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pling pitch or phase differences between the test signal
and sampling comb is made. This one dimensional rep-
resentation does not therefore account for the non-sta-
tionary nature of these systems. Using this formula no
difference in MTF would be predicted for frame and in-
terline transfer devices with the same light sensitive
pixel dimensions. The representation is often expanded
to two dimensions:
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where u and v represent spatial frequency in orthogo-
nal directions (Ref. 3, page 240). As previously, the for-
mula merely represents the frequency response of a
single pixel. This work shows that without considering
the effects of the sampling comb and phase, the MTF of
a discrete device is overestimated. In turn this could
have consequences for critical applications such as re-
cording of fingerprints or identification of targets. There
also exists a large body of work in a varied range of ap-
plications that could be affected by the effects of the
non-stationary nature of discrete systems, see Refs. 4
through 7 for example. Susceptibility to error will vary
across fields and would need to be determined.

The majority of variation in MTF for discrete devices
is caused by phase differences between the signal and
sampling comb. This has been considered and incorpo-
rated into treatments by Feltz and Karim8 and also
Balram.9 Feltz and Karim consider the output from two
neighboring pixels and define variables, ψH and ψL, which
represent the offset between signal extrema and the near-
est pixel center.8 ψH corresponds to offset for maxima and
ψL that for minima. Normalized pixel width, α, and ar-
ray pitch, β, are calculated in the following manner:

Introduction
A considerable contribution to the MTF of a discrete im-
age acquisition device is made by the geometrical prop-
erties of the sampling matrix.1 This is defined by the
dimensions of the sampling elements and the frequency
at which these elements occur.2

The introduction of geometrical sampling will cause
a change in the MTF of the system with respect to these
parameters. In addition, due to the use of rectangular
pixels and sampling grids, the imaging system is ren-
dered non-isotropic and non-stationary.2 The PSF of the
system will therefore change with respect to orienta-
tion and position within the field of view.2

There is a large variation in approach to the issue of
the non-stationary and non-isotropic nature of discrete
systems. Few models have been produced which con-
sider these effects and those that exist are often diffi-
cult to implement. The most common expression used
as the one-dimensional geometrical MTF of a discrete
array is of the form [Ref. 3, page 208]:
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where ω represents spatial frequency and s the size of
the pixel aperture. The formula is misused as the MTF
of an array because it only accounts for the frequency
response of a single pixel. No allowance for the sam-

Analytical MTF Bounds and Estimate for SFR in Discrete Imaging Arrays
Due to Non-Stationary Effects

R. Jenkin,* R. E. Jacobson,▲** M. A. Richardson,* and I. C. Luckraft*
*Electro-Optics Group, Cranfield University, The Defence Academy, Shrivenham, Swindon, United Kingdom

**Imaging Technology Research Group, University of Westminster, Watford Road, Harrow, Middlesex, United Kingdom

Formulae are derived which calculate the bounds of discrete array MTF caused by the non-stationary nature of such devices. It
is shown that if the traditional sinc based description of discrete device MTF is used, overestimation occurs. The average of the
derived bounds is shown to be a good estimate of the SFR of the device. The formulae are tested against the performance yielded
by a commercially available electronic still camera using a Sine wave, Edge and ISO Standard 12233 methods. Confidence limits
calculated using the method detailed by Yeadon, Jones and Kelly and sources of errors are discussed. It is suggested that the
presented formulae provide a better indication of discrete array performance for inclusion in system design for critical applica-
tions.

Journal of Imaging Science and Technology 47: 200–208 (2003)



Analytical MTF Bounds and Estimate for SFR in Discrete Imaging Arrays ...Effects      Vol. 47, No. 3, May/June  2003  201

  
α π α=

T
TN

(3)

  
β

π β=
T

TN
(4)

where Tα is pixel width, Tβ array pitch and TN the half
period of the input signal (named Nyquist period by
Feltz and Karim 8).

