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reasonable performance today, their color reproduction
is still perceptibly different from the original scene.
Major reasons for this are the difficulties of selection
and fabrication of transmittance filter sets that are
suitable for color imaging devices. Basically two primary
factors—the non-Luther condition due to the practical
limitations in the designing and manufacturing of these
filters and the intrinsic imaging noise in the capture
process, limit their color reproduction accuracy. The
optimal design of the spectral sensitivity functions
should account for both factors. A criterion for evaluating
and optimally designing the spectral sensitivities is
therefore desirable.

The concept of the so-called “quality factor” was first
introduced by Neugebauer.2 For various purposes, quite
a few quality metrics2–8 have been introduced so far. All
these metrics for evaluating and designing spectral
sensitivities striving for colorimetric reproduction can
be categorized into two types. The first type describes
the geometrical difference between the subspaces of
color matching functions and spectral sensitivity
functions. These quality factors are often sample-
independent and do not consider the imaging noise, but
only consider the difference between the subspaces
through linear transformation. Typical metrics are
Neugebauer ’s q-factor,2 for the evaluation of single
imaging channel, Vora–Trussell’s q-factor extension, or
µ-factor,3 for the colorimetric evaluation of multi-channel
system with an arbitrary number of channels, and the
Color Quality Factor (CQF),5 already used in the
industry for the colorimetric evaluation of individual
imaging channels. The second type describes the

Introduction
The design and image quality of any color imaging device
depend on the human visual system and real world
constraints. The human visual color perception can be
described by the tristimulus theory that involves the
linear combination of three different photoreceptor ty-
pes with known spectral sensitivities in the visible
range. The Commission Internationale de l’Eclairage
(CIE) has characterized the normal human visual color
perception with color-matching functions for a standard
observer and defined standard color spaces, including
the non-uniform CIE XYZ and uniform CIELAB spaces.1

These standards are fundamental for colorimetry and
for the transformation and sharing of color information.
Color input devices such as cameras and scanners that
seek for colorimetric reproduction (as well as color
appearance match or preferred color reproduction) of
object colors must take into account the characteristics
of the human visual system in their design and in the
understanding of the output data from the physical
sensors. Although these input devices have reached
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minimized average color error between the estimated
and reference color attributes for a set of user defined
samples of reflectance spectra in CIE color spaces. The
linear transformation from camera RGB signals to CIE
XYZ values is determined by minimizing the color error
and a data dependent metric can be defined based upon
this procedure. Imaging noise may or may not be
considered during the minimization procedure. In this
category, there are Shimano’s Qst and Qsf metrics,7,8

minimizing the average color error in CIE XYZ space
without noise consideration, Tajima’s indices,4 taking
account of object color spectral characteristics of
principle components, Hung’s CRI (Color Rendering
Index),5 and Sharma-Trussell’s Figure of Merit (FOM),5

an extensive but pretty complicated quality factor,
minimizing the color error in a perceptually uniform
color space while taking account of the white noise in
the recording process. A few above-mentioned simpler
quality factors can be attributed to the special forms of
FOM.6 We extend the FOM as Unified Measure of
Goodness (UMG) in this study so that it includes both
the signal independent and signal dependent imaging
noises, e.g., dark noise and shot noise, as well as multi-
illuminant color correction, to be described in the
following section. Notice that the data dependent
metrics may show different trends for different data sets,
selection of standard set for those metrics should be
cautious and consistent. The 24 Macbeth ColorChecker
patches are used as standard samples in our
computation due to the widespread use of this target in
color imaging area and its representativeness of a much
larger set, such as the Vrhel–Trussell dataset containing
354 color samples.9,10

A lot of effort has been put into the filter design is-
sue. Ohta started the evaluation and optimization of
sensitivities in subtractive imaging systems.11,12 Wolski,
and co-workers reviewed the major work done before
them,13 including Davies and Wyszecki,14 Engelhardt
and Seitz,15 Vrhel and Trussell,16 Vora and Trussell.3,17

Tsumura, and co-workers optimized three channel
Gaussian-shaped filters with noise presence by
minimizing CIE color difference with simulated
annealing.18 Wolski and co-workers also optimized the
sensor response functions for colorimetry of reflectance
and emissive objects under multiple illuminants,13 and
the optimization is carried out in CIELAB color space
with smoothness constraint. Sharma and Trussell also
carried out the optimal searching of transmittance
filters,19 but not with their proposed FOM metric, they
were looking for the nonnegative filters with the
presence of white noise in the similar way as Vrhel and
Trussell did.16 Notice that all of those efforts were
successful in some aspects, but also have some respec-
tive disadvantage. A satisfactory solution should take
into account, both data independent and data dependent
performance, as well as signal independent and signal
dependent noises, and the objective function of
optimization should be implemented within a
perceptually uniform color space or color appearance
space. Furthermore, most of these studies give optimal
curves in theoretical sense, which need be approximated
with manufacturer’s filter component set during fabri-
cation process. This approximation will induce error
resulting in the fabricated curves deviated from the
ideally optimal ones, which may make the theoretically
optimal set practically not optimal any more. The opti-
mal design approach would optimize the imaging
channels directly as a parameterized model of the filter
manufacturing process, e.g., the selection of the filter

