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Edge Enhancement and Edge Amplitude
Error diffusion enhances edges by overshooting the high
reflectance part of an edge and/or undershooting the low
part of the edge. This is illustrated in Figs. 1 and 2 for a
Floyd–Steinberg type algorithm with raster processing
from left to right along each row, processing rows se-
quentially from top to bottom. The amount of edge en-
hancement can be measured experimentally by
averaging the pixel gray values in each column of the
bi-level image and plotting versus horizontal location
as illustrated in Fig. 2. The ordinate axis R in Fig. 2 is
pseudo-reflectance defined as R = P/255 where P is the
column average pixel value 0 to 255. Edge metrics can
be defined by using the four reflectance values indicated
in Fig. 2. RHE is the highest reflectance value on the
high side of the edge and   RH  is the mean reflectance on
the high side of the edge. Reflectance values RLE and   RL
are similarly defined for the low side of the edge. Using
these four reflectance values, edge enhancement metrics
for the high and the low sides of the edge can be defined
as shown in Eqs. 1 and 2.

  
E R RH HE H= −( ) (1)

  
E R RL L LE= −( ) (2)

One would expect the edge values, EH and EL, to de-
pend on the magnitude of the edge, measured as , as
well as on the design of the diffusion kernel. To show
the importance of ∆Redge on edge enhancement, the er-
ror diffusion kernel shown in Fig. 1 was applied, in ras-
ter fashion, to edges over the range ranging 0.1 < ∆Redge

< 0.9. The results in Fig. 3 show a maximum edge effect
for an edge of magnitude ∆Redge = 0.5. It is not surpris-
ing that the average enhancement, (EH + EL)/2, occurs
at ∆Redge = 0.5, but it is less intuitive that both EH and
EL individually reach maxima at ∆Redge = 0.5.
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Error diffusion is a well known technique for generating bi-level images and is often used instead of a halftone screen process in
order to minimize the visual impact of quantization error. In addition, some kernels used for error diffusion are capable of
enhancing the appearance of edge sharpness. The current study examined experimentally the effect of kernel type on the magni-
tude and the directional symmetry of edge enhancement. In addition, an alternative to raster image processing, involving a
linear algorithm called linear pixel shuffling, was used to perform error diffusion. This allows the use of symmetrical kernels and
the omni-directional diffusion of quantization error. Edge enhancement with omni-directional error diffusion was examined and
found to be capable of more directionally uniform enhancement of edges than is possible with raster error diffusion.

Journal of Imaging Science and Technology 46: 359–364 (2002)

Introduction
In 1976, Floyd and Steinberg described the now famil-
iar process of error diffusion as an alternative to half-
tone screening for simulating tone in bi-level images.1,2

The Floyd–Steinberg algorithm samples each location
in an original gray scale image, compares the reflectance
value, R, to a threshold value, T, and assigns a bi-level
value of m = 0 or m = 1 to the output image. The result-
ing error, E = (R – m), is distributed to neighboring,
not-yet-quantized locations. If error diffusion is applied
in a left-to-right raster, the error is distributed to the
right, downward, and to the left in fractions defined by
a kernel such as illustrated in Fig. 1. By diffusing the
error to neighboring pixels, the output bi-level image
simulates gray scale similarly to a halftone screen pro-
cess. In addition, the diffusion process re-distributes
distributes noise power, and by selecting an appropri-
ate diffusion kernel the visual noise in the image can
be reduced significantly. Moreover, the error diffusion
process can enhance the visual sharpness of edges.3–5

Thus, the design of diffusion kernels and modifications
to the Floyd–Steinberg algorithm have been active ar-
eas of research over the past two decades.1,2 In this re-
port we explore experimentally the influence of the
diffusion kernel on the magnitude and symmetry of er-
ror diffusion. We also describe a modification to error
diffusion that replaces the usual raster sequence of pro-
cessing with a pseudo-random sequence based on lin-
ear pixel shuffling.6 This allows error to be diffused with
an omni-directional kernel. As will be shown, omni-di-
rectional error diffusion improves the directional sym-
metry of edge enhancement.
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Direction of Error Diffusion
The diffusion kernel allows error to be diffused in dif-
ferent directions, and this impacts the symmetry of the
enhancement effect. This issue was explored experimen-
tally by applying the raster process described above to
an edge of amplitude ∆Redge = 0.5 (RL = 0.25 and RH =
0.75) using different diffusion kernels. The results are
summarized in Table I.

A sample of the edge formed with kernel 1A in Table I
is shown in Fig. 4, with the edge graph averaged verti-
cally over 128 pixels. The diffusion of error with this
simple kernel clearly resulted in the usual dot modu-
lated gray levels, but edge enhancement was observed
over the noise level characteristic of the image. How-
ever, by diffusing to the two pixels in front of the raster
process, using kernel 2A of Table I, resulted in a signifi-
cant edge enhancement, as shown in Fig. 5.