Derivation proceeds by rewriting ψL in terms of ψH. A
variable, ψH

*, is defined that represents a critical value
of ψH at which signal minima lie at the boundary be-
tween the two pixels being considered. This is calcu-
lated by defining the pixel index under consideration:
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where Int represents an integer truncation function. The
critical offset is then determined as 8:
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Feltz and Karim state that the above definitions al-
low ψL to be rewritten as:

  ψ ψ βL H k= + (7)
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Recorded maxima and minima, BMAX and BMIN, for a
sinusoidal exposure are then expressed as:
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where θ is angular distance. The MTF of a discrete de-
vice, capturing static images, is then deduced to be8:
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Feltz and Karim continue the derivation to produce
expressions for dynamic MTF,8 i.e.,when the scene to be
captured is moving with respect to a particular expo-
sure time. This analytical approach was among the first
published which incorporated the effects of array align-

ment into expressions for discrete device MTF. The use
of a logical operator, an if statement, in the calcu-lation
of k and the subsequent reliance on pixel indices to de-
termine ψH and ψL, however, limits the use of this ap-
proach.

Mathematical manipulation and finding analytical
equivalents for logical operators is difficult. This there-
fore constrains the reduction and simplification of ex-
pressions that incorporate them as well as the math-
ematical techniques that may be applied to the formu-
lae. Further, calculation of functions that incorporate
these operators is often cumbersome.

Using the above approach it is difficult to calculate
extremes of array performance. This is because, as ψH

is specified, the formulae only indicate the pixel index
that should be under consideration and no other infor-
mation. Graphs of MTF versus ψH need to be produced
to determine maximum and minimum response at each
spatial frequency as in Ref. 8.

In addition, the above calculation will only be valid
for the locale of the two pixels that Feltz and Karim
consider. It may reasonably be expected that any non-
trivial physical device will encounter the full range of
possible values for ψH and ψL within its field of view.
The only exception to this is if the spatial frequency of
the signal is an integer multiple of the array pitch and
aligned precisely with one axis of the sampling grid.

On the basis of the above, an argument may be formed
that it is the range of performance of a particular de-
vice that is of more interest than the precise phase-MTF
relationship. Certainly, for critical applications it is the
minimum response that is of more interest.

At present the majority of sophisticated imaging ap-
plications, cannot yet account for local variations in MTF
on a pixel by pixel basis. Therefore, reduction of device
MTF to the maximum and minimum case provides an
opportunity to calculate either maximum and minimum
responses or to further deduce an average response and
thus a mean output. This work details simple analyti-
cal expressions for discrete devices that describe ex-
tremes of array performance without inclusion of logi-
cal operators.

Mathematical Development
Assumptions and Exposure

To develop formulae that account for geometrical prop-
erties of a sampling array, it is assumed that the sam-
pling process is noiseless as is the exposing signal. To
further simplify derivation, this work is developed for
the one-dimensional case. Development of the model
commences with specification of a sinusoidal exposure
distribution, E(x), thus:

E(x) + a + b cos(2πwx) (12)

where ω is spatial frequency, x is distance, a the DC
level and b the amplitude of the signal. The above dis-
tribution is allowed, metaphorically, to fall onto a sam-
pling array that has sampling pitch p, sampling aper-
ture s and behave according to the above constraints,
Fig. 1. For the purposes of derivation it is also assumed
that the array and signal extend infinitely.

Sampling
An idealized sampling element centered at spatial

position u will collect incident light between u – s/2
and u + s/2, Fig. 1. Due to the initial assumptions, mod-
eling the sampling of a single element may be represented
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by straightforward integration of the signal between
these points. Thus, the response, R(u,s) of a single ele-
ment when sampling the above signal may be written:
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The modulation of the signal recorded by the array is
dependent upon the values recorded for the maxima and
minima of the input signal.8 Consequently this will be
dependent upon the response of the element that is near-
est the particular maximum or minimum in question
and will vary according to its proximity.8 Establishing
the variation in the values of maxima and minima re-
corded will yield the geometrical MTF of the array and
its effects due to phase differences between the sam-
pling comb and signal.