components with their thickness used in each channel.
In such a case, it is unnecessary to assume the spectral
sensitivities to be smooth, since in practice most of them
are not strictly smooth, also the designed spectral
sensitivities are guaranteed to be non-negative, because
the filter components used are always non-negative. We
will demonstrate this new strategy to optimize filters
for a high-end digital camera in this article.

The article is organized as follows. A data independent
metric, µ-factor will be briefly introduced, followed by a
detailed description of the proposed data dependent
metric, unified measure of goodness. Both metrics are
chosen as criteria to the optimal design of spectral
sensitivities for colorimetric reproduction. Hierarchical
approaches are adapted, and results of optimal design
from two approaches are reported and compared.

The Colorimetric Quality Factors
Vora and Trussell’s µ-Factor

The Luther condition requires that the spectral
sensitivities be the linear combinations of the color
matching functions.20 This strict relationship may not
easily follow in the real world, although intuitively the
closer the approximation of the Luther condition is, the
better colorimetric reproduction performance is
expected. µ-Factor introduced by Vora and Trussell
characterizes the deviation of the Luther condition,
which has been widely discussed.3–5,21 In brief µ-factor
describes the geometrical difference between the
fundamental subspaces22 of the CIE color matching
functions (CMF) A and some set of camera spectral
sensitivities (SS) S:

    

µ =
{ }

{ }A

T T

T
S

Trace O UU O

Trace UU
( ) (1)

where O and U are the corresponding fundamental
subspaces of A and S, and Trace{⋅} calculates the
summation of diagonal elements in a matrix. Similar
equation without using the orthonormal space concept
can also be used to characterize this difference.21 Equa-
tion (1) is an elegant description of the requirement of S,
but it is incomplete to deal with the practical problems,
e.g., the imaging noise. It is possible to design and
fabricate a set with high colorimetric spectral sensitivity
functions in terms of µ-factor but, at the same time, with
poor practical colorimetric reproduction performance,
because some spectral sensitivity functions may amplify
much more noise than others in the signal processing
chain (Fig. 1). On the other side, the human visual
system may prefer less noise appearance to colorimetric
accuracy. Therefore this factor only described one as-
pect of requirements for spectral sensitivities.

CCD Noise Model
Electronic imaging is a process of converting photons

to electrons. Noise is intrinsic in electronic imaging
process, and is found commonly existed in the following
forms: photon noise or shot noise, dark current noise,
fixed pattern noise, photo response non-uniformity
noise, reset noise, 1/f noise and quantization noise.23,24

It is application dependent to select which types of noise
should be considered. In this application, noises are
categorized into two types: signal independent noise,
represented by Gaussian-type noise, such as dark noise
and thermal noise, and signal dependent noise,
represented by shot noise, or photon noise. It is known
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that the photon arrival behavior fulfills Poison distri-
bution, so the signal uncertainty, or noise variance
equals the noise mean.

In this study, the following noise model was used:9,24.25

E(noise : η) = 0 (2)

    var( : )noise d i d iη σ σ ρ σ ρ ση= = + µ = +2 2 2 2 2 2 (3)

where σd
2 denotes the dark noise variance, µi represents

the input signal intensity, σi
2 denotes the shot noise va-

riance, and ρ describes the total photon-electron con-
version quantum efficiency coefficient of CCD. Equation
(3) was experimentally verified for typical digital camera
by Burns.25 Because Eq. (3) applies to the number of
photons in practical device characterization, for
convenience, the noise levels are represented with digi-
tal counts relative to the digital count of maximal si-
gnal. The dark noise is the variation of signal digital
counts while the camera shutter is turned off, and the
real coefficient associated with shot noise (k = ρ2) can
be obtained by fitting Eq. (3) with a series of signal levels
and the corresponding signal variations.

Figure 1 illustrates the raw device signals are white
balanced, converted to CIE XYZ values, and transformed
into target color space to match output devices in the
signal processing chain. The noise in the capture stage
will be propagated and amplified by the series of linear
and nonlinear transformations. Root-mean-square
(RMS) noise can be defined in the target space as the
noise level for a given set of spectral sensitivities and
illuminant.