Intuition might have suggested that expansion of the
kernel to diffuse error over a spatially larger region might
decrease the magnitude of edge enhancement, but the
data in Table I and Figs. 4 and 5 show this is not the
case. It is common to use the analogy of noise power when
describing error diffusion images, but analogy might be
misleading in this case since there is no apparent con-
servation of edge energy associated with the structure of
the kernel. This is further illustrated by considering ker-
nels 3A and 3B. Diffusion over three pixels clearly does
not decrease edge enhancement, but actually increases
it. Moreover, by diffusing the error to pixel locations be-

Figure 1. Example section of a 128 × 128 pixel image gener-
ated by raster error diffusion of a gray step image with reflec-
tance gray levels of 0.26 and 0.73. Error is distributed in
fractions 7/16, 3/16, 5,16, and 1/16, where 16 = 7 + 3 + 5 + 1.

Figure 2. The average pixel gray level versus distance from
the edge for the 128 × 128 image illustrated in Fig. 1.

Figure 3. Edge metrics EH (o) and EL (x) versus edge magni-
tude, ∆Redge, for the raster error diffusion with the kernel shown
in Fig. 1.

TABLE I. Summary of Diffusion Kernels for Left-to-Right Ras-
ter Processing of Edge with ∆Redge = 0.5; RL = 0.25; RH = 0.75.
Values in Parenthesis Are Zero Within Experimental Error.

Label Kernel EL EH

1A _*1 (0.04) (0.04)
000

1B _*0 (–0.02) (–0.02)
001

1C _*0 (0.00) (0.00)
010

2A _*11 (–0.04) 0.25
0000

2B _*00 (–0.03) 0.25
0010
0001

2C _*00 (0.00) (0.00)
0100
0100

3A _*111 (–0.05) 0.25
00000

3B _*00 0.25 0.25
1110

FS _*70 0.21 0.19
3510

hind the raster location X in the kernel in 3B, both sides
of the edge are equally enhanced.

Direction of the Edge
The raster process used in this study was a simple left-
to-right process. Although an alternating left-to-right
and right-to-left raster could be applied to enhance edges
in both directions, the left-to-right raster was employed
in this study to examine directionality inherent to the
diffusion kernel. This was investigated by applying the
commonly used Floyd–Steinberg kernel, FS in Table I,
to edges in the four orientations shown in Fig. 6. All
original images were of amplitude ∆Redge = 0.5.

The pixels in the edge images were averaged over 128
pixels in each row (T and B) or column (L and R) paral-
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lel to the edge. The resulting average gray values were
plotted to generate the edge traces illustrated in Fig. 7.
The results show that the FS kernel is not entirely sym-
metrical in its edge enhancement characteristics. Ver-
tical edges are enhanced equally on both sides, but
horizontal edges are not. In image T the dark side of
the edge is not enhanced, and in image B the light side
is not enhanced. In other words, the upward side of the

Figure 4. Raster error diffusion kernel 1A applied to edge with
∆Redge = 0.5; RL = 0.25; RH = 0.75.

Figure 5. Raster error diffusion kernel 2A applied to edge with
∆Redge = 0.5; RL = 0.25; RH = 0.75.

Figure 6. Edge orientations labeled with the dark side on the
left (L), right (R), top (T) and bottom (B).

Figure 7. Edge traces corresponding to edges oriented as
shown in Fig. 6.
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edge, whether light or dark, was not enhanced. This is
not surprising since raster processing is unable to dif-
fuse error in the upward direction.

Omni-Directional Error Diffusion
Error diffusion is generally carried out using raster pro-
cessing. However, pixels in the image can be addressed
in an order other than raster order. By addressing pix-
els in a spatially distributed sequence, one may apply
error diffusion kernels that are omni-directional. An
example is shown in Fig. 8.

The algorithm for the pseudo random order of pixel
processing is a derivative of linear pixel shuffling (LPS).(7)

First a Fibonacci-like sequence is generated with the seed
numbers G0 = 0, G1 = 1, and G2 = 1. Numbers in the se-
quence are extended as far as needed with Eq. (3).

GN = GN–1 + GN–3 for N ≥ 3  (3)

For example, terms G0 through G14 of this sequence
are: 0,1,1,1,2,3,4,6,9,13,19,28,41,60,88. We also need
this sequence with negative subscripts, N < 0. This also
is done with Eq. (3). For example, G–1 through G–14 are
0,1,0,–1,1,1,–2,0,3,–2,–3,5,1,–8.

The size of the image to be processed determines the
sequence length. The value of N is selected so that GN is
equal to or greater than the largest dimension of the
image. For example, a 640x480 pixel image requires N
= 20 because G19 = 595 and G20 = 870. A 64 × 64 pixel
image would use N = 14, and this will be used to illus-
trate the remainder of the algorithm.

After determining N, a matrix A, containing elements
ai,j, is generated. This is done with modulo Eq. (4). This
matrix will be used to define the order of processing of
pixels.

ai,j = {i.GN–2 + j.GN–1}%GN (4)

Anderson has shown that the elements of matrix A
are all integers 0 ≤ a ≤ (GN – 1). Each integer in this
range appears in the matrix exactly GN times.6 This fol-
lows from the fact that GN, GN–1, and GN–2 have no com-
mon divisor greater than 1, which in turn follows from
the way the number sequence is defined. A portion of
the 88 × 88 A matrix for N = 14 is illustrated in Fig. 9.