Recording of Maxima and Minima
For an idealized pixel as above, the optimum record-

ing of a maximum will occur when the center of a sam-
pling element coincides with that maximum, Fig. 2. For
the signal defined it may be shown that maxima occur
at x = n/ω, where n is an arbitrary positive integer.
Therefore, a maximum is always present at x = 0/ω ≡ 0.
Thus, the optimum value of a maximum, MOPT, that may
be recorded for the defined signal when sampled by an
element as defined above will be:
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The most degraded recording of a maximum will be
dependent upon the pitch, p, of the sampling comb that
will influence the proximity of the nearest element.

It may be shown that for a given sampling array, a
pixel center will always fall within p/2 of a given maxi-
mum for signals below the Nyquist frequency of the de-
vice. A straightforward conclusion is that the furthest a
pixel will be from a given maxima is p/2. The most de-
graded value recorded, MDEG, for a given maximum
sampled using an array of pitch, p will therefore be:
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Similarly, the recording of signal minima will also de-
pend upon the pitch of the sampling array and the ap-
erture of the sampling elements. Again, optimum record-
ing will occur when the element center coincides with a
minimum. It may be shown that as minima occur at x =
1/2ω + n/ω, a minima will exist at x = 1/2ω. Therefore,
the optimum value, NOPT, recorded for a signal minimum
will be:
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As previously, it may be shown that the furthest an
element center may exist from the minima is p/2 and
therefore the most degraded recording of the minima,
NDEG, will be given by:
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Signal Modulation
The modulation, MTF, of the recorded signal may now

be calculated using10:

  
MTF

M N
M N

= −
+ (18)

where M and N represent the recorded values for
maxima and minima respectively for a given signal. The
values derived above for recorded maxima and minima
are used as extrema within the equation and a solution

Figure 1. Signal and sampling array parameters.
Figure 2. Coincidence of maxima and minima with sampling
elements. Pitch and aperture are denoted s and p. MOPT and
NOPT represent the optimum detection of maxima and minima.
MDEG and NDEG represent the most degraded detection possible.
Spatial frequency is ω.
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derived to calculate the maximum and minimum of Eq.
(18). For a non-trivial system and signal it may be as-
sumed all recorded values are positive and that:

MOPT > MDEG > NDEG  > NOPT (19)

Employing the above and the elementary use of in-
equalities, it may be shown that the maximum and mini-
mum recorded modulation of the signal, MTFMAX and
MTFMIN, will be given by:

  
MTF

M N
M NMAX

OPT OPT

OPT OPT
=

−
+ (20)

  
MTF

M N
M NMIN

DEG DEG

DEG DEG
=

−
+ (21)

Expanding, then simplifying the above equations
yields:

    
MTF
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The average MTF of the sampling array may be cal-
culated using the mean of Eqs. (22) and (23).
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This may be expanded to:
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It should be noted that Eqs. (22), (23) and (25) yield
absolute recorded modulation. It is normal practice to
normalize the response with respect to the zero fre-
quency (DC) component of the curve in order to produce
the MTF. This may be achieved by omitting variables a
and b in the above equations. The original assumption,
Eq. (19), relating to Eqs. (22) and (23), enforces the origi-
nal limit of the formulae predicting the behavior of
undersampled arrays up to the Nyquist frequency. If p
is defined as equal to s, then MOPT = NDEG and NOPT =
MDEG at the Nyquist frequency, and the assumption does
not hold.

Figure 3 shows the calculated maximum, minimum
and average MTF for an array with a pitch and sam-
pling aperture of one unit distance. This equates to a
fill factor of 100%. It may be seen that the derived for-
mulae agree with sampling theory as the minimum MTF
predicted falls to zero at the Nyquist frequency of the
above example [Ref. 10, pp. 204–205]. It may also be
seen, however, that there could be a considerable de-
vice response at this frequency. The variation between
the predicted maximum and minimum MTFs is caused
by the phase difference between the input signal and
the sampling comb. The optimum MTF is yielded when
the array is in phase with sinusoidal components of the

target, conversely poor performance occurs when the
target is out of phase. The figures also show that the
variation is predicted to increase with respect to spa-
tial frequency.