Unified Measure of Goodness
Since noise is unavoidable, and practically is not

limited to signal independent noise as assumed in FOM,
a metric representing color reproduction performance
should include both signal independent noise and signal
dependent noise. This new metric is proposed by taking
account of the following properties: the average color
difference for an ensemble of standard reflectance
samples in a perceptually uniform color space is
minimized; the input noise, which is modeled as mix-
ture of shot noise and dark noise, is propagated into the
target color space while the signal is processed, and a
linear matrix converting camera RGB to CIE XYZ is
obtained through the minimization of noise propagation.
Furthermore, a strategy striving for multi-illuminant
color correction is incorporated. All these important as-
pects are unified into a single metric—UMG.

Let r denote reflectance of object color, Lv denote the
diagonal matrix with the spectral power distribution of
viewing illuminant along its diagonal, Lc denote the

taking illuminant also in diagonal form. The average
color difference as Euclidean distance in the uniform
color space is minimized using the following mean
squared color error as cost function:

    
ε = −{ }E F t F F tc( ) ( )0

2
(4)

where t = ATLvr = AT
Lr is the reference CIE XYZ values,

tc = STLcr + η = GT r + η is the camera output signal with
noise modeled by Eqs. 2-3, AL = LvA, G = LcS, F0 linearly
transforms tc into CIE XYZ to match t, t′ = F0tc, and

F(•) = Fn(…F2(F1(•))) (5)

sequentially transforms the tristimulus values into the
interested high-level target color space, e.g., CIELAB,
or CIECAM97s via linear or nonlinear transformations
F1, …, Fn as shown in Fig. 1. For deriving our metric, F0

is assumed to be a linear matrix, although in reality, a
number of techniques may be implemented to define this
transformation, including polynomial transformation,
look-up table etc. If F1, …, Fn are approximately
differentiable with continuous first partial derivatives,
a first-order Taylor expansion provides a fairly accurate
locally linear approximation for each of them:

    
F x x F x J x xi i Fi

( ) ( ) ( )+ − =∆ ∆ (6)

where
  
JFi

 is the Jacobian matrix consisting of first-
order partial derivatives. With the law of chains for
first derivatives,

      

F x x F x J F F x x J x x
i

n

F i Fi
( ) ( ) ( ( ( ))) ( )+ − = =

=
−∏∆ ∆ ∆

1
1 1L  (7)

where JF is the combined Jacobian matrix. By applying
Eqs. (6) and (7), Eq. (4) can be approximated by

    

ε ε≅ = −{ }
= −{ }

l F c

F F c

E J t t F t

E J t t J t F t

( ) ( )

( ) ( ) )

0
2

0
2 (8)

To minimize Eq. (8) and obtain a close-form of F0, we
start from the simple least-squares technique. For a
least-squares problem of finding optimal b such that Yb
= x, or

    
min ε = −{ }x Yb 2

(9)

Figure 1. Signal processing pipeline in a digital camera, where Fs are functions describing signal transformations.
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where ε is regression error, measurement x is fitted with
Y by b. The solution of b is obtained with Moore–Penrose
(MP) pseudo-inverse22

b = (YTY)–1YT x (10)

Therefore the minimized mean square error is

    

ε

α τ

min ( )

( ( ) ) ( ( ) )

( ) ( ) ( , )

= − = −

= − −

= − = −

−

− −

−

x Yb x Y Y Y Yx

x Y Y Y Yx x Y Y Y Yx

x x x Y Y Y Yx x x Y

T

T T T

T T T

2 1 2

1 1

1

(11)

where     α ( )x x xT≡  and     τ ( , ) ( )x Y x Y Y Y YxT T≡ −1 . The ratio

    
q

x Y
x x

= = −τ
α

ε
α

( , )
( ) ( )

min1 (12)

defines the goodness of fitting. If q → 1, εmin → 0, the
fitting becomes perfect.

Equation (8) is not in the apparent form of Eq. (9).
The Kronecker product and vec operator26 can be applied
to convert it to Eq. (9), as did by Sharma and Trussell,5,27

and Wolski and co-workers.13 The Kronecker product
transforms two matrices A = (aij) and B = (bst) into a
matrix C = A ⊗ B = (aijbst), and the vec operator
transforms a matrix into a vector by stacking its columns
one underneath the other. For arbitrary matrices, T, U,
V, and W with appropriate sizes, the following results
hold:26,27

    

( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )

T U V W T V T W U V U W
T U V W TV UW

T U T U

vec UVW W U vec V
T U V W TV UW

T U T U

TUVW vecW V T vecU

T T T

T

T T T

+ ⊗ + = ⊗ + ⊗ + ⊗ + ⊗
⊗ ⊗ = ⊗

⊗ = ⊗

= ⊗
⊗ ⊗ = ⊗

⊗ = ⊗

= ⊗

− − −1 1 1

trace

(13)

