. Algorithms based upon relatively few primitive
logic functions with simple implementations in ASIC and
FPGA random logic (such as AND, OR, XOR, bit shifts,
addition and subtraction) can be more economical than
algorithms requiring general purpose or digital signal
processor cores.

Recently proposed spectral based and principal com-
ponent image representations raise additional challenges
for geometrically-based color space interpolations. For ex-
ample, n-linear interpolation involves 2" LUT entries per
conversion, while n-dimensional simplex interpolation
involves a somewhat cumbersome task of selecting the
correct set of n + 1 from 2 LUT entries. Of course, se-
lected LUT entries need not be accessed if associated in-
terpolation weights are zero. Zero weights correspond to
reduction in dimensionality of interpolation, for example
when an input value resolves to a single LUT entry or
lies along an axis between two LUT entries in a multidi-
mensional table.? As with n-linear interpolation, Binary
Proportional Interpolation (BPI) assigns a weight for each
of 2 LUT entries. However, the number of non-zero LUT
entry weights will be no more than one (corresponding
to an all-zero bit tuple for the base index) plus the bit
precision of interpolation, since that is the maximum
number of unique bit tuples which can increment base
indices.b

Linear Interpolations and Trichromatic Color
Tables

Characterizing relatively complicated numeric relation-
ships using sparse tables is well understood. Although
variable grid spacing has been demonstrated to reduce
color table size for a given error tolerance,? integer tables
with grid points uniformly distributed in input space al-
low for simpler implementations. Linear interpolation
accuracy deteriorates when local relationships are not
approximately linear. Splines improve interpolation ac-
curacy for sparser tables, but each three-dimensional
cubic spline interpolation requires 32 LUT accesses.

525

for (c = O
colorant [c] = O;

¢ < numcolors; c++)

for{t = 8; t; t/=2) {
for (c = 0; ¢ < 3; c+t) {
cmy [c] = 255 - rgblc];
bit = t & cmylel;
cmy [c] = emylc]/16;
if (bit)
cmy [c]++;

for (¢ = 0; ¢ < numcolors; c++)

/* interpolate within unit cube of LUT */
/* t is bit mask and interpolation weight */
/* test masked fraction bit */
/* base index */

/* increment index */

colorant [c] += t * lut[cmy[0]] Cemy[1]] [cxy[2]] [c); /* lut access */

}

for (c = 0; ¢ < 3; o++) {
cmylc] = (255 - rgblel)/16;
for {c = 0; ¢ < numcolors; c++) {

/# LUT unit cube origin #*/

colorant [¢] = (lut[emy[0]] [emy [11] [eny[2]] [c] + colorant[e] + 8) / 16;

Figure 1. Pseudo-code for 4-bit binary proportional interpolation of RGB to CMYK

Integer processing for final LUT entry intervals de-
serves special consideration. Consider 4-bit integer in-
terpolation of 8-bit values. 4-bit interpolation fractions
leave 4 bit indices to select among 16 intervals, requir-
ing 17 LUT entries. For some applications, it may be
desirable to rescale 8-bit inputs for power of two table
dimensions with more compact binary addressing. How-
ever, round-off of rescaled inputs and reduction of table
size sacrifice precision. Without input rescaling, final
LUT entries cannot be directly indexed. Consider a per-
fectly linear (identity) sparse 4-bit table with final in-
terval values 240 and 255. With appropriate rounding,
an input of 255 can be interpolated to a result of 255,
but 248 will interpolate to 247. While the difference
between 247/255 and 248/255 dot coverage may not be
perceptible for printing, a difference between 7/255 and
8/255 is more likely problematic. Consequently, it is
generally desirable to concentrate smaller table values
nearer the origin. When table values represent subtrac-
tive device colorants, this requires inverting additive
inputs such as RGB or CIEXYZ before generating in-
terpolation factions and table indices.

Other approaches for handling final table intervals
with 8-bit values include treating final intervals as one
unit shorter than others or rescaling final table entries.
However, table value rescaling may require values out-
side the valid range. For the example above, a rescaled
final table value of 256 exceeds the range of a byte and
would require increased memory to be allocated. In
some closed systems, integer interpolation may be
employed without special treatment for final intervals
by appropriate compensations in subsequent process-
ing, such as one-dimensional LUTs or halftone thresh-
old array values.