The variation may be shown to be exacerbated by the
effects of the fill factor. Figure 4 shows the predicted
MTF when the aperture of the sampling element is small
in comparison to the pixel pitch, i.e., the fill factor is
low. It is clearly seen that the formulae predict a large
variation in performance, the maximum MTF is much
increased. This could be considered an advantage as it
increases the value of the average MTF, however the
potential for aliasing is also much higher, agreeing with
work produced by Kriss.2

Intuitively it may be expected that a change in pitch
will cause a change in the minimum expected response
of a device and indeed this is the case. By plotting re-
sults from Eq (23), it may be seen that as the sampling
pitch is decreased the predicted minimum geometrical
response of the device increases (Fig. 5).

One-Dimensional Line Spread Function
The one-dimensional MTF of a device may be calcu-

lated as the modulus of the Fourier transform of the
Line Spread Function (LSF).10 Using the inverse of this
relationship it is possible to derive LSFs corresponding
to the maximum and minimum MTF using the results
above.10 This is calculated using Eqs. (22) and (23) to
describe the MTF, though the variables a and b are

Figure 3. Normalized modulation predicted for an array with
a fill factor of 100%. Aperture and pitch are one unit distance.

Figure 4. Normalized modulation predicted for an array with
a fill factor of 1%. Pitch is equal to 1 and aperture to 0.1 units
distance.
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omitted in order to produce a normalized LSF with an
area of unity. Performing this calculation, we found that
the maximum and minimum LSF, LSFMAX and LSFMIN,
may be represented by:
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where ∏[x] represents a rectangle function of unit width
and height occurring at x = 0.

The above result adds confidence to the validity of the
formulae. The original derivation method essentially
mimmicks the physical sampling process. It may be seen
that MTFMAX and LSFMAX agree with the traditional Fou-
rier-based representation usually quoted for a single
pixel [Ref. 3, p. 208]. The derivation of MTFMIN and
LSFMIN proceeds in the same manner to provide the
lower bounds of the performance envelope and should
be equally valid if all derivation steps and assumptions
hold. The results show that if only the traditional re-
sult is quoted, MTFMAX, then discrete device MTF is over-
estimated. Figures 6(a) and 6(b) represent LSFMAX and
LSFMIN. The LSF representative of the average response
LSFAVE is given by:
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It should be noted that this LSF does not physically
occur in the field of view and is merely a conceptual de-
vice. A unique feature of the above result is the reduc-
tion of the non-stationary nature of a discrete device to a
simple combination of rectangle functions representing
the sampling behavior of the original pixels. The sim-
plicity of the result warrants the investigation of the non-
stationary nature of other pixel geometries.1

Experimental Results and Discussion
In order to confirm the above approach to calculation

of non-stationary MTF bounds, a sine wave technique,11

the ISO Standard 1223312 and a standard edge gradient
technique13 were used to measure the maximum and
minimum MTF as well as the Spatial Frequency Re-
sponse (SFR) of a Kodak DCS420m monochrome digital
camera fitted with a Nikkor 28 mm f/1.8 Autofocus ‘D’
type lens14 and a Tiffen infra-red absorbing filter.15

The manual accompanying the Kodak DCS420m speci-
fies the sampling pitch of the CCD to be 9 µm.16 The fill
factor, f, and thus the aperture of the CCD is not speci-
fied, though a typical value is 90%. Assuming square
pixels, this value was used to estimate the aperture
width as follows:

    
f

s

p
=

2

2 (29)

Therefore,

    s f p m= × = × =2 20 9 9 8 53. . µ (30)

The parameters were used to calculate the expected
maximum, minimum and average MTF of the CCD us-
ing Eqs. (22), (23) and (25).

The MTF of the lens and filter combination was evalu-
ated using an Ealing Optics EROS 200 system.17 Radial
and tangential measurements were performed on the
optical axis of the lens and at angles of 4° 1′55′′, 6° 5′53′′
and 6° 58′8′′ degrees in the field of view. These angles
correspond to the edge of the CCD and were used to con-
firm that optimum performance of the lens coincided
with the optical axis.

