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side of each microsphere rotates upward. For example,
when the white side is negatively charged, a positive
charge on the electrode will cause the white side to ro-
tate upward. Then the patterns of black and white can
create images.

 The balls are also known to develop a monopole
charge equal to the net charge on the ball. Upon appli-
cation of an electric field, the balls move across their
cavities and rotate. Upon reaching the wall of its cav-
ity, the rotation of each ball is arrested and this is the
basis of the bi-stability of the display.

In this article, we will report the experimental results
for the ball rotation using enlarged models, and its theo-
retical study, with particular emphasis on the thresh-
old and the response time, as a function of the electric
field and the size of the ball.

Experiment
Ball behavior was observed using enlarged model balls
that are 100 times larger than those anticipated to be
used in practical display sheets. The experimental ap-
paratus is shown in Fig. 2. A ball made of nylon whose
surface is divided into two areas with different colors
and electric charges, is placed between two electrodes
and floated at the boundary between two dielectric liq-
uids with different specific gravities (Exxon Isopar-
GTM:0.75 and 3M fluorocarbon PF-5052:1.70). DC volt-
age is set between the pair of electrodes, and the rota-
tion of the ball is recorded using a video camera (SONY
DCR-TRV10). The response time was defined as the time
taken for a ball to rotate 180 degrees. These experiments
were repeated using balls with diameters of 3.2, 4.0,
4.8 and 5.6 mm. The representative conditions of the
ball in the experimental cell are shown in Fig. 3. Fig-
ures 3(a), (b) and (c) show the ball before, under and
after rotation, respectively. These photographs were
taken perpendicular to the transparent electrodes.

Introduction
The amount of digital information accessed continues
to increase; the rapid spread of the internet is clearly
one of the major causes. We can choose soft copy or hard
copy to access digital information. Generally speaking,
hard copy offers ease of reading and simpler handling;
soft copy offers the advantages of ease of digital pro-
cessing and reuse. Digital paper1 appears to be the ideal
medium that combines the advantages of both hard copy
and soft copy. Over the years, several groups have in-
vestigated various candidates for digital paper, includ-
ing reflective liquid crystal systems, electrical twisting
ball displays2–5 and electrophoretic image displays.6 This
study focuses on the twisting ball display, which we be-
lieve to be a promising candidate technology.

The twisting ball display is a bi-stable display, which
consists of a large number of 30–100 µm diameter balls
dispersed in a dielectric liquid in a transparent poly-
mer sheet as shown in Fig. 1. Each ball has two colors:
one hemisphere is black, the other white. The black and
white hemispheres have different electric charges. Two
electrodes are placed on the front and back of the sheet.
The electric charge on the electrodes determines which
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Results and Discussion
Threshold Electric Field

There is a threshold for the initiation of ball rotation
because the balls stick to their cavity wall in the case of
the practical twisting ball display, and to the glass elec-
trodes in the case of our experimental apparatus. Fig-
ure 4 shows the threshold electric field required for the
rotation of balls with diameters of 3.2, 4.0, 4.8 and 5.6
mm (represented by the solid dots in the figure). These
threshold electric fields tend to increase with ball di-
ameter although the reason why a higher electric field
is required with a larger ball is unclear at present. Pre-
sumably, however, the reason for this is related to the
amount of surface electric charge, since the surface area
relative to the volume of the ball increases as the ball
size decreases. The higher surface electric charge rela-
tive to the ball volume has an advantage with respect
to the driving moment for the ball rotation.

On the other hand, the threshold electric field of a
practical twisting ball display with a 100 µm ball is cal-
culated to be ca. 1300 V/cm using data from the litera-
ture.5 The calculated data point (represented by the
hollow dot) falls on the dashed line extrapolated from
the experimental data in the figure. Therefore, it seems
that our enlarged model can be used to predict the
threshold at which rotation begins in a practical twist-
ing ball display.

However, we think that confirming the correctness of
this model requires consideration of other parameters.

Figure 1. Schematic diagram showing twisting ball display.
Supplemental Materials can be found in color on the IS&T
website (www.imaging.org) for a period of no less than two years
from the date of publication.

Figure 2. Experimental apparatus. Supplemental Materials can
be found in color on the IS&T website (www.imaging.org) for a
period of no less than two years from the date of publication.