Table interpolation proceeds by extracting LUT indi-
ces from input values, selecting a nearest set of table
entries, then applying weights to selected entries. For
example, consider a two-dimensional table T represent-
ing a function of arguments X and Y. Values X and Y
are converted to grid indices x, y and interpolation frac-
tions 0 < a, b < 1, respectively.

Two-dimensional simplex interpolation (triangular in-
terpolation) uses only three LUT entries surrounding
the interpolated point. If a > b:

526 Journal of Imaging Science and Technology®

XY)=0-a)T,,+(@-0)T,,,,+bT,.1,,1,, (1
else, for a < b:
XY)=0-0T,,+b-a)T,,,,+aT,, ... (2)

Two-dimensional n-linear interpolation (bilinear inter-
polation) calculates

fXY)
=(1-a)(1- BT, +a(l-bT,,,,
+ (1 —apT,, ., +abT,, .1 (3)

While triangular interpolation requires numerically
ranking fractions, BPI implicitly assigns powers of two
weights according to bit significance within fractions.
A two-dimensional BPI with 4-bit fractions a and b
calculates:

fX,Y)=
(1/16 +(a &b)T, , +(a &b)T,
Ha &b)T, 1 +(a &b)T,

+1y (4)

+1,y+1*

where represents bit-wise logical negation of @, and &
represents bit-wise logical AND.

Although this article focuses on three-dimensional in-
terpolation, the above equations can be generalized to
higher dimensions. Ranking fractions for simplex inter-
polation becomes increasingly expensive in higher di-
mensions, while BPI complexity increases with
interpolation precision rather than with input dimen-
sion. Being fundamentally geometric (albeit with itera-
tions for ranking and selection), simplex interpolation
is readily portrayed graphically. BPI is an inherently
binary procedure, more naturally illustrated by table
or pseudo-code. Comparable integer pseudo-codes for
BPI and tetrahedral interpolation, both interpolating
for the four least significant bits of 24-bit RGB, are
shown in Figs. 1 and 2.

Like simplex interpolation, BPI typically accesses
fewer LUT entries than n-linear interpolation, with an

Weed and Cholewo

/* rank the four LSBs of each trichromatic input component x/

for (¢ = 0; ¢ < 3; c++)
cmy[c] = 0xOF & (255 - rgblcl);
if (emy[0] < cmy[1])
axis = 1;
else
axis = 0;
miner = 1 - axis;
if (cmylaxis] < cmy[2])
axis = 2;

/* cmylaxis] is now >= other components */

major = 3 - {minor + axis);

if (emy[minor] < emylmajorl) A{
minor = major;
major = 3 - (minor + axis);

}

/% cmyl[major] is now <= cother components */

for (c = 0; ¢ < 3; c++) {

emylc]l = (255 - rgblcl) / 16;
if (axis == ¢)
cmyaxisl[c] = emylel + 1;
else
cmyaxislc] = cmylcl;
if (major != ¢}
emyminor[c] = cmylc] + 1;
else
emyminor[c] = cmylc];
}
wmajor = cmy[major];
wminor = cmy[minor] - cmylmajor];
waxis = cmylaxis] - emylminor];
worigin = 16 - cmylaxis];
for (c = 0; ¢ < numcclors; c++3 {
X = wmajor *
X += wminor *
X += waxis *
X += worigin * lut[cmy[0]
colorant[c] = (x + 8) / 16;
}

VES

/*

rEs

rE]
VES
V]
VES

tetrahedron origin by truncation */

axis vertex */

minor diagonal vertex */

major diagonal (neutral) weight */
minor {rgb) diagonal weight */
axis (cmy) weight */

origin weight =/

lut[emy [0] + 1 Jlemy[1] + 1]lcmyl2] + 1 1lcl;
lut [cmyminor [0]1] [cmyminer [1]] [cmyminor [21] [c];
lut [emyaxis [0]] [emyaxis[1]] [cmyaxis[2] 1(c];
1 [ecmy [1]

1 [emy [2] 1Lc];

Figure 2. Pseudo-code for 4-bit tetrahedral interpolation from RGB to CMYK.