Additionally, measurements were conducted for the
available range of lens apertures. Optimum performance
was evaluated by integrating the measured MTF be-
tween 0 and 200 cycles per millimeter (c/mm). The maxi-
mum was found to occur at f/5.6.

Measurements were performed using tungsten illu-
mination corresponding to that used in the experimen-
tal arrangement.

To evaluate the MTF of the camera, test targets were
mounted on a 3 m optical bench with an arrangement of

Figure 5. The effect of pitch upon minimum device modula-
tion for an array with a sampling aperture of one unit width.

Figure 6. The optimum (a), and the degraded LSF (b), yielded
by the work.
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micro-positioners to adjust translation and rotation in
the plane of the target. The stated accuracy of the mi-
crometers was ±2 µm in linear translation and ±5 min-
utes of arc in rotation. Two Photoflood 200 W tungsten
lamps provided even illumination of the target. The
DCS420m was rigidly mounted on the optical bench so
that the optical axis of the camera was orthogonal to
the plane of the target. The distance between the test
target and camera was used to calculate the magnifica-
tion of the arrangement as 1.7 × 10–2.

After positioning and rotating the target as required,
the camera’s autofocus system was used to focus. Auto-
mated focusing was preferred over manual due to its
increased consistency. The lens was set at an aperture
of f/5.6 and used in combination with the Tiffen infra-
red absorbing filter provided with the camera.

The speed setting of the camera was adjusted to ISO
200, the nominal rating of the camera,16 and the correct
exposure determined using the camera meter in spot
mode with a Kodak R-27 greycard placed in the plane of
the target.

After making exposures as desired, images were down-
loaded to an IBM compatible PC, via the Adobe
PhotoshopTM plug-in provided, as 8 bit data. Relevant
data was extracted and then converted into effective
exposure units6 using the tone reproduction character-
istics of the device determined using a Kodak Q-13
greyscale under the same conditions. The MTF of the
system was calculated using the recorded images ac-

cording to the details given later for each method. The
component of the lens MTF was removed from the de-
termined MTF in the usual manner.10

Figure 7 shows the results of MTF determination us-
ing sine waves compared with the model prediction. For
each imaged sine wave, the first differential of the re-
corded patch was calculated. Maxima and minima in
each line of the image were detected by locating zero
crossing points of the first derivative. The modulation
was then calculated using the extreme values of the
detected points after conversion into effective exposure
units. Correction for the modulation of the original si-
nusoidal target and that of the lens at the spatial fre-
quency in plane of the detector was then applied to yield
the modulation transfer at each spatial frequency.

Error bars are shown representing ±0.05 modulation.
This is an estimated measurement error derived from
the lens MTF determination and nominal modulation
of the sinusoidal test target. Error in the determined
lens MTF at a given spatial frequency is estimated as
±0.03 modulation.17 This has to be rescaled, however, as
the nominal modulation of the sinusoidal target is 0.6
and both values are used in combination to correct the
derived MTF. This yields a minimum error in determi-
nation of the modulation striking the CCD of 0.03/0.6 =
±0.05. As the modulation measured from the CCD falls,
error in the result will proportionally rise beyond this
and errors should be considered as underestimated in
this case.

Figures 8 through 11 show MTF as determined using
ISO 12233 and a standard edge technique. The edge tar-
get used was produced using a Hewlett Packard 6MP
laser printer. To avoid effects caused by halftoning, the
edge was arranged in the direction of printing and de-
signed to have a transition from the maximum possible
density to page white. A number of measurements were
made along the length of the edge to ensure a consis-
tent density. The use of a laser printed edge, while not
ideal, is possible because of the low magnification of the
system that ensures the frequency response of the tar-
get is constant over the desired range. This may be con-
firmed easily using reflection microdensitometry.

The target was positioned in the center of the field of
view of the camera. Exposures were made and exam-
ined in order to align the orientation of the target with
the CCD array. Images were made, using the procedure
described above, translating the target in 50 µm inter-
vals with the micro-positioners. This corresponded to

Figure 7. Comparison of predicted modulation and that de-
termined using sine waves for the Kodak DCS420m. Error bars
represent ±0.05 modulation.

