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entails a certain amount of loss in the fidelity of data
based on the level of compression. The image quality
must be compatible with all the potential uses to which
images may be put. Therefore the chosen algorithm must
be very robust with respect to image processing usually
applied (normalization, deconvolution, filtering,
resampling, etc.)1

In general the quality of the final product obtained
from the data depends on the precision of the original
data as well as the accuracy of the relevant exploita-
tion algorithm. Lossy compression of the sensor data
becomes an additional factor in the quality of the final
product. For certain meteorological applications includ-
ing sea surface temperature and cloud mask determi-
nation, it has been shown that the additional distortion
at low to moderate compression ratio, is quantifiable
and within the range of other distortions.2

In this article we examine the impact of lossy of com-
pression on the classification of the remotely–sensed im-
agery data. The impact of compression is assessed for
two types of classifications; unsupervised classification
via thematic map for small-footprint imagery, and su-
pervised classification via spectral unmixing for large-
footprint imagery data. Classification is the most widely
used method for extracting information on surface cover.
Conventional classification techniques assign a single
label to each pixel. The label can be any one of the known
categories such as water, forest, soil, and rock. The re-
sulting thematic map can become a very useful land
cover interpretive aid provided that the imagery data
is composed of pure pixels, meaning that each pixel rep-
resents the spectral signature of only one species. A the-
matic map is thus appropriate for imagery data with a
relatively small footprint, i.e., ground sampling distance

Introduction
Images acquired by sensors on board earth observation
satellites and scientific probes represent large volumes
of data. This data need to be stored on board and/or
transmitted to ground stations for processing. As sen-
sor technology evolves into the 21st century, the volume
of data will increase rapidly due to utilization of sen-
sors that, in addition to having high spatial and dynamic
resolutions, have high spectral resolution covering up
to several hundred bands. This large volume of data
creates challenging problems for both onboard storage
(due to the stringent limitations on power, weight, and
size) and transmission to ground stations (due to band-
width limitation on downlink channels). It is therefore
imperative to reduce the volume of data to a minimum
via bandwidth compression techniques. Lossless com-
pression of data is ideal but the amount of compression
achievable is bound by the entropy of the source. This
entropy bound limits the obtainable amount of compres-
sion to the range of two to three. This level of compres-
sion is inadequate to alleviate the onboard storage and
downlink transmission problems. For this reason there
have numerous efforts by researchers to develop near
lossless compression algorithms. Lossy compression
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(GSD) such as LANDSAT Thematic Mapper imagery
with a 30 m footprint. For large-foorprint imagery, such
as those from NOAA’s AVHRR sensor with a 1.1 km foot-
print, accurate land cover estimation can only be
achieved if each pixel is assigned not just to one, but
several labels along with their respective concentrations
in that pixel’s footprint. The technique used to assign
these labels and proportions is known as mixture mod-
eling, or spectral unmixing. Spectral unmixing produces
a compositional map, also known as abundance image,
that provides a more complete land cover type informa-
tion than a thematic map. The set of compositional maps
depicts the proportions of all species present in each
pixel footprint, while the thematic map identifies only
the species with the highest concentration. Thus it can
be argued that spectral unmixing yields more complete
classification information than a thematic map. Since
the number and the signatures of species in the scene
is provided in advance, the process of spectral unmixing
can be considered as a “supervised” form of classifica-
tion for large-footprint imagery.

The selected compression technique was the adaptive
Karhhnen–Loeve transform/JPEG (KLT/JPEG) method
previously developed.3,4 Images are first spectrally
decorrelated via KLT and then individually coded via
standard JPEG as shown in Fig. 1. The impact of com-
pression is examined for both types of classifications,
i.e., classification via thematic map for small-footprint
imagery, and classification via spectral unmixing (de-
composition into abundance images) for large-footprint
imagery data. A description of classification and spec-
tral unmixing procedures and the definition of the cri-
teria for measuring the impact of compression are given
in the following sections.

