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An experimental analysis of paper optical scattering is reported. The Kubelka–Munk parameters for scattering, S, absorption, K,
thickness, L, and background reflectance, Rg, were measured for a variety of papers. Measurements were made of reflectance and
transmittance using integrating sphere techniques, and the Kubelka–Munk Eqs. were inverted numerically to generate the corre-
sponding S and K values. The modulation transfer function, MTF, of each paper sample was also measured by projecting a sharp edge
onto the paper and measuring the resulting edge spread function. The MTF was calculated as the modulus of the Fourier transform of
the derivative of the edge function. The inverse of the frequency at which the MTF = 0.5 was used as an index of the MTF and called
kp. Values of kp were compared to values of the Kubelka–Munk parameters. Through a combination of theory and empirical observa-
tion, a model was developed to relate kp to S, K, and L for Rg = 0. The results strongly indicate that an additional parameter is required
in order to rationalize the observed MTF of papers. This additional parameter is suggested to be the scattering homogeneity of the
paper.
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Introduction
The objective of this project was to explore experimen-
tally the relationship between two well known ways of
describing light scattering in paper. One, the Kubelka–
Munk theory, has been used extensively and quite suc-
cessfully in the literature to describe reflectance and
opacity of paper and of images printed on paper.1–4 The
other is the MTF function, which describes lateral light
scattering in paper and is used to describe color and
tone reproduction in printed halftone images.5–7 Intu-
itively, these two descriptions of describing light scatter-
ing should be related, and experiments have been
reported that demonstrate a correlation been the two.8–10

The current report describes an experimental study of
the relationship between paper MTF and Kubelka–
Munk theory. As will be shown, Kubelka–Munk theory
provides most, but not all, of the parameters needed to
describe the MTF characteristics observed for many com-
mon types of paper.

Background
The phenomenon called the Yule–Nielsen effect is based
on the use of Eq. (1) to predict the reflectance, R, of a
halftone image.11,12

     R F R F Rk p= ⋅ + − ⋅( )1 (1)

F is the dot area fraction on the paper, Rk is the reflec-
tance of a solid patch of ink printed at F = 1, and Rp is
the reflectance of the unprinted paper. The reflectance
predicted by Eq. (1) is generally higher than the mea-
sured reflectance. The fundamental cause of optical dot
gain is well known to be the lateral scattering of light
within paper.13 Light that enters the paper between the
halftone dots can scatter laterally within the bulk of the
paper before returning to the surface as reflected light.
This lateral scattering in the bulk of the paper increases
the probability the light will encounter a halftone dot
and be absorbed. Thus the effective absorption cross sec-
tion of the halftone dot is larger than the physical size of
the dot, so the term “optical dot gain” is often used.

The expected reflectance of a halftone image may also
be estimated with Eqs. (2) and (3), where T(x,y) is the
transmittance pattern of the ink on the paper and A is
the area of the paper over which the average reflectance
is measured.2,14 PSF(x,y) is a probability density function
that describes the probability of a photon returning to
the surface of the paper at a location (x,y) away from the
point of entry into the paper. The operator * in Eq. (2) is
the convolution operator, and convolution is commonly
carried out by multiplying the Fourier transforms of T
and PSF and then taking the inverse transform, as shown
in Eqs. (4) and (5). The Fourier transform of the point
spread function, FFT{PSF}, is called the modulation
transfer function, MTF, of the paper, and the lateral scat-
tering characteristic of the paper is often described by
either the PSF function or the MTF function.

    R x y R T x y T x y x yp( , ) , , * ,= ⋅ ( ) ⋅ ( ) ( )[ ]PSF (2)
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Figure 1. Integrating sphere instrument assembled to mea-
sure (A) transmittance and (B) reflectance. The #40 Wratten
filter confined the measurements to the green region of the
spectrum.

Figure 2. Projected edge technique for measuring paper MTF.

Figure 3. Image of the edge projected onto a thick stack of
office copy paper (20 lb basis weight)

T(x,y)*PSF(x,y) = iFFT{ FFT{T(x,y)} · FFT{PSF(x,y)} } (4)

MTF(ω,ν) = FFT{PSF(x,y)} (5)

The Kubelka–Munk theory describes the reflectance
and opacity properties of materials in terms of four pa-
rameters; the thickness of the material, z, the reflec-
tance; Rg, of whatever is behind the material; an
absorption coefficient, K; and a scattering coefficient,
S. The absorption and scattering coefficients are ex-
pressed in units of inverse distance, mm–1, and are in-
versely proportional to the mean distance that a photon
travels in the material before it is absorbed, K, or scat-
tered, S.