The utility of matrix A is in its distribution of ele-
ments. Numbers that are close in value are spatially
far apart, as illustrated with first decade of integers in
Fig. 9. This is exactly the property needed to address
pixels in a spatially distributed order. All pixels in the
image at locations i,j corresponding to ai,j = 0 are pro-
cessed first. In the sub-portion of matrix A in Fig. 9,

Figure 8. Omni-Directional Error Diffusion of edge of ampli-
tude ∆Redge = 0.2, RL = 0.4; RH = 0.6.

Figure 9. Portion of 88 × 88 matrix A formed with N = 14. Elements less than 10 are shown in bold.
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these are elements a0,0, a4,9, a12,5, etc. Next, all pixels in
locations with ai,j = 1 are processed, and etc. through ai,j

= (GN – 1).
Locating each coordinate pair (i,j) corresponding to a

given value of ai,j = p is straight forward. There are ex-
actly GN coordinate pairs (i,j) with ai,j = p, and these can
be addressed sequentially 0 ≤ q < GN using modulo Eqs.
(5) and (6).

i(p,q) = {p.GN+3 + q.GN–3}%GN (5)

j(p,q) = {p.GN + q.GN–2}%GN (6)

If the GN × GN matrix is larger than the image, loca-
tions (i,j) outside the image are ignored.

Omni-directional error diffusion can be applied with
kernels such as the one illustrated in Fig. 10. The algo-
rithm is identical to raster error diffusion, but the ras-
ter sequence is in terms of coordinates (p,q) instead of
(i,j). Each (p,q) in the sequence maps uniquely to a lo-

cation (i,j) in the image, and threshold error can be dif-
fused to neighboring pixels in any direction in the im-
age.

Toward the end of the omni-directional error diffu-
sion algorithm, some of the neighboring pixels to which
error is diffused have already been processed. This is
accommodated by adjusting the diffusion kernel so er-
ror is distributed among only non-quantized pixels. This
is easy to do since the algorithm is linear and entirely
deterministic. For example, consider a kernel [1,2,3,4]
with error fractions 1/10, 2/10, 3/10, and 4/10. If the 3rd
location is already quantized, the kernel is changed to
[1,2,0,4] with error fractions 1/6, 2,6, 0/6, and 4/6. If
locations 1 and 3 are occupied, kernel [0,2,0,4] is used.

Edge Enhancement with Omni-Directional Kernels
As is the case with raster error diffusion, the behav-

ior of omni-directional error diffusion is not entirely
intuitive. The omni-directional kernel shown in Fig. 10
was applied to diffuse error in images with edges ori-

Figure 10. Omni-Directional Error Diffusion applied to edges
of four orientations. ∆Redge = 0.6, RL = 0.2; RH = 0.8.

Figure 11. Omni-Directional Error Diffusion applied to edges
of four orientations. ∆Redge = 0.6, RL = 0.2; RH = 0.8.
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ented in the same four directions illustrated in Fig. 6.
It was anticipated that edge enhancement would be sym-
metrical in all four orientations, but as shown in Fig.
10, this was not the case. Edges at orientations T and B
were symmetrically enhanced, but L and R were not.

A number of omni-directional kernels were examined,
and by trial and error the kernel illustrated in Fig. 11
was found to enhance edges symmetrically in the four
orientations.

Conclusions and Opportunities
The kernel shown in Fig. 11 is not necessarily an opti-
mum kernel for any given application. An optimum ker-
nel would, of course, depend on the print technology and
the addressability of the printer. The current study is
an experimental study of the edge kernel for omni-di-
rectional processing. The results appear to be suffi-
ciently promising that additional experimental and
theoretical projects would seem justified.

Edge enhancement by error diffusion, although well
known, remains a non-intuitive phenomenon. Recent
theoretical studies, reported on traditional raster based
processing, provide some rational for the observed non-
additive nature of the relationship between kernel dis-
tributions and edge enhancement, and similar effects
appear to be at play with omni-directional error diffu-
sion. Moreover, omni-directional error diffusion has been
demonstrated to be capable of enhancing edges with
greater directional symmetry than is possible with ras-
ter processing. It would appear, therefore, that further
study of omni-directional processing would be justified.
For example, a theoretical analysis of omni-directional
error diffusion, similar to studies recently reported on

raster processes,8–10 would be expected to provide use-
ful guidelines for designing better kernels. In addition,
one might suggest a statistical analysis of kernels and
their effect on edge enhancement as an empirical ap-
proach to kernel optimization. Finally, a practical project
to optimize an omni-directional kernel might include a
study of the edge effect relative to the noise power spec-
trum of the halftone. Clearly much remains to be done,
but the potential utility of omni-directional processing
indicates such work would be fruitful.   
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