upper bound of one more access than the bit precision
of interpolation. As fewer entries are used for each in-
terpolation, noise in individual LUT entries becomes
more disruptive. LUT entries directly inverted from data
measurements by numerical methods are inherently
more noisy than tables generated from models. Since it
is an infrequent offline activity, using more sophisticated
LUT generation algorithms’ to maintain quality with
fewer accesses per conversion is an easy trade-off.
Color information is often represented by three eight-
bit bytes, one for each trichromatic channel. Since hu-
mans can visually discern roughly 100 increments along
each trichromatic axis, quantizing to more than twice
that precision supports the illusion of continuously vary-
ing colors. A 24-bit color space encoding can be directly
converted by a LUT with 22* entries, but RAM storage
for 50-megabyte tables is still considered extravagant.
Many color spaces are defined with explicit and sepa-
rable algebraic conversions, but these conversions of-

Binary Proportional Interpolation for Color Space Conversion

ten involve mathematical functions for which suffi-
ciently fast and accurate digital implementations re-
main too costly for commodity deployment. Sparse LUTs
with integer interpolation remain a viable option.

For a number of trichromatic color spaces, including
sRGB and CIELab, 17 x 17 x 17 LUTs are common.
Starting with 8 bits for each trichromatic component
value, an interpolation unit cube is selected by trun-
cating each value to its 4 most significant bits. Trilin-
ear interpolation is popular for trichromatic color
spaces, but requires access to eight lookup table en-
tries for each conversion. Tetrahedral interpolation and
BPI are relatively disadvantaged when interpolating
near-neutrals from a space such as CIELab, where
neutrals can lie along a LUT axis (Fig. 3). On the other
hand, Fig. Al, (found in the Appendix published as
Supplemental Material on the IS&T website
(www.imaging.org) for a period of no less than two years
from the date of publication) shows errors of noisy gray

Vol. 47, No. 6, Nov./Dec. 2003 527

average R-G
S
w
T

-0.6 . L

binary dither

! . tetrahedral -------- .

0 50 100

150 200 250

CIE L* with 1-bit Lab noise

Figure 3. Noisy gray interpolation from 24-bit CIELab to floating point sRGB.

BYTE mask[] = {8,4,8,2,8,4,8,1,8,4,8,2,8,4,8,0};

#define DITHER(=, m) (({(x)>>BIT3) + ({{x)&(m)) 7 1

i % sizeof (mask);

mask[i++];
DITHER(255-*iptr++, k);
DITHER(256-*iptr++, K);
DITHER(2E5—*iptr++, k);

lutptr = LUT[C] [M][Y];

for (c =

colorant[c] = lutptrlc]
}

= = O R -
L}

¢)

0; c < numcolors; c++) {

Figure 4. Pseudo-code for 4-bit neighborhood mask dither interpolation from RGB to CMYK.

interpolation from 24-bit sRGB to floating point
CIELab. Trilinear interpolation can generate anoma-
lous results, for example when calculating near-neu-
tral values along diagonals in RGB-like spaces. These
plots were generated by averaging results from inputs
uniformly distributed around neutral values. Inputs
average to neutral, and outputs linearly proportional
to inputs should ideally also average to neutral. The
relationship between sRGB and CIELab is non-linear,
and these plots illustrate relative robustness of differ-
ent linear interpolations to nonlinearity and quanti-
zation. Slightly off-diagonal trilinear interpolations are
relatively more perturbed by non-linear differences
among non-diagonal corner contributions, while off-
axis tetrahedral interpolations are more perturbed by
diagonal corner contributions.

Tradeoffs between trilinear and tetrahedral interpo-
lations are well understood. Trilinear interpolation in-
curs consistently higher memory access requirements
with inferior rendition of near-neutral colors from RGB.?
Since BPI behaves more similarly to tetrahedral, sub-
sequent comparisons concentrate on them.

528 Journal of Imaging Science and Technology®

Binary Proportional Interpolation

While tetrahedral interpolation uses no more than 4
LUT entries, four-bit BPI uses no more than 5 LUT en-
tries for 3 or more dimensions.