Applying Eq. (13) onto Eq. (8),

    

J t A r

vec J t A r r J t vec A

J t F G r

vec JF t F G r G r J t vec F

F L
T
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T T
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T

F
T

T T T
F
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( ( ) ) ( ( )) ( )

( ) [ ]

( ( ) [ ]) [( ) ( )] ( )
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+
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0

0 0

η

η η

(14)

For notational simplicity, denote

    

b vec F

x r J t vec A

Y G r J t

T
F L

T

T T
F

=

= ⊗

= + ⊗

( ),

( ( )) ( ),
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η

Then

    

ε l L

T T T

A G F

E x Yb

E x E x Y b b E Y Y b

( , , )

{ } { }

0

2

2 2

= −{ }
= { } − +

(15)

Notice that Eq. (15) has similar form to Eq. (9), clearly
a minimum exists and the optimal transformation bopt:

    
vec F b E Y Y E Y xopt opt

T T( )0

1
= = { }[ ] [ ]−

(16)

Now applying Eq. (16) onto Eq. (15), the corresponding
minimal error is similar to Eq. (11):

    

ε l L opt

T
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T T
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T T T

A G F
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where
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where I3 denotes the 3 × 3 identity matrix. Also,

    

E Y x

E G r J t r J t vec A
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According to the aforementioned CCD imager noise
model, the recording noise η is zero mean and dependent
of signal, or the object reflectance spectrum r. The noise
variance is

    
E k kG rT

d i d
Tηη σ σ ση[ ] = = + µ = +2 2 2 (21)

where r is the object sample reflectance, G denotes the
product of spectral sensitivities S and illuminant spectral

(19)
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power distribution Lc, and k is the constant describing
the shot noise property according to signal level µi. The
noise mean is

    E[ ] .η = 0 (22)

For specific ri, the noise can be treated as independent
variable from signal since the noise variance in Eq. (21)
is constant, thus:

    

E r J t J t

n
E E r E J t J t

T
F
T

F

sample i

n

i i
T

F
T

i F i
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0
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(23)
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where   
K

dσ  is the dark noise covariance matrix, diag (•)
and  convert a vector to a diagonal matrix, nsample is the
total number of samples in the standard testing target,
and ti = AT

Lri is the tristimulus values of the ith sample.
The optimal transformation from camera RGB to CIE

XYZ is given by
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where
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The minimal color error in Eq. (8) can then be written as

    ε α τmin ( , )= ( ) −A A GL L (29)

where
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In Eq. (29), α(AL) may be interpreted as the total
colorimetric information of object colors, and τ(AL,G) is
the colorimetric information that can be obtained with
the spectral sensitivity functions in G. A new metric for
single viewing-taking illuminant pair can be defined as
Eq. (32). Note that the mean square color error is
minimized, to obtain a linear relationship between UMG
and averaged color error, Eq. (32) is further linearized
into Eq. (33):5

    
q A G F

A G
AL
L

L
( , , )

( , )
( )

= τ
α (32)

    θ = − −1 1 q A G FL( , , ) (33)

Since the taking (recording) and viewing illuminant
may be different, a quality factor can be defined for each
pair of taking and viewing illuminants if multiple
interested illuminants need be considered. For example,
if the viewing illuminant can be chosen from a set of
illuminants {

    
L L Lv v vi i n

, , ..., } and the taking illuminant
can be chosen from another set of i l luminants
{
    
L L Lc c ci i m

, , ..., } a quality factor matrix M can be defined
as follows:
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
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where θij is the metric described by Eq. (33) correspond-
ing to illuminant pair (

    
L Lv ci i

, ).
Therefore, a comprehensive quality factor UMG for

all the taking-viewing-illuminant pairs may be defined
as the weighted average of all elements in M:

  
    

Θ =
= =
∑ ∑1

1 1
nm

w
i

n

j

m

ij ijθ   while 
    i

n

j

m

ijw
= =
∑ ∑ =

1 1

1 (35)

where wij is the weight determined by camera
manufacturers, quantifying the importance of the
corresponding illuminant pair (

    
L Lv ci i

, ).
The typical relationship between the UMG defined in

CIELAB and the average color difference for a set of
reflectance samples in CIELAB has been shown as
roughly linear for UMG value in reasonable range. In
Fig. 2, the dark noise RMS was assumed to be 20
electrons, the photon-electron conversion quantum
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efficiency is assumed to be 80%, and the maximal si-
gnal level corresponds to 104 electrons, 500 sets of spec-
tral sensitivities generated from the application
described below were used as test targets, the UMG
value and RMS noise in CIELAB was calculated for each
set of SS and represented as a dot in the plot. It also
shows that the set of SS with larger UMG value roughly
corresponds to a smaller RMS noise.