Figure 8. Predicted and measured maximum MTF for the
Kodak DCS420m, as determined by the edge technique. See
text for explanation of confidence limits.

Figure 9. Predicted and measured minimum MTF for the
Kodak DCS420m, as determined by the edge technique. See
text for explanation of confidence limits.

Spatial Frequency (cycles per millimeter) Spatial Frequency (cycles per millimeter)

Spatial Frequency (cycles per millimeter)
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the image of the edge advancing 0.85 µm across the CCD.
The images were then downloaded and corrected as
above. A mean edge profile was extracted from each by
averaging image columns in order to reduce noise. MTFs
were calculated in the usual manner7 and the maximum
and minimum response selected. This was achieved by
evaluating the integral of the determined MTFs between
the DC component and the Nyquist frequency of the
device.

In addition all responses were averaged to produce a
mean. To calculate the SFR of the device, the above tar-
get was rotated approximately 5° and an exposure made.
This image and the previously calculated transfer func-
tion were used as the input image and Opto-Electronic
Conversion Function (OECF) for the ISO 12233 soft-
ware.18 All results were corrected for the component of
lens MTF and compared to those predicted.

The figures show curves representing 70% confidence
limits as calculated by Yeadon, Jones and Kelly.19 Yeadon
and coworkers have shown that noise adds a linearly
increasing component to the measured MTF and that
whilst this component cannot be used to correct mea-
sured curves, it may be used to estimate errors in the
results.19

The Fourier transform of the LSF is calculated as
usual. The technique first requires that any linearly
increasing component in the Phase Transfer Function
(PTF), caused by an incorrect choice of origin, be re-
moved. This is achieved by integrating the PTF between

the DC component and an arbitrary frequency, ωK. The
value of this integral indicates that a linearly increas-
ing or decreasing function needs to be added to the PTF
to reduce the integral to zero. Using the corrected phase,
p′(ω), modified real and imaginary components, r′(ω) and
i′(ω), are calculated:

    ′ = ′[ ]r m p( ) ( ) cos ( )ω ω ω (31)

    ′ = ′[ ]i m p( ) ( ) sin ( )ω ω ω (32)

where m(ω) is the modulus of the original Fourier
transform at spatial frequency ω. Considering symme-
try, the real and even LSF will produce a real and even
Fourier transform in idealized conditions [Ref. p. 102].
Yeadon and co-workers show that any imaginary com-
ponent of the transform is therefore statistically re-
lated to the noise in the transform.19 The semi-angle,
α(ω), of the imaginary component is calculated at each
spatial frequency:

    
α ω
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The root-mean-squared value of the semi-angle, αRMS,
is then calculated:
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where all variables take their previous definitions.
Yeadon and co-workers recommend that the above pro-
cedure is repeated for varying values of ωK, the maxi-
mum frequency considered.19 Overestimation of the con-
fidence limits is avoided by employing the lowest value
of αRMS calculated for values of ωK between 1/4 and 3/4
of the estimated cutoff frequency of the system being
measured. The MTF of the system is then defined by
Yeadon and co-workers19 as:

MTF(ω) = r′(ω) ± c(ω) (35)

where c(ω)= ω tan [αRMS]. Yeadon and co-workers state
that the calculated limits provide a 70% probability of
including the real value at each point.19 Limits for Fig.
10, the average MTF, are calculated using a single curve.

Figures 7 through 10 show some degree of correlation
between the predicted and the determined values, Table
I. Initially, the result confirms the non-stationary na-
ture of discrete devices merely by the existence of a dif-
ference between maximum and minimum responses. All
figures confirm that this difference is seen to increase
with spatial frequency as the model predicts. Results
calculated using sinusoidal and edge techniques show
some agreement.

Figure 10. Predicted and measured average MTF with SFR
results for the Kodak DCS420m. Determined using ISO 12233
and the edge technique. See text for explanation of confidence
limits.

Figure 11. Predicted MTFs compared to those measured us-
ing the edge gradient and ISO 12233 standard measurement
techniques.