Kubelka–Munk theory is expressed in terms of dif-
ferential eqations.15 Equations (6) and (7) are general
solutions of the Kubelka–Munk theory for the transmit-
tance, T, and reflectance, R, of paper. Both R and T can
be measured with an integrating sphere instrument, as
illustrated in Fig. 1. Equations (6) and (7) are invertable,
so measured values of R, T, Rg, and z, were used in the
current project to determine experimental values of S
and K. These Kubelka–Munk parameters were then
compared to values of MTF measured for a wide range
of paper types.

    
T

b
a h b S z b h b S z

=
⋅ ⋅ ⋅( ) + ⋅ ⋅ ⋅( )Sin Cos (6)
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a
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R

R a b b S z

a R b b S z
g

b
=

− ⋅ − ⋅ ⋅ ⋅( )( )
− + ⋅ ⋅ ⋅( )

1 Coth
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Measurement of Paper MTF
The most common and practical manifestation of pa-

per MTF is the phenomenon of optical dot gain. How-
ever, more direct measure of the MTF can be done by the
analytical procedure described by Yule and others10–12

and illustrated in Fig. 2. An edge of light is focused onto
the paper sample, and the bulk reflected light is mea-
sured. The instrument shown in Fig. 2 for the current
project included the same green filter used in the inte-
grating sphere measurements. In addition, crossed
polarizers were used to eliminate first surface reflec-
tions from the measurement. Figure 3 illustrates an edge
image captured with this system for an ordinary office
copy type of paper.

The camera used to capture edge images produced
pixel values linearly related to radiance of the object.
The edge trace was generated by calculating the mean
pixel value in each vertical row. The mean values were
plotted versus the horizontal dimension, as shown in
Fig. 4. The derivative of this edge function, called the
line spread function LSF, was estimated as the point by
point difference between consecutive values in the edge
trace. This also is illustrated in Fig. 4.
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Figure 4. Edge trace and line spread function, LSF, for the
image in Fig. 3.

Figure 5. Modulus of the Fourier Transform of the LSF data
in Fig. 4, normalized to 1 at the origin.

Figure 6. Experimental values of kp versus experimental val-
ues of S for paper samples at both infinite thickness, O, and
finite thickness, X.

The one dimensional MTF(ω) is the Fourier transform
of the line spread function, LSF(x). A fast Fourier trans-
form algorithm applied to the LSF data in Fig. 4 pro-
duced the experimental estimate of the paper MTF
shown in Fig. 5.

In order to compare MTF curves to Kubelka–Munk
parameters for a wide range of paper samples, a single
metric was selected to represent the MTF. This metric
is the inverse of the frequency at which the MTF = 0.5.
As illustrated in Fig. 5, the value is kp = 0.347 for the
paper sample in this illustration. Table I shows the ex-
perimental data collected for the paper samples in this
study. MTF measurements were made for single sheets
with black backing (finite kp) and for sheets stacked to
infinite thickness (infinite kp). Values of S and K were
measured for single sheets with no backing, which is
close to a perfect black backing, Rg = 0. Figure 6 sum-
marizes the correlation between the MTF parameter,
kp, and the scattering coefficient, S.

The Parameters Governing kp

Figure 6 clearly confirms the expected correlation be-
tween the Kubelka–Munk scattering coefficient and the
MTF of paper at infinite thickness. The correlation for
samples at finite thickness is very poor, but the general
impact of thickness is clearly demonstrated. Thin sheets
have smaller kp values, which means their MTF is bet-
ter. This makes sense because MTF is degraded when
light is able to travel laterally in the paper, but if the
sheet is thin, light passes through and does not have as
much opportunity to undergo lateral scattering.

The impact of the absorption coefficient, K, on kp has
been explored previously,16 and for values of K < 5 mm–1,
no effect was reported on the value of kp. This is con-
sistent with the observation in Table I that samples 5
and 6 have the same S and kp values when stacked to
infinity even though they have significantly different K
values. Thus, the experimental evidence indicates that
the MTF of common papers is significantly influenced
by thickness and S but insignificantly influenced by K.

The Oittinen–Engeldrum Model
The relationship between Kubelka–Munk theory and

the MTF of paper suggested by Oittinen8,9 and by
Engeldrum10 is illustrated in Fig. 7. Diagram (A) illus-
trates the increase in reflectance of paper, RR(z), as the
thickness, z, of the paper increases. This relationship is
described by Eq. (7) in Kubelka–Munk theory with Rg =
0. Diagram (B) illustrates the change in reflectance,
RP(r), as a function of distance, r, from the point of en-
try of the light into the paper. The Oittinen assumption
is that the curve in (B), which is the point spread func-
tion, is the same as the derivative of the curve in (A).