Consider hexadecimal 24-bit RGB color value {0xC8,
0x64, 0x96}. For lookup table T'with 172 entries, the most
significant 4 bits of each input component are used as
indices for an interpolation unit cube; in this case its
originis T, Fig. A2, (found in the Appendix published
as Supplemental Material on the IS&T website
(www.imaging.org) for a period of no less than two years
from the date of publication). The least significant 4 bits
(8,4,6)a of input components are employed as interpo-
lation fractions within this sub-cube.

Tetrahedral weights' for this color are 4, 2, 2, and 8.
Red is the largest fraction, so the tetrahedron’s LUT
axis is to T 9. The median fraction is blue, so the mi-
nor diagonal is to T4 4. Therefore the tetrahedral cal-
culation is:

(4T oa + 2T pga + 2T g9 + 8T ¢ 54)/16. (5)

Weed and Cholewo

TABLE I. BDI Processing for Example in Text

BPI weights truncated inputs BPI LUT vertices
8 4 6
8 1 0 Tos.s
4 0 1 1 Tera
2 0 0 1 Tcon
1 0 0 0 T

In 4-bit BPI, enumerated bit weights sum to 15/16,
with an additional 1/16 always contributed by the ori-
gin. For each significant weight, a corresponding bit is
added to its component of the origin index. Thus the
BPI calculation for the same color is:

(8T g9+ 4T con+ 2T csn+ Tego+ Teeo)/16. (6)

Table I summarizes BPI processing for this example:

For another example, trichromatic binary fractions
1100, 1100, 1100 need only access table entries, T¢4,
and T, 4, with weights 4 and 12 respectively.

Table II compares processing operations for these 4-
bit trichromatic interpolations, excluding LUT index
generation. Maximum table accesses are typically im-
portant for embedded applications; average accesses
better predict application performance on general pur-
pose computers.

Referring again to Fig. 3 and Fig. 4, systematic inter-
polation artifacts can be visible as periodic color bands
in noisy near-neutral gradients. Since one-bit changes
in input values can cause BPI to select substantially
different LUT entries, its periodic error structure is of
consistently higher frequencies than n-linear and n-sim-
plex. Whether they are immediately more visible de-
pends upon the rate of change in samples being
interpolated. Our experience is that interpolation arti-
facts are typically more noticeable in areas of slowly
changing color. Interpolation artifacts in images ren-
dered using BPI and tetrahedral are typically more
prominent than when using trilinear. Whether this is
simply a consequence of more LUT entries contributing
to n-linear solutions requires further investigation.

Single LUT Access per Pixel

Constrained to no more than one LUT access per pixel,
uncached color conversion becomes a quantized sam-
pling process called dither. Depending upon other sys-
tem behavior (including human perception) for
averaging or smoothing, dithering simplifies conversion
by alternating selections among table entries according
to some estimate of proximity to the input. Dither tech-
niques are distinguished by their selection methods.
Error diffusion is a well regarded dithering technique,
albeit computationally intensive. A simpler method adds
zero mean pseudo-random values to inputs before quan-
tizing to table indices.” When used in conjunction with
any other sampling process, aliasing artifacts can re-
sult. Of course, aliasing against high frequency content
in the image is also possible. For example, the image of
leaves converted with Neighborhood Mask Dither In-
terpolation NMDI (Color Plate 13, p. 591) may show
moire patterns, depending upon how it is rendered in
print. Similar effects are to be expected with other dither
interpolations. When luminance-chrominance color in-
puts are available, interpolation in luminance with
chrominance dither has been shown to be effective.?

Binary Proportional Interpolation for Color Space Conversion

TABLE Il. Processing Operations

Operations trilinear tetrahedral BPI
maximum table acceses 8 4 5
average table acceses 6.59 3.64 3.90
multiplications 36 22 15
additions and subtractions 24 34 12
ANDs and NOTs 0 0 15
bit shifts 3x12-bit 3x4-bit 3x4-bit