Notice that UMG requires much more computation
than µ-factor, due to the fact that evaluating UMG needs
calculating multiple statistical information for all object
samples in the standard set, it is recommended to avoid
large-scale UMG computation. The significant difference
between UMG and FOM is that a practically verified
CCD imaging noise model is incorporated with UMG.
Since the shot noise dominates when signal is at or above
average level, the signal independent noise assumption
is incorrect, reflected into filter design, the filters
obtained with UMG should offer more confidence than
those obtained with FOM. The detailed performance
comparison between FOM and UMG is not the focus of
this article but will be discussed in the future.

Application: Designing Color Filters for
Colorimetric Reproductions
Background

A high-end black and white digital camera system,
Roper Scientific Photometrics QuantixTM, was purchased
at the Munsell Color Science Laboratory. It is essentially
a panchromatic black and white camera since no color
filters were designed for it yet. In this practical appli-
cation, multiple channel spectral sensitivity functions
will be determined from a set of available bandpass
filters, infrared cutoff filters and longpass glass filters.
The known data are the total spectral sensitivity of the
electronic sensor, including the optimal lens and the
total infrared cutoff filter, and the transmittance spectra
of given basic filter components. Optimally, three to five
spectral sensitivity functions for colorimetric reproduc-
tion with noise consideration are expected.

The normalized total monochrome detector spectral
sensitivity function is measured on the spot, which

Figure 2. The relationship between UMG with noise
consideration and average color difference ∆E*.

includes the spectral sensitivity of CCD sensor, the
transmittance of the optical lenses and a total IR cutoff
filter, as shown in Fig. 3(a). This black and white
sensitivity is measured for a given setup of the camera,
and the sensor sensitivity is assumed constant once the
camera configuration is fixed.

There are 14 bandpass glass filters (VG-type and BG-
type Schott Glass) avoidable. The transmittance of filter
with 3 mm thickness is shown in Fig. 3(b). These filters
are important to shape the green and blue channels for
digital cameras when they are combined with longpass
filters. It is possible to obtain the red channel as well if
they are combined with some infrared cutoff filters.

There are 7 basic infrared cutoff glass filters (2 BG-
type, 5 KG-type Schott Glass) in the set, whose
transmittance is shown in Fig. 3(c) when the thickness
is 3 mm. The two BG-type filters have rich variation
from 400 nm to 650 nm, while the five KG-type filters
varies from 600 nm to 700 nm, but changes slowly
between 400 nm and 600 nm, which is a crucial
wavelength interval for color image capturing.

The transmittance of the 19 basic longpass cutoff glass
filters (GG-type, OG-type and RG-type Schott Glass) is
shown in Fig. 3(d), where the thickness is still 3 mm.
Their transmittance spectra typically have sharp edges
and do not vary too much if the filter thickness changes
within certain range, such as 1 mm – 3 mm.

The transmittance of all these filters is based on a
thickness of 3 mm, which can be easily varied to 2 mm
and 1 mm according to the manufacturer. For 2 mm and
1 mm thickness, according to Bouger ’s Law,28 the
corresponding transmittance can be approximately
represented as:

    T T T T2 mm 3 mm 1 mm 3 mm= =2 3 1 3/ /, (36)

If a filter composed to isolate a certain channel is
obtained by superimposing several filter elements with
different thickness and the reflection between two layers
is omitted, its total transmittance can be written as:

    

T TTotal
i

k

i

xi

=
=
∏

1

3
(37)

where xi and Ti are the thickness and transmittance of
the corresponding filter element i. The total channel
spectral sensitivity including CCD spectral sensitivity
function SSCCD is

    SS SS TCCD Total= ⋅ . (38)

To achieve the transmittance of blue and green
channel sensitivities, let the bandpass filters have
thickness choices of 3 mm, 2 mm and 1 mm, optionally
combined with longpass filters. The BG-type of IR cutoff
filters are more important than the KG filters, and the
thickness of each basic IR can be chosen from 3 mm, 2
mm and 1 mm, totally 21 IR filters. The longpass filters
have sharp cutoff property, their thickness variation
does not change their transmittance shape very much,
so only thickness of 3 mm (or 2 mm/1 mm) may be
selected in order to reduce computation amount,
otherwise a total of 57 longpass filters are available for
three thickness choices. To obtain the transmittance of
red spectral sensitivity function, the combination of
longpass filters and IR cutoff filters, or the combination
of bandpass filters and IR cutoff filters may be used. If

UMG with noise consideration
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the number of filter components for each channel is
limited to two, all possible filter combinations can be
formed as follows:

Bandpass: 14 × 3 = 42 (may be independently used)
IR cutoff: 7 × 3 = 21 (not used independently)
Longpass: 19 × 3 = 57 (may be independently used)
Bandpass × IR cutoff: 42 × 21 = 882
Bandpass × Long-pass: 42 × 57 = 2934
Longpass × IR: 57 × 21 = 1197

The total number of all filters is 4572.