Classification of Small-Footprint Spectral
Imagery Data

Classification of the pixels representing a remotely
sensed image, is the process of associating each pixel
with a label describing an entity, e.g., soil, water, or veg-
etation, on the ground. So classification can be regarded
as the problem of recognition of the remotely sensed area
according to the gray scale values associated with each
pixel vector. These values identify the observable geo-
graphical, geological or other Earth surface character-
istics. We can expect an automatic classification
procedure to label pixel vectors on the basis of compari-
son with the spectral reflectance characteristics (spec-
tral signature) of objects (entities) well known. If this
labeling operation is carried out for all pixels in the area
then the result is a thematic map which shows the geo-
graphical distribution of a theme such as water rather

than the multifarious details in each place as repre-
sented on a topographical map. The classified remotely
sensed image is thus a form of digital thematic map and,
if the geometry is transformed so as to match a recog-
nized map projection, it is in a form suitable for incor-
poration into a digital geographic information system
(GIS).

The problem of allocating individual pixels to their
most likely class, i.e., labeling the pixels, can be ap-
proached in one of two ways; supervised and unsuper-
vised classifications. If we know the number of
separable patterns that exist in the geographical area
covered by the image, and if we can estimate the sta-
tistical characteristics of the values taken on by the
features describing each of these patterns, then a se-
ries of templates can be built up. This is referred to as
supervised classification. Each template represents an
ideal pattern. The individual pixels can be compared
with each template in turn and the closest match found.
Each pixel is therefore labeled as belonging to the class
represented by the most similar template. In the al-
ternative unsupervised classification, no knowledge of
the number or character of the patterns present in the
image is assumed initially. Instead, a method of allo-
cating and reallocating the individual pixels to one of
an initial set or arbitrarily chosen patterns is used.
These will be called “basic patterns”. At each stage each
pixel in turn is given the label of one of these basic
patterns using some decision rule or classifier. At the
end of the first round, when all pixels have been allo-
cated, the basic patterns can be altered in character
according to the nature of the pixels that have been
associated with them. If necessary, some basic patterns
can be dropped from the analysis if only a small num-
ber of pixels are allocated to them, or, pairs of similar
basic patterns can be combined by averaging. Also in-
dividual basic patterns can be split into two if they are
thought to be too heterogeneous. The process of pixel
labeling by association with one of the basic patterns
is repeated using the updated basic patterns until the
procedure converges, when the user will attempt to
relate the basic patterns in the final cycle to some Earth
surface cover class. It is important to realize that these
two methods differ in that the supervised methods at-
tempt to relate pixel groups with actual Earth-surface
cover types; the pixel groups are thus termed informa-
tion classes. The unsupervised methods simply deter-
mine the characteristics of non-overlapping groups of
pixels in terms of their spectral band values. These
groups are therefore known as spectral classes, and
their relationship with information classes must be
worked out through fieldwork and/or map and air

Figure 1. Adopted KLT/JPEG compression approach
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photograph interpretation. It is reasonable to assume
that the impact of lossy compression will be nearly the
same for the supervised and unsupervised classifica-
tion of small-footprint imagery. For this reason, the su-
pervised classification of small-footprint imagery is not
considered in this article.

Unsupervised Classification
Unlike the supervised classification techniques, the

unsupervised classification methods do not require the
number of categories (species) and their statistical char-
acteristics to be specified by the user in advance.

When there are insufficient statistical characteris-
tics for the nature of the area covered, it would not be
possible to estimate the mean centers of the classes
(centroids). Even the number of such classes might not
be known. In such cases we can only assume some
initializations as a start then leave the classification
procedure on its own to come up with suitable results.
The relationship between the labels allocated by the
classification criteria (classifier) to the pixels making
up the multispectral image and the covered area types
are determined after unsupervised classification has
been carried out. Identification of the spectral classes
picked out by the classifier in terms of “information
classes” existing on the ground is achieved using what-
ever information is available to the analyst. The basic
assumption on which these schemes are based is that
the classes present in the data are compact, i.e., points
associated with each class are tightly grouped around
the class center, thus occupy a spherical region of fea-
ture space. A measure of the compactness of a class
can be taken as the set of standard deviations for the
class measured separately for each axis of feature
space. If any of these standard deviations for a par-
ticular class is large, then that class is split in the di-
rection of the axis concerned. A second assumption is
that the classes are well separated, i.e., their centers
are separated by a distance greater than a pre-selected
threshold. Unsupervised classification is carried out
via the general ISOADATA Procedure outlined in the
Table I.