Although more complicated to implement than inter-
polations, caching is a popular technique for reducing ac-
cesses to mass storage. Empirically, a cache of 8
recently-used entries was found to be adequate for color
conversion for BPI or tetrahedral interpolation con-
strained to single LUT access per input when used with
halftoning by threshold array (another spatial sampling
process). Conversion accuracy is affected relatively
weakly by cache size (for example 3.8 RMS for cache size
4, 2.35 for cache size 8 and 1.95 for cache size 32 with a
relatively challenging image), so a key consideration is
substantially caching multiple colors to minimize moire
with halftones. Even though it does not have apprecia-
bly larger RMS errors for the same cache size, we recom-
mend a minimum cache size of 16 with cached trilinear
interpolation for moire considerations. The missing LUT
entry (if any) with largest interpolation weight for each
pixel updates the cache. BPI weights are implicitly or-
dered, with largest weight at least 8/16. Tetrahedral in-
terpolation requires an additional sorting of interpolation
weights to prioritize cache updates. The largest weight
for tetrahedral interpolation can be as small as 4/16, with
a correspondingly larger worst case errors for identity
interpolation. Consistent with predicted table accesses,
4-bit trichromatic BPI averages more cache misses than
tetrahedral interpolation.

For single clock cycle execution, simple hardware
caching may employ a suboptimal strategy such as
preselecting a cache entry to be replaced before deter-
mining whether that entry is used for the current pixel.
Magnified pixels with color errors from LUT cache
misses are shown in Color Plate 14(b) and 14(c), p.
591. Since relatively small differences may not be ap-
parent in print, color value differences (Color Plate
15, p. 592) are multiplied by 16.

For this example, with LUT access restricted to no
more than one per pixel, BPI reported 44 unavailable
LUT entries, while tetrahedral reported 25 cache
misses. The largest primary color differences were 7/
255 for BPI and 9/255 for tetrahedral, both in red. The
largest average absolute pixel color differences were
0.63/255 in red for BPI and 0.60/255 in blue for tetra-
hedral. Eliminating cache misses reduced BPI average
absolute difference to 0.15/255 in blue. Cache misses
have another consequence: weights generally do not
sum to a power of two. This in turn precludes simple
bit-shifting to normalize results. Cached 4-bit BPI re-
quires the equivalent of division by integer values from
8 to 16, while cached 4-bit tetrahedral interpolation
denominators range from 4 to 16. These can be approxi-
mated by integer multiplications followed by bit-shift-
ing, but the problem is more severe for cached 4-bit
trilinear interpolation, with denominators from 512 to
4096. Despite these complications, color conversion by
cached trilinear interpolation has been observed to be
more robust than BPI and tetrahedral in some in-
stances. Relative robustness of interpolations deserves
more research.

Vol. 47, No. 6, Nov./Dec. 2003 529

Unlike tetrahedral interpolation, BPI can also be
implemented as a neighborhood dither, constrained to
a single LUT access per pixel, by the use of a sample bit
mask:

— 0o R oo
I N)
Ao © o
® N 0

This bit mask tiles over samples for neighborhood
mask dither interpolation. Sample component values
become base LUT indices and interpolation fractions.
Base indices are incremented when corresponding mask
and fraction bits for a component are both 1. Resulting
indices select one LUT entry for each pixel. This NMDI
algorithm can be implemented in fewer than 100 logic
gates. The relative frequencies of mask values deter-
mine neighborhood interpolation weights, so that more
significant fraction bits have double the weight of next
less significant bits by being sampled twice as often.
Figure 4 is pseudocode for NMDI. An n-bit BPI converges
to mean value over 2"input samples. Spatial mask size
for periodically refreshed processes can be reduced by
temporal dither.

Results for NMDI followed by error diffusion have
been very promising. Perturbation of colorant values by
NMDI appreciably reduces the severity of “worm” arti-
facts generated by some error diffusion halftone algo-
rithms. No dither occurs when truncated input bits are
all zero, since conversion is exact.

Dithering of individual pixels is evident at extremely
low spatial resolutions (Color Plate 14, p. 591) Un-
like cached interpolations, where errors are concen-
trated in areas of rapidly changing color (Color Plate
16(a) and 16(b), p. 592), distribution of NMDI errors
(Color Plate 16(c), p. 592) is relatively uniform.

As is the case with other table dithering techniques,
NMDI has applications beyond color display and print-
ing. Control and data conversion in applications such as
automotive engine management, HVAC and many indus-
trial processes involving repetitive sampling of multiple
inputs are candidates for table dithering when conver-
gence to mean value is required only for local intervals.