To find the optimal K filters from among these filters,
the total combination is 4572K, for example, the

computation iterations would be 9.56 × 1010 for K = 3. It
can be seen that even for searching three optimal filters
from the set, the computation of single metric evaluation
will take too much time. Some analysis on the filter
property has to be carried out beforehand in order to
reject the apparent non-optimal combinations and
reduce the computation load significantly.

Pre-selection of Spectral Sensitivity Functions
It is a huge computational load to obtain an optimal

set with a brute force search. We need to pre-select filters
in the first step to reduce computation. Our early
research1 on general optimization of hypothetical spec-
tral sensitivity functions shows that, filters with a sin-

Figure 3. (a) The measured total spectral sensitivity function for CCD, optical lens and infrared cutoff filter as a whole; (b)
Transmittance spectra of bandpass filter components; (c) Transmittance spectra of infrared cutoff filter components; (d)
Transmittance spectra of longpass filter components.

(a) (b)

 (c)  (d)
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gle primary peak are preferred, and the possible peak
position of blue channel is located between 400 nm and
500 nm (strictly 420 – 470 nm), that of green channel
between 500 nm and 600 nm (strictly 520 – 560 nm),
and that of red channel between 550 nm and 650 nm
(strictly 570 – 620 nm), obtained with q-factor evaluation
and shown in Fig. 4(a). The blue channel choices then
become 517, for green channel, 1869, and for red
channel, 1368, if the extended peak position ranges are
applied. This will lead to the reduction of the amount of
computation to 517 × 1869 × 1368 = 1.3219 × 109, about
two percent computation amount of the raw brute force
search. If the strict peak position ranges of the three
channels are used, the three numbers are further
reduced to 391, 1075 and 1049. The corresponding
computation load (4.409 × 108) is even less since the
search range is even smaller. It is possible that some
optimal combinations may be discarded when peak po-
sition pre-selection is applied.

For better performance under noisy environment, the
widths of sensitivity functions cannot be too wide, or
too narrow. Figure 4(a) also shows the optimal
sensitivity functions should limit their peak width at
half maximum to less than 120 nm. By assuming the
area of the enclosed rectangle is half of the area under
the single peaked sensitivity curve, as illustrated in Fig.
4(b), the full-width, at peak-to-peak, can easily be
estimated. Those filters with width less than 120 nm
and strict peak position ranges are then obtained. The
possible choices for blue, green and red channels are
now reduced to 384, 601 and 402. This reduces the total
evaluation iterations to 9.2 × 107, which is a more
suitable computation to be finished within days using
current typical desktop personal computers.

Optimization with µ-factor
The evaluation of spectral sensitivities with µ-factor

is much faster but it does not consider noise, while the
evaluation with UMG is slow, but it considers more

practical issues of spectral sensitivities. It is a better choice
if advantages of both metrics can be utilized in designing
optimal spectral sensitivities. A few tests were conducted
for two different approaches, that is, optimization with
µ-factor then refined with UMG, or optimization with
UMG then refined with µ-factor. In the first trial, 400
optimal combinations will be obtained with µ-factor
since the evaluation of µ-factor is much faster.

Since the measured noise model of the specific camera
was not available, the noise is determined by Signal-to-
Noise Ratio (SNR), which implies signal independent,
zero-mean white noise. The SNR is defined as
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where J is the number of channels, Kr is the correlation
matrix of the standard samples. Therefore the noise va-
riance (per channel) is specified as
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SNR(dB)/10 (40)

Strictly the signal dependent noise was not currently
considered according to Eqs. (39) and (40). In fact, for
the same CCD, lens and IR cutoff filter, different color
filters should give different SNR performance, so the
assumption of the same SNR for all color filter sets is
not strictly correct. The corresponding UMG values are
calculated for the 400 sets by assuming the system SNR
to be 45 dB, which is more or less a reasonable perfor-
mance level for most color imaging devices, or 80 dB,
that is, the noise is near zero. The most favorable set of
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three filters in terms of µ-factor is shown in Fig. 5(a),
with a µ-factor of 0.988. But this kind of shapes as a
whole is weird and is not desired when compared with
available camera spectral sensitivities sets,6 since the
transmittance of the green channel is totally enveloped
under the red channel. Examining all 400 sets, most of
them have such kind of unfavorable shapes. They have
high µ-factor (>0.98), but their UMG values at 45 dB
SNR are too small (<0.70), as shown in Fig. 5(b). When
the noise is free from the system (SNR = 80 dB), it’s not
surprising that the set of sensitivity functions with high
µ-factor corresponds to high UMG values, although their
shapes are not ideally the same as the set in Fig. 5(a).
It seems that the desired truly optimal filter sets with
smaller µ-factor values but much larger UMG values
are pushed back by those “pseudo” optimal sets.