Table I. Correlation between Experimental Measured Values
of MTF for the Kodak DCS420m and thos Predicted Using the
Mathematical Model.

Curve Correlation Coefficient (r2)

Maximum MTF 0.8306
Minimum MTF 0.9646
Average MTF 0.8978

Spatial Frequency (cycles per millimeter)

Spatial Frequency (cycles per millimeter)
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Experimental errors will exist for a multitude of rea-
sons. Translation of the test targets may not have been
of sufficient subtlety to invoke the actual maximum
and minimum response of the array. Other test target
positioning errors may also exist due to angular rota-
tion of the targets and errors present in the micro-
positioners used.20 Variation in the MTFs produced due
to rotation of test targets is examined briefly in Refs.
21 and 22. Intra-pixel sensitivity variation has been
shown to exist.23 Generally light sensitivity drops to-
wards the edges of individual elements. The effect is
not accounted for in this model and will contribute to
the MTF of the device.

No account has been made for the effect of an optical
pre-filter or system electronics. As these effects increase
for a given system, the MTF will depart from the geo-
metrical component. Furthermore, inaccuracies may be
contained in the predicted MTFs due to the use of an
estimated value of aperture and determination of the
lens MTF as previously mentioned.

The mean measured edge MTF of the Kodak DCS420m
corresponds well with the determined SFR of the de-
vice as well as the predicted average response. This sup-
ports suggestions that conceptually SFR measurement
may be thought of as an average system response.24 The
slight bias in the determined curves as spatial frequency
increases may be accounted for by the effects of noise
as detailed by Blackman25 and Yeadon and co-workers19

or those of aliasing [Ref. 10, p. 107].
The 70% confidence limits of Yeadon and co-workers

overlap significantly for the maximum and minimum
MTFs calculated, Figs. 8 and 9. Using this the model
would not be confirmed definitively as a true descrip-
tion of discrete system behavior. This dismissal of the
results, however, must be tempered by consideration of
the calculation methodology for the limits.

The technique for calculation of the limits was engi-
neered in 1970 with analog edge measurement under
scrutiny. Microdensitometer scans of analog edges pro-
vide the opportunity for vastly oversampled traces. This
reduces the effects of the discrete nature of the traces,
such as aliasing, and provides an opportunity to ensure
that the LSF of the measured device is sampled using a
large number of data points. These opportunities are
not provided for when determining the LSF of a CCD
and all traces are undersampled. Figure 12 shows that
the LSF of the Kodak DCS420m and lens with any sig-
nificant information content may only occupy between
7 and 10 pixels.

The low number of points makes choosing an appro-
priate origin for the Fourier transform difficult at best.
Even with the utmost care, the origin of the LSF of the
lens-CCD combination will fall either side of a sampled
point in the majority of cases. This slight shift of the
origin introduces oscillation of the real and imaginary
components of the Fourier transform, Fig. 13. This in
turn causes the calculated value of αRMS to be increased.19

Zero-padding the LSF traces does not reduce this ef-
fect as no new information is added to the signal. Inter-
polation of the LSF to provide intermediate sampled
points and an estimation of the origin of the LSF is also
not feasible. This is because the noise that provides in-
formation for the error estimation will be modified sig-
nificantly by the interpolation function. The only rea-
sonable strategy is to accept that the 70% confidence
limits will be over estimated and consider this when
evaluating results. If the general agreement of the mea-
sured, predicted and sinusoidal curves is considered the
approach appears reasonable.

Conclusions
Work has been presented which shows that a descrip-
tion of the non-stationary behaviour of discrete devices
may be reduced to simple analytical expressions describ-
ing the maximum and minimum MTF of the device.
Further, it has been shown that these expressions are
simple combinations of the original response character-
istics of an individual pixel.

Significantly, it is shown that the traditional sinc
based description of device MTF is the maximum that
may occur and possible device response is thus always
overestimated. Therefore, the minimum device response,
described here, is a better parameter to include in the
design of critical systems.

The derived formulae have been experimentally tested
against a CCD device using sine wave, edge and the ISO
12233 measurement techniques. The formulae show
agreement with the results.    
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