Figure 3. (a) Ball rotation in experimental cell (before rota-
tion); (b) ball rotation in experimental cell (under rotation);
and (c) ball rotation in experimental cell (after rotation).
Supplemental Materials can be found in color on the IS&T
website (www.imaging.org) for a period of no less than two years
from the date of publication.
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This is because there are some differences between our
experimental model and a practical twisting ball dis-
play. The physics of a practical twisting ball display was
considered by Pham and co-workers5 However, not all
of this analysis applies to our experimental model, as
well be discussed later.

According to Pham and co-workers,5 in the case of
practical twisting ball display, the sticking of the balls
to their cavity walls is believed to have three causes,
which will now be considered separately.

1) First of all, there is the van der Waals force that gen-
erally causes small objects to stick to one another.
Van der Waals force is the attraction between oppo-
sitely charged ends of momentary, induced dipoles in
neighboring molecules. These forces act between all
molecules, even non-polar ones.

2) Secondly, the settling of a spherical ball into a soft
spherical cavity constitutes a kind of hydraulic
trap. As the ball is pulled into the wall by the
monopole charge acted on by the electric field, the
dielectric liquid is forced out and the wall distorts.
So where the polymer which makes up the cavity
is soft, there will be significant distortion of the
wall by the ball.

3) The third force is believed to come from the electri-
cal double layer at the interface between the ball
surface and the dielectric liquid. The charge on the
hemisphere of a ball is distributed over its surface
and is just balanced by the total charge in the double
layer, which consists of two regions: an inner region
which may include adsorbed ions, and a diffuse re-
gion in which ions are distributed according to the
influence of electrical forces and random thermal
motion. As the ball nestles into the socket formed by
the soft polymer, the dielectric liquid which is ex-
cluded carries an excess of oppositely charged ions,
leaving the charged ball partially unshielded. This
charge is then attracted to its image charge in the
adjacent electrodes, pulling the ball into even tighter
contact with the cavity wall.

In the case of our model, it seems that only the third
of these forces applies. This is because, firstly, van der
Waals forces have a very short range; they act only be-
tween the portions of different molecules which are in
close contact, that is, between the surfaces of molecules.
Secondly, our experimental apparatus does not have any
cavities made of soft polymer that would produce a hy-
draulic trap.

Response Time
Figures 5 and 6 show the response time curves as a

function of electric field for our experiment with 3.2 and
4.8 mm balls, and for a practical twisting ball display
cited in literature,5 respectively. Essentially the same
relationships between the response time, electric field
and ball size were observed both in our model experi-
ment and for the practical twisting ball. The response
time decreases as the electric field increases. Further-
more, the response time increases as ball size increases.

Theoretical Study of the Ball Rotation
A theoretical study was carried out in order to under-

stand the experimental results of the ball rotation above.
We looked at the rotation of a ball from its cross-section
in order to simplify its behavior as shown in Fig. 7.

A Coulomb force is created when electric field, E, is
applied, because the ball has an electric charge. The
surface electric charge densities of the black and white
regions are different (σb and σw, respectively). When the
boundary between the black and white regions is θ de-
grees off the perpendicular to the electric field, a driv-
ing moment, M, is created and the ball starts to rotate
because of the difference in electric charge density be-
tween the black and white regions. The rotation cre-
ates a dragging moment, m, because the dielectric liq-
uid around the ball has viscosity, µ. Then the motion
equation can be written as in Eq. (1), using the driving
moment, large M, the dragging moment, small m, and
the inertia moment, I.

    M m I d dt− = 2 2θ / (1)

Figure 4. Threshold electric field required for the rotation of
balls with diameter of 3.2, 4.0, 4.8, and 5.6 mm. The dashed
line in Fig. 4 is a line of best fit through our experimental
data points.

Figure 5. Response time curves as a function of electric field
for enlarged model experiment.
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Let us start with the driving moment, M. Figure 8
shows a unit disk that has been sliced from the ball
parallel to the electric field. It is being observed per-
pendicular to the field. Moments ∆Mb and ∆Mw are de-
fined as unit moments at angular position α and α + π,
respectively. The moment of the unit disk, ∆M, is de-
scribed by Eq. (2) using the Coulomb force, F, and elec-
tric charge, q.