Engeldrum suggested a quantitative derivation of the
paper MTF by taking the derivative of the Kubelka–
Munk function for reflectance and then taking the
Hankel transform.10 With some simplifying assumptions,
Engeldrum derived Eq. (8) for the MTF of paper, where
R∞ = a – b.
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TABLE I. Summary of Experimental Data
Tr = tracing paper P = plastic non fiber sheet, NC = non-coated paper, News = newsprint, SC = super-calandared, C = coated. Thick-
ness, and kp are in millimeters. S and K are in mm–1.

Figure 7. Schematic Interpretation of Oittinen–Engeldrum Model

Thickness

0.042

0.071

0.0455

0.0765

0.097

0.1095

S

4.24

10.13

4.93

11.18

41.17

41.2

K

0.22

0

0

0

0.51

2.48

Finite kp Infinite kp

0.274 1.167

0.42 0.9

0.78 1.067

0.466 0.783

0.326 0.363

0.282 0.327

0.095

0.098

0.089

0.13

0.084

0.065

0.089

0.122

0.126

0.099

0.124

0.104

0.11

0.293

0.093

0.13

80.25

31.03

6.5

2.92

23.84

62.17

70.67

25.33

37.27

32.83

49.66

32.4

7.52

53.01

75.17

55.25

0.58

0

0

0

0

0.65

0.84

0

0.28

0.18

0.24

0

0

0.49

0.54

0.48

0.267 0.32

0.357 0.383

0.323 0.933

0.473 1.167

0.414 0.573

0.274 0.313

0.264 0.317

0.372 0.367

0.312 0.353

0.364 0.523

0.294 0.347

0.328 0.423

0.56 0.990

0.366 0.397

0.28 0.32

0.387 0.433

Sample

1

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Type

Tr, P

Tr

Tr

Tr

Tr

Tr, P

NC

NC

NC

NC

NC

News

NC

Tr

NC, SC

NC, SC

NC, SC

NC, SC

C

NC

C

NC
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Figure 8. MTF curves calculated with Eq. (8) for S = 41 mm–1

and values of K shown. Compare with Table I, samples 5 and 6.

Figure 9. The MTF(ν) of paper at infinite thickness with fre-
quency expressed in cycles per scattering length.
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Equation (8) is plotted in Fig. 8 for S = 41 mm–1 for
three different values of K. Two of the calculations rep-
resent samples 5 and 6 in Table I. The values of K =
0.10 and 0.51 represent an absorption event about once
every 10 mm and 2 mm, respectively. Thus, they are
essentially zero relative to the typical scattering dis-
tances in papers, but the values of kp are predicted to
be quite different. It is evident, as suggested previously,
that Eq. (8) over estimates the involvement of K in the
MTF of paper.

An MTF Model With K = 0
By far the majority of paper samples used to print half-

tone images have low absorption coefficients, so it seems
reasonable to alter the derivation suggested by
Engeldrum by starting with the Kubelka–Munk solution
for R with K = Rg = 0. Equation (9) is such a solution.

    
R

S z
S z

= ⋅
⋅ + 1 (9)

As suggested by Oittinen and by Engeldrum, we esti-
mate the point spread function as the derivative of Eq.
(9), substituting thickness, z, with lateral distance, r.
This leads to Eq. (10).

    
PSF( )r

S

S r
=

⋅ +( )1 2 (10)

The inverse of the scattering coefficient is a distance,
L = 1/S, that is proportional to the mean distance light
travels between encounters with a scattering center. We
define a normalized distance, l = S.r. This is distance in
units of scattering distance, L. In units of L, the scat-
tering coefficient is always unity, so the normalized point
spread function for any scattering coefficient becomes
Eq. (11).

    
PSF

1

1 2l
l

( ) =
+( ) (11)

The one dimensional MTF(ν) function is the Hankel
transform of the PSF, where J0 is the first order Bessel
function, with frequency, ν, expressed in cycles per scat-
tering length (cy/l).

      

MTF PSF 2

0

ω πϖ( ) = ( ) ⋅ ( )
∞

∫ l l lJ d0 (12)

Numerically, Eq. (13) is a close approximation of Eq.
(12). Both Eqs. are plotted in Fig. 9, where the dots are
Eq. (12) and the line is Eq. (13).

  
MTF

1
1 5.4

ν
ν

( ) =
+ (13)

The frequency ν in cy/l is related to the frequency ω
in cy/mm as follows.

ν = ω/S (14)

The value of kp is the value of ω for MTF = 1/2, so Eqs.
(13) and (14) lead to Eq. (15) as a model for kp at infinite
thickness. The dotted line in Fig. 10 shows Eq. (15) plot-
ted with the experimental data for kp measured at
infinite thickness. This simple model seems to capture
the general shape of the relationship between kp and S,
but the model significantly undershoots the experimen-
tal data.

kp = 5.4/S (15)

Empirical Modifications of the MTF Model
The disagreement between Eq. (15) and the experi-

mental data at first glance might seem to reflect an
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Figure 10. Modeled and measured kp versus S for in finitely
thick samples.