Although statistically significant user preference
data has yet to be collected, experienced inkjet devel-
opers have rated typical test pages rendered by NMDI
and error diffusion at 600 dpi and higher over trilin-

530 Journal of Imaging Science and Technology®

ear and error diffusion, where differences can be dis-
cerned, while processing time is reduced by about 30%
for a prototype software filter to read, color convert,
error diffuse and format images for host-based inkjet
printing.

Conclusions

Neighborhood Mask Dither Interpolation with error
diffusion halftoning applied to inkjet printing at 600 dpi
causes no discernible artifact exacerbation and reduces
processing time for software based interpolation.

Practical embedded applications include color conver-
sions for error diffused printing and nonlinear color
video displays. In custom digital logic implementations
constrained by memory access speed, NMDI will be eight
times faster than uncached trilinear and four times
faster than tetrahedral interpolation. When color con-
version by dither is inappropriate, cached tetrahedral
and tetrahedral interpolations are competitive in speed
but with greater complexity and typically somewhat
larger errors than cached BPI.

Tetrahedral interpolation typically shows smaller av-
erage differences than BPI for RGB images interpolated
with identity LUTs. This may not generalize to all non-
identity LUTs, and CMYK prints with BPI are consid-
ered to have comparable quality. Relative robustness
and user preference among interpolations remain top-
ics for future research. &

References

1. H. R. Kang, Color technology for electronic imaging devices, SPIE,
Optical Engineering Press, Bellingham, WA, 1996.

2. R. Balasubramanian, Reducing the cost of lookup table based color
transformations, J. /maging Sci. Techinol. 44(4), 321-327 (2000).

3. Y. Azuma, M. Kaji, S. Otake, and J. Arney, Evalutation of an algebraic
technique for colorimetric calibration of a printing system, J. /maging
Sci. Technol. 45(2), 93—99 (2001).

4. R. Bala and V. Klassen, Efficient color transformation implementa-
tion, in Djgital Color Imaging Handbook, G. Sharma, Ed., 2003.

5. P. Hemingway, N-simplex interpolation, Technical Report HPL-2002-
320, HP Labs, Palo Alto, CA, 2002.

6. S. F. Weed and T. J. Cholewo, Color space binary dither interpola-
tion, in Proc. IS&T/SID 10" Color Imaging Conference, |S&T, Spring-
field, VA, 2002, pp. 183—-189.

7. T. J. Cholewo, Printer model inversion by constrained optimization,
in Proc. IS&T/SPIE's 127 Annual Symposium, Electronic Imaging
2000. Science and Technology, SPIE, Optimal Engineering Press,
Bellingham, WA, 2000, pp. 349-357.

8. K. Kanamori, A study on interpolation errors and ripple artifacts of 3D
lookup table method for nonlinear color conversion, Proc. SP/E 3648,
167-178 (1999).

9. K. Spaulding, Method and apparatus employing mean preserving spa-
tial modulation for transforming a digital color image signal, US Patent
5,377,041 (1994).

Weed and Cholewo

gl
1
b. ﬂ E
Color Plate 13. Effects of caching on 4-bit interpolations us- Color Plate 14. Effects of caching on interpolation using 17 x

ing identity LUT: a) original; b) cached tetrahedral; c) cached 17 x 17 identity 24-bit LUT: a) original 9 x 9 image; b) cached
binary proportional; and d) neighborhood binary dither. (Weed tetrahedral; ¢) cached binary proportional; and d) neighborhood
and Cholewo, pp. 525-530) binary dither. (Weed and Cholewo, pp. 525-530)

Color Plates Vol. 47, No. 6, Nov./Dec. 2003 591

H
a.

| E
| E
]

Color Plate 15. Effects of caching on interpolation using 17 x
17 x 17 identity 24-bit LUT: exaggerated difference images be-
tween the identity mapping and a) cached tetrahedral; b)
cached binary proportional; and ¢) neighborhood binary dither.
(Weed and Cholewo, pp. 525-530)

592 Journal of Imaging Science and Technology®

Color Plate 16. Effects of caching on interpolation using 17
x 17 x 17 identity 24-bit LUT: exaggerated difference images
between the identity mapping and (a) cached tetrahedral,
(b) cached binary proportional; and (c¢) neighborhood binary
dither.(Weed and Cholewo, pp. 525-530)

Color Plates