In order to dig out the optimal set, the searching range
can be reduced by using only one width for the longpass
filters, i.e., 2 mm, because width does not affect their
cutoff properties very much. The choices for red, green
and blue channels are then reduced to 114, 206 and 150.
The first 400 optimal sets in terms of µ-factor are obtained
and the UMG values for these sets at 45 dB SNR are
calculated. Figure 6(a) demonstrates the different trends
of µ-factor and UMG values. The µ-factor values are very
close for all of these sets (>0.965), but obviously, some
sets have much higher UMG values than the others. The
set of filters with highest UMG value among the 400 sets
are shown in Fig. 6(b). Its UMG is 0.807 (45 dB) and µ-
factor is 0.966. Quite a few similar sets have close UMG
and µ-factor values. Their shapes are very similar to this
optimal candidate and can be treated as alternative op-
tima. Most of the other sets with higher µ-factor values
but lower UMG values do not have such kind of favora-
ble shape, their shapes are rather more like Fig. 5(a),
which are not preferred. Therefore sensitivity sets like
Fig. 6(b) are better choices than those from the first trial.

From above it can be seen that when the typical noise
(SNR is about 45 dB) is superimposed onto the signal
as in the real world, the optimal sets obtained through

(a) (b)

noise analysis can perform better than the sets not from
noise consideration. Furthermore, when the noise
becomes too great, for example, the signal-to-noise ra-
tio is reduced to about 15 dB in dark illumination, they
do not show overwhelming noise proofing any more,
since the noise has overshadowed the input signal. If
the SNR goes very high (~80 dB), the noise can be
omitted; filter sets with high µ-factor values usually
perform well in terms of color difference.

Optimization with UMG
Our third trial is to optimize the spectral sensitivity

functions by directly evaluating UMG for the reduced
combinations after peak-width pre-selection process.
Because UMG depends on the data set, illuminants, and
noise level, these parameters are kept the same as the
previous experiments. As expected, it is much more time-
consuming to go through all combinations. A mainstream
desktop computer required about twenty times of time
more than it required finishing the evaluation with µ-
factor. Figure 7 shows the optimal set obtained from this
approach, which is selected with µ-factor from among
the 500 sets of optimum candidates obtained with UMG.
This optimal set has a µ-factor value of 0.935, smaller
than the optimal set shown in Fig. 6, but its UMG per-
formance is much better, 0.933. The difference between
the two sets is that, the sensitivities in Fig. 7 have closer
peak sensitivities for three channels than that in Fig.
6. It would be interesting to know, which would perform
better in practical imaging experiment. Their difference
may be further determined with additional properties,
subjective evaluation, or chosen by experienced
manufacturers.

Experimental Results and Discussion
The optimal filter set obtained in the second trial was
fabricated by Schott, the glass filter provider, and the
total spectral sensitivities for all three channels were
measured and compared with the designed curves, as

Figure 5. (a) The “optimal” sensitivity function set obtained with µ-factor; the shape is not desired; (b) the UMG at various SNR
levels and µ-factor values of the 400 sets of spectral sensitivities with highest µ-factor.
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shown in Fig. 8(a). The designed and measured curves
overlap very well with each other, except the red channel
has a scale factor, perhaps the thickness of glass
components were not well controlled. A simulated
experiment of imaging Macbeth ColorChecker patches
was carried out in order to compare the performance of
four sets of spectral sensitivities: designed set 1 from
the second trial 2, fabricated set 1, designed set 2 from
the third trial, and the measured IBM Pro/3000 spec-
tral sensitivity functions as shown in Fig. 8(b). Since
different cameras have different noise performance, for
comparison, the SNR is assumed at 45 dB for all sets.
The simulated results were listed in Table I. For

comparison, the multiple quality factor values were also
listed in the table. Table I verified that the performance
of the designed and fabricated set 1 is very close. The
designed set 2 is similar to the IBM camera, but the
latter has a high sensitivity in the blue channel which
makes it a better choice when tungsten light is used. In
experimental testing, a Macbeth ColorChecker was
captured with the fabricated color filters; the predicted
and calculated average and maximal color difference
performance are listed in Table II. The experimental
color differences are only slightly worse than the
predicted, which means the designed color filters are
highly colorimetric spectral sensitivities.

(a) (b)

Figure 6. (a) UMG and µ-factor values of the 400 sets obtained with µ-factor, only a thickness of 2 mm is used for longpass
filters; (b) The optimal set with highest UMG values among the 400 sets obtained with µ-factor.