Figure 11. Measured value of kp (mm) vs thickness,   l , in scat-
tering distance for stacks of 1through 5 sheets of sample 20,
Table I. The solid line Eq. (17).

Figure 12. Measured values of kp versus values of kp modeled
with Eq. (18) and experimental values of S and z. Error bars
are +/– two standard deviations for multiple measurements.
The dotted line shows the ideal correlation at slope 1, zero
intercept.

experimental error of neglecting the MTF characteris-
tics of the instrument used to measure the paper sam-
ples. However, separate measurements of the chrome
edge placed at the paper sample location in Fig. 2, il-
luminated diffusely from the rear, provided an estimate
of the instrument MTF. The result was MTF = 1/2 at
40 cycles/mm, and correction for the instrument MTF
made no significant difference to the experimental
data. There is always the potential for unanticipated
experimental artifacts, but if the data in Fig. 10 are
reasonably accurate, it appears the MTF of paper as-
ymptotically approaches a value of kp > 0 as S ap-
proaches infinity.

A possible rationale for a non-zero asymptote might
be the intrinsic mechanical structure of paper. Paper
fibers are oriented more in the x,y plane of paper than
in the thickness, direction, z. If a component of lateral
travel of light is governed by something like a light-pip-
ing effect, independently of scattering, then a fixed ko =
0.25 mm travel length might be applicable to all com-
monly encountered papers. This suggests Eq. (16) as a
simple, heuristic modification for the MTF of plain pa-
pers, shown as the solid line in Fig. 10.

kp = 5.4/S + ko (16)

A drawback of models based on Kubelka–Munk, start-
ing with either Eq. (8) or Eq. (10), is the assumption
that the paper samples are of infinite thickness. As dem-
onstrated in Fig. 6, thickness can be of practical signifi-
cance in determining the MTF of many practical papers.
In order to gain some insight into the effect of thick-
ness, sample 20 from Table I was examined by measur-
ing kp for a single sheet backed with black, Rg = 0. Then
kp was measured for stacks of n = 2, 3, 4, and 5 sheets.
The single sheet has a thickness of z = 0.11 mm, and
the stacks have thickness n · z. The thickness can be
expressed in terms of scattering distance, l = S · n.z.
Figure 11 shows measured values of kp for sample #20
versus stack thickness expressed in units of scattering
distance, l. The results suggest the sample behaves as
an infinitely thick material for a thickness ≥ 4 in units
of scattering distance, L. The line shown in Fig. 11 is
Eq. (17) with kp∞ = 0.990, which is the value of kp meas-
ured for the infinite stack of samples in Table I.

      
k k ep p= ⋅ −( )∞

−1 l (17)

If Eq. (17) were generally applicable to all paper sam-
ples, then Eq. (18) might be expected to model any sam-
ple at any thickness. Using the values of z and S in Table
I and

  
k

5.4
S

1 e kp
z S

0= 





⋅ −( ) +− ⋅
(18)

ko = 0.25 mm, values of kp were calculated with Eq. (18)
and compared with experimentally measured values of
kp in Table I. Figures 12 and 13 present the results.
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Figure 13. Data plot of Fig. 12 confined to values of kp < 0.5.
The dotted line shows the ideal correlation at slope 1, zero
intercept.

Conclusions
Equation (18) seems to provide an approximate descrip-
tion of the impact of S and z on the MTF of paper for
values of kp < 0.5 mm. This is the range for papers most
commonly encountered in an office type environment.
The correlation between modeled and measured values
of kp is far from high, but the error bars shown in Figs.
12 and 13 suggest this is not primarily a result of ran-
dom experimental error. Rather, it appears likely that
the Kubelka–Munk parameters S and z are not suffi-
cient descriptors of paper MTF, even for papers with
the same background (Rg = 0) and negligible values of
K. Some additional parameter appears to play a signifi-
cant role in determining the MTF of printing substrates.
This additional parameter may relate to the degree of
homogeneity of the substrate. Engeldrum pointed out
that any model derived from Kubelka–Munk theory
implies the assumption that the scattering coefficient,
S, is homogenous throughout the substrate. Homoge-
neity in this context means a constant value of S with
respect to depth, z, and coated papers are a good example

of inhomogeneous substrates. In addition, directional
homogeneity is assumed so that S in the vertical direc-
tion is the same as S in the lateral direction. However,
the intrinsic directionality of paper strongly suggests
that vertical and lateral scattering distances are prob-
ably not the same.

The authors are not aware of an experimental tech-
nique for characterizing spatial and directional inho-
mogeneity in papers. Such an analysis might provide
an independent rational for the observed deviations from
the dotted lines in Figs. 12 and 13, and such an investi-
gation might lead to a significant advance in under-
standing of paper optics.    
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