The Confusion Matrix
To evaluate the classification accuracy, the analyst se-

lects a sample of pixels and then visits the sites (or vice-
versa), then builds a confusion matrix. This is used to
determine the nature and frequency of errors (nature
of the errors: what kinds of information are confused;
frequency of the errors: how often do they occur). The
confusion matrix compares the relation between known
reference data (ground truth) and the result of the au-
tomatic classification, so it tells how well the training

samples of each class have been classified. The confu-
sion matrix columns represent ground data (assumed
to be correct), and the rows represent map data (classi-
fied by the automatic procedure). The diagonal elements
represent agreement between ground and map, so ide-
ally the matrix should be characterized by all zero off-
diagonals.

The errors of omission (map producer’s accuracy) are
quantified as the number incorrect in a column divided
by the total number in the column, hence measures how
well the map maker was able to represent the ground
features, i.e., it indicates how well the training set pix-
els of a given cover type are classified.

Producer' s Accuracy
Number of correctly classified pixels per category

Number of reference pixels used for that category

Diagonal element

corresponding column total

=

=

The errors of commission (map user ’s accuracy) are
the number incorrect in a row divided by the total
number in that row, hence a measure how likely the
map user is to encounter correct information while
using the map, i.e., indicates the probability that a
pixel classified into a category actually represents
that category.

User' s Accuracy
Number of correctly classified pixels per category

Number of pixels classified in that category

Diagonal element

corresponding row total

=

=

The map overall accuracy is the total on diagonal di-
vided by the grand total.

Classification of Large-Footprint Spectral
Imagery Data

For large-footprint imagery, such as those from NOAA’s
AVHRR sensor with a 1.1 km footprint, accurate land
cover estimation can only be achieved if each pixel is as-
signed not just to one, but several labels along with their
respective concentrations in that pixel’s footprint. The
technique used to assign these labels and proportions is
known as mixture modeling, or spectral unmixing. Spec-
tral unmixing produces a compositional map, also known
as abundance image, that provides a more complete land
cover type information than a thematic map. The set of
compositional maps depicts the proportions of all species
present in each pixel footprint, while the thematic map
identifies only the species with the highest concentra-
tion. Thus, it can be argued that spectral unmixing yields
a more complete classification information than a the-
matic map. Since the number and the signitures of spe-
cies in the scene is provided in advance, the process of
spectral unmixing can be considered as a “supervised”
form of classification for large-footprint imagery.

Linear Spectral Pixel Unmixing
Linear pixel unmixing, also known as linear mixture

modeling, assumes that the spectral signature of each
pixel vector is the linear combination of a limited set of
fundamental spectral components known as end mem-
bers. Assume that each species within a pixel footprint
contributes to the signal received at the satellite sensor
an amount characteristic of that species and propor-
tional to the area covered by it. The conventional spec-
tral unmixing is modeled as,

TABLE I. ISODATA Unsupervised Classification Procedure

1. Pick k0 arbitrary centroids (mean vectors)
2. Classify the pixel vectors by assigning them to the class of the

closest mean
3. Standard deviation for each feature axis is comuted for each of

the k0 clusters
If a standard deviation > a prespecified thresshold, cluster is
split along that axis

4. The distance between cluster centers is found
If the distance is < a prespecified threshold, the two clusters
are merged into one

5. The process is repeated with the new k1 number of clusters until
no clusters are split or merged
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      x = M f + e (1)
          = f1 m1 + f2 m2 + . . . . + fi mi + . . . . + fn mNm + e

where:
x a pixel signature of Nb components
M Nb × Nm matrix of end members m1, . . .Nm

fi fractional component of end member i , i.e., propor-
tion of footprint covered by species i

f vector of fractional components (f1 , f2 , . . fi , . . fNm )tr

mi end member i of Nb components
e residual error vector of Nb components
Nm number of end members
Nb number of spectral bands
Nc Intrinsic true spectral dimension of data, Nc ≤ Nb