    ∆ ∆ ∆M M M F q E r q E rb w b b w= − = = −sin sin sinα α α  (2)

Considering q equal to σr, we can rewrite Eq. (2) as:

    ∆M Er Er Erb w b w= − = −( )σ α σ α σ σ α2 2 2sin sin sin  (3)

The term (σb – σw) represents the difference in the sur-
face electric charge densities of the black and white re-
gions of the ball. When σb – σw = σ, the unit moment,
∆M, is finally described as:

∆M = σEr2 sin α (4)

The effective moment on the disk is considered only
within the following limited range of angles α:

  π θ α π θ/ /2 2− ≤ ≤ + (5)

The total driving moment on the unit disk is written as:

    

M Er ddisc =
−

+

∫π θ

π θ
σ α α

2

2 2 sin (6)

Figure 8 also shows a unit disk that has been sliced
from the ball parallel to the electric field. It is being
observed parallel to the field. The center plane of the
disk is offset by the distance y forming the ball center.
The radius of the disk, r, is given by the ball’s radius, R,
and coordinate, y, as follows: r = (R2 – y2)1/2. The driving
moment for the whole ball is written as:

Figure 6. Response time curves as a function of electric field
for practical twisting ball display (data from Ref. 5).

Figure 7. Cross sectional view of a ball.
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Equation (8) can be derived from Eq. (7):

M = (8/3)σR3Esinθ (8)

Moving our attention to the dragging moment of the
ball, we write the dragging moment, m, as:

m = 8πµ Rc3R3/(Rc3 – R3) dθ/dt (9)

where Rc is the radius of a cavity sphere that has the
same center as the ball. When the radius, Rc, is suffi-
ciently large, Eq. (9) can be rewritten as:

m = 8πµ  R3 dθ/dt (10)

We note that Eq. (9) and Eq. (10) were cited in Hydro-
dynamics by Lamb,7 and the calculations were carried
out in detail in that reference.

The inertia moment, I, of the ball is determined us-
ing the specific gravity of the ball, ρ, as8:

I  = (8/15) π ρR5 (11)

Using Eqs. (8), (10) and (11), we can rewrite Eq. (1)
as:

 (8/3) σR3Esinθ – 8πµ R3 dθ/dt = (8/15)π ρR5 d2θ/dt2  (12)

which can, in turn, can be rearranged as:

5σEsinθ – 15πµ dθ/dt = (πρ R2) d2θ/dt2 (13)

This theoretical result suggests that the response time
for ball rotation is dependent on the difference in sur-
face charge densities between the black and white re-
gions of the ball, σ, the electric field, E, the viscosity of
the dielectric liquid, µ, the specific gravity of the ball, ρ,
and the radius of the ball, R. The 5σEsinθ term in Eq.
(13), which correlates to the driving moment of the ball,
becomes larger with higher electric field, E, while the
πρ R2 term, which correlates to the inertia moment of
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the ball, becomes smaller with smaller balls. The mo-
tion equation, Eq. (13), indicates that quicker response
time in higher electric fields and with smaller balls re-
sults, at least in part, from the larger driving moment
and the smaller inertia moment. This is an example that
demonstrates good agreement between the theoretical
study and the experimental results, although further
consideration of the relationship between the theoreti-
cal study and the experimental results requires a solu-
tion of the differential equation, Eq. (13), is the next
step in this study.

Conclusions
The threshold at which rotation begins and the rota-
tion of the balls in an electric field were clarified ex-
perimentally using the enlarged scale model. We found
that our enlarged scale model can be used to predict the
threshold electric field of a practical twisting ball dis-
play, although further experimental work on other pa-

Figure 8. Rotation moment on the unit disk sliced from the
ball parallel to the electric field, E. It is being observed per-
pendicular to the field. Supplemental Materials can be found
in color on the IS&T website (www.imaging.org) for a period of
no less than two years from the date of publication.

Figure 9. Unit disk sliced from the ball parallel to the electric
field, E. It is being observed parallel to the field.

rameters is needed to confirm this model. The response
time both of our model and the practical twisting ball
display depend on the electric field, E, and on the ra-
dius of the ball, R. The motion equation derived from
our theoretical study explains the experimental results
quantitatively.    
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