(a) (b)

Figure 7. (a) µ-Factor and UMG values of the 500 optimal filter sets obtained with UMG; (b) The optimal set with maximum
UMG value.
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In another aspect, the predicted and captured camera
output digital counts should have good consistency,
which is expected to be a linear relationship between
them. A real experiment was conducted to take images
on Kodak Gray Scale patches. Figure 9 shows the
predicted and measured digital counts of all three
channels have very high linearity. The color difference
of transforming RGB signals to CIE XYZ is 0.03 (ave-
rage) and 0.108 (maximum) for converting the predicted
digital counts to CIE XYZ, and 1.01 (average) and 4.22

Figure 8. (a) The designed and fabricated spectral sensitivity set 1; (b) The measured IBM Pro/3000 camera spectral sensitivity
functions.

(a) (b)

(maximum) for converting experimental camera output
digital counts to CIE XYZ. It is reasonable that the
experimental test yielded a larger color difference
because of more system uncertainties involved in
practice, such as the measurement of CCD sensitivity
difference between the fabricated and designed filters,
and other unexpected noise sources.

The ultimate selection of optimal spectral sensitivities
may rely on some additional properties. Different
weights may be assigned to different metrics (e.g., µ-

TABLE I. Quality Factors and Simulated Color Differences for the Four Sets of Spectral Sensitivities. Four Pairs of Taking
and Viewing Illuminants Were Used (D65, A, F2 and Scanlite). Scanlite Has a SPD Similar to CIE A, is the Practical Light
Source Used with the Photometrics Quantix Camera

Taking – Viewing Illuminants � (D65 – D65) (A – A) (F2 – F2) (S – S)

Sensitivities µ-Factor UMG UMG UMG UMG
Designed Set 1 0.967 0.861 0.653 0.780 0.668
Fabricated Set 1 0.956 0.891 0.745 0.859 0.759
Designed Set 2 0.937 0.935 0.858 0.910 0.866
IBM Pro/3000 0.932 0.934 0.912 0.928 0.916

Color Difference Performance for Macbeth ColorChecker Patches

Designed Set 1 Mean ∆E94
* 0.80 1.82 0.87 1.65

Max ∆E94
* 2.40 3.13 2.63 2.98

Fabricated Set 1 Mean ∆E94
* 1.24 1.23 1.12 1.23

Max ∆E94
* 4.02 4.23 3.88 4.20

Designed Set 2 Mean ∆E94
* 0.70 0.92 0.62 0.91

Max ∆E94
* 1.72 2.13 1.52 2.13

IBM Pro/3000 Mean ∆E94
* 0.65 0.52 0.66 0.53

Max ∆E94
* 1.53 1.36 1.53 1.34

TABLE II. Experimental Color Difference Performance with Macbeth ColorChecker as Imaging Target

Mean ∆E94* Mean ∆Eab* Max ∆E94* Max ∆Eab*

Predicted RGB SS 0.98 1.79 3.63 6.02
Experimental RGB SS 1.13 2.13 3.08 5.39
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factor and UMG at different noise levels) to form a
comprehensive quality metric. In addition, the
optimization of four or five spectral sensitivities can be
carried out based on the optimization results of three
channels. This study has shown that the optimal three
channels can achieve very good colorimetric performance.
Adding one or two channels can obtain more information
on object colors, and usually a larger quality factor value
is expected. The peak positions of the additional spectral
sensitivity functions should locate differently from the
peak positions of the primary ones in order to reduce noise
amplification and maximize acquisition information for
multi-spectral imaging of object reflectance. This will be
further explored and presented in the future.

Conclusions
An optimal set of filters should satisfy two primary
requirements: first, the subspace of the camera spectral
sensitivity functions should approximate that of color

Figure 9. The linearity relationship between the predicted and recorded camera output digital counts (DC) for each channel,
and color difference performance of imaging Kodak GrayScale.

matching functions as much as possible; and second, the
estimation of object colors from noise contaminated
camera signals should approximate the measurement of
these object colors in a uniform color space. Basically, µ-
factor indicates whether a sensitivity set is colorimetric
or not in a noiseless condition. But in the real world, noise
may discard some colorimetric sets obtained with a metric
without considering noise. By taking into account more
practical factors such as noise, UMG is able to pick out
genuine colorimetric sensitivity functions. It was shown
in the study that a set of sensitivity functions with a
relatively poor µ-factor may have a reasonably good UMG,
and reproduce object colors nicely. Furthermore, a set of
sensitivity functions with the highest µ-factor may cor-
respond to very low UMG value, or a large average color
difference, which means that it is not a good choice to be
implemented in practice. Future work will incorporate a
measured noise model into the optimal selection of color
filters and compare the optimal results from both UMG
and FOM.    
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