Provided that the number of end members Nm ≤ Nc,
the solution via classical least squares estimation is,

f = (MT M)–1 MT x (2)

Selection of the Optimum Subset of End members
When the number of end members is more than the

true spectral dimensionality of the scene, i.e., Nm > Nc,
we encounter the so-called Condition of identifiability ,
which means that f can not be determined via Eq. (2).
This situation may seriously restrict the applicability
of the linear umixing operation since most operational
remote sensing systems measure radiation in limited
number of bands. Therefore, the scene can be decom-
posed into only a limited number of distinct components.
For example for Landsat TM with seven spectral bands
(Nb = 7), the true spectral dimension is at most five
(Nc = 5) based on principal component analysis. To over-
come the condition of identifiability, we adopted the
method of dynamic selection of optimum end member
subset recently proposed by Maselli.5 In this technique,
an optimum subset of all available end members is se-
lected for spectral unmixing of each pixel vector in the
scene. Thus, although not every pixel vector will have a
fractional component for each end members, the en-
semble of all pixel vectors in the scene will collectively
have fractional contributions for each end member.

For each pixel vector, a unique subset of the available
end members is selected which minimizes the residual
error after decomposition of that pixel vector. To deter-
mine the Nc optimum end members for pixel vector x,
the pixel vector is projected onto all available normal-
ized end members.6 The most efficient projection, which
corresponds to the highest dot product value cmax, indi-
cates the first selected end member mmax. It can be shown
that this procedure is equivalent to finding the end mem-
ber with the smallest spectral angle with respect to x.
The residual pixel signature, rx = x – cmax . mmax is then
used to identify the second end member by repeating the
projection onto all remaining end members. The process
continues up to the identification of a prefixed maxi-
mum Nc number of end members from the total of Ne

available end members.

Displaying the Species Concentration Maps
The proposed spectral unmixing procedure produces the
species concentrations as fractional, floating point, val-
ues. For display and storage purposes, these floating point
maps should be converted into integer format. This re-
quires a quantization process. For compression and ar-
chival applications, it is desirable to minimize the
quantization error induced by the quantizer. For this pur-
pose the following nonlinear mapping scheme was
adopted.

    

M
f

f f f f
=

−
+

−( ) −( )
255

0 5
1 1

exp

max max
exp

min min
exp

.
(3)

where:
M = mapped integer fractional component in the

range of 0 ≤ M ≤ 255
f = fractional component
fmin = minimum fractional component
fmax

 = maximum fractional component
exp = floating point exponent parameter in the range

of 0 ≤ exp ≤ 1.0

Note that for exp = 1 Eq. (3) reduces to simple linear
mapping. The optimum value of exp was determined,
empirically, to be 0.6 for the test abundance images.
The RMS quantization error for the optimum nonlin-
ear mapping was about 30% lower than that for the
linear mapping.

Criteria to Measure Compression Impact on
Classification

To assess the impact of compression on classification,
we have adopted the following two machine-based quan-
titative measures. For either of the two assessment
schemes, the compression rate is varied across a pre-
defined range.

For classification of small-footprint imagery the impact
of compression is assessed via comparing the resulting
thematic map. Comparison is achieved via obtaining a
confusion matrix from the thematic maps corresponding
to the original and reconstructed spectral images.

For large-footprint imagery the impact of compression
is assessed via comparing the two sets of abundance im-
ages obtained from the original and reconstructed im-
age sets. Comparison can be performed via obtaining
some statistical measures such as mean square, maxi-
mum, and standard deviation of, errors for each corre-
sponding pair of abundance images. In the experiment
reported here, the comparison has been performed with
respect to the resulting mean absolute error.

Experimental Results
The compression, classification, and spectral unmixing
were implemented in C programming language and ap-
plied to different sets of multispectral imagery from dif-
ferent sensor platforms. The programs were
conveniently parameterized to accommodate various
system parameters including the compression ratio,
dynamic range of data, number of spectral bands, im-
age sizes, convergence threshold, and number of classes.

Two sets of imagery data, one with small footprint
and one with large footprint, were selected for our ex-
periments. The small footprint (30 m) imagery set con-
sisted on seven 512 × 512, 8 bits per pixel LANDSAT
TM spectral images of a scene in Montana. The large
footprint (1.1 km) imagery set consisted of five 1024 ×
1024, 10 bits per pixel NOAA’s AVHRR spectral images
of UK. These two test sets are shown in Figs. 2 and 3
respectively.

Figure 4 shows the resulting color thematic maps for
the original Montana test set and its compressed/recon-
structed versions at a compression ratio of 8, which
corresponds to a coding bit rate of 1 bits per pixel. A
total of 14 classes are chosen for the classification pro-
cedure. Visual inspection of the thematic maps does not
reveal many changes in the outlined classes. To accu-
rately register the changes we resorted to confusion
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Figure 2. Small footprint test set (seven 512 × 512, 8 bits per pixel LANDSAT TM spectral images of a scene in Montana,
footprint = 30 m)

Figure 3. Large footprint test set (five 1024 × 1024, 10 bits per pixel NOAA’s AVHRR spectral images of UK, footprint = 1.1 km)
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matrix evaluation. Figure 5 shows the corresponding
confusion matrix. Figure 6 depicts the overall accuracy
versus the compression ratio. It can be observed from
the graphs that, at an 8-to-1 compression ratio, more
than 81 percent of the pixels will be classified the same
as done with the original imagery data. This, however,
should not be interpreted as a loss of 19 percent in clas-
sification accuracy due to an 8-to-1 compression. The
impact is much smaller since the pixel classification
based on the original data is not perfect either. Even
without compression, it is common to misclassify more
than 10 percent of the pixels due to others sources of

 (a)  (b)

Figure 4. 14-class thematic map produced from (a) the original Montana test set and (b) its reconstruction at 8-to-1 compression
ratio

Figure 5. Confusion matrix for Montana thematic map at compression ratio of 8

inaccuracies in the original data and the relevant pre-
diction models. For this reason it is reasonable to as-
sume that the impact of compression on classification
is insignificant at compression ratios on less than 8.

Figure 7 shows the results of spectral unmixing
applied to the original data and its reconstruction at
10-to-1 compression ratio, i.e., one bit per pixel coding
bit rate. Visual examination does not reveal any changes
between the resulting two sets of abundance images.
Figure 8 shows the corresponding difference images that
are contrast-stretched to reveal any residual structures
present. The mean absolute difference between each pair
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(a) (b)
Figure 7. Spectral unmixing results for (a) the original data, and (b) reconstructed data at a compression ratio of 10-to-1.

Figure 6. The Overall Accuracy with different Compression Ratios

Figure 8. The difference images between abundance image sets in Fig. 7
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of abundance images appears in Fig. 9. The impact of
compression ratio on the average mean abundance im-
age difference is shown in Fig. 10 for various compres-
sion ratios. It can be observed that at an 8-to-1
compression ratio, the resulting mean absolute differ-
ence is about six percent. Again, considering the pres-
ence of other sources of inaccuracies in the original data
and the relevant prediction models, the effective loss of
fidelity of the pixels in the abundance images (at 8-to-1
compression ratio) is likely in the order of three per-
cent. Thus a compression ratio of 8-to-1 is likely to have
insignificant impact on classification of large-footprint
AVHRR imagery as well.

Conclusion
The impact of lossy compression on the classification of
the remotely–sensed imagery data was examined. The
impact of compression was assessed for both types of
classifications, i.e., classification via thematic map for
small-footprint imagery, and classification via spectral
unmixing (decomposition into abundance images) for
large-footprint imagery. Experimental results. It was
shown the impact of compression is insignificant for
compression ratios of less than 8.

In general, the quality of the final product derived
from the data is based on the interaction of several pro-
cessing components, which include the precision of the

original data as well as the accuracy of the relevant pre-
diction models. Lossy compression of sensor data can
also be considered as an additional component in the
accuracy of the final product. As such, the effective im-
pact of compression is reduced by the presence of these
others sources of inaccuracies in the data.    
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