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A Topographic Gamut Compression Algorithm 

Lindsay MacDonald,▲ Ján Morovic and Kaida Xiao 
Color & Imaging Institute, University of Derby, United Kingdom 

A color gamut compression algorithm has been developed based on analysis of observer judgements in a previous interactive 
gamut mapping experiment. The new algorithm preserves the color relationships between the original and reproduced images, 
by matching the local conformations of the source and destination gamut boundaries. A core gamut is constructed inside the 
destination gamut boundary, within which no compression occurs, i.e., color is preserved unchanged. Colors outside the destina­
tion gamut are mapped into the region between the core and destination gamut boundaries in a reversible manner. The results of 
an experiment are reported, indicating that the new algorithm performed well but that scope remains for further improvement. 
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Introduction 
It remains a significant problem how best to reproduce 
the colors of an image that lie outside the color gamut 
of a given device. There can be no single optimal method, 
because various conflicting demands must be taken into 
account: 
•	 Achieve a specified reproduction objective or render­

ing intent; 
•	 Make best use of the available color gamut of the 

output device; 
•	 Not introduce any visible artifacts, such as contour­

ing, into the image; 
•	 Minimize computational complexity for efficient 

processing. 

Developments in color imaging techniques over the 
past decade have separated the problem into three ar­
eas—device characteristics, color appearance and gamut 
mapping—enabling each to be studied in greater detail. 
Gamut compression algorithms (GCAs) in particular 
have steadily become more sophisticated since the crude 
‘clip to range limits’ methods of early computer graph­
ics. Studies by Morovic and Luo1 and Braun and co-work­
ers2 have indicated that different algorithms are 
preferred by observers not only for different device color 
gamuts, but also for different regions of color space. Also 
the characteristics of individual images are crucia–gen­
erally much better results can be achieved by analysis 
of the distribution of colors within an image than by 
applying a generic algorithm.3,4 

It is generally agreed that gamut mapping should be 
performed in a perceptually uniform color space such 
as CIELAB or CIECAM97s.5 This provides more con-
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trol over the appearance of the image, and allows the 
techniques of Cartesian geometry to be applied to 
equally scaled dimensions of lightness, chroma and hue. 
The CIECAM97s color model yields superior uniformity 
and independence of media and viewing conditions, al­
though it is more complex to compute. Throughout this 
article we shall assume that a uniform color space is 
employed, and denote the lightness and chroma axes by 
L and C respectively. 

Gamut Compression Algorithms 
Various methods of gamut compression have been pro­
posed, from the basic clipping of colors onto the nearest 
point on the gamut boundary to complex transforma­
tions of color space in which the lightness, chroma and 
in some cases also hue are modified. Good results for 
pleasing reproduction of scenes have been obtained by 
the CARISMA algorithm, first proposed by Johnson6 and 
further developed by Morovic and Luo1 and Green and 
Luo.7 A recent evaluation by Pirrotta and co-workers8 

confirmed that it performs well for photographic images 
but not very well for business graphics and illustrations. 

One of the problems with the majority of previous al­
gorithms is that they attempt to map all colors in the 
L–C plane (at constant hue) toward a single convergence 
point, or ‘center of gravity’, based on the coordinates of 
the cusps (points of maximum chroma) of the original 
and reproduction gamuts. An example is the SLIN al­
gorithm,1 in which colors are mapped toward the point 
L = 50 on the lightness axis. Different rules may be 
employed for different cases (e.g., the relative lightness 
and chroma of the two cusp points), and the transfor­
mations may be non-linear, but usually all the points in 
the plane are governed by a single mapping formula. 
Such methods can result in unnecessarily large changes 
in the lightness of colors at the extremities of the light­
ness axis (notably in light yellow and dark blue–violet 
hues), and hence in significant changes to the overall 
image appearance. 

Recent investigation by Kang and co-workers9 has pro­
duced some interesting insights into gamut mapping in 
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Figure 1. Gamut mapping from original (CRT, outside) to reproduction (ink jet printer, inside) for hue angles in the range 128– 
180° (green). The dashed line passes through cusps of the two gamuts. (Reproduced by courtesy of B.H. Kang9) 

general and gamut compression in particular. They 
asked observers to make interactive adjustments to an 
image in order to achieve the most satisfactory match 
to a simulated ink jet print, adjacent on the CRT dis­
play. Observers were able to adjust lightness and chroma 
independently in three regions (high, medium and low) 
and hue in six regions (red, yellow, green, cyan, blue 
and magenta). The results indicate clearly the trend of 
the translation vectors from original (CRT gamut) to 
reproduction (simulated print gamut), as shown in Fig. 
1 for the green hue angle. 

Inspection of Fig. 1 and of Kang’s results for the other 
hues suggests the following aspects of observer prefer­
ences in gamut compression: 
1.	 The chords between corresponding colors in the origi­

nal and destination are of lengths proportional to the 
local distance between the two gamut boundaries. The 
directions of the chords change as a function of light­
ness, but they do not converge to a single point. In­
stead they are approximately normal to the destination 
gamut boundary for dark colors (below the destina­
tion cusp), horizontal for lightnesses between the two 
cusps, and inclined at an angle for light colors (above 
the source cusp). 

2.	 The colors within the reproduction gamut are largely 
untouched, but the compression does extend a little 
inside the boundary, by about 10% at medium light­
ness values near the destination cusp. This suggests 
that the observers intuitively adopted a ‘soft clipping’ 
technique, in which chromatic gradations are pre­
served for colors near the gamut boundary while all 
other interior colors within a ‘core gamut’ are un­
changed. Some variation in the thickness of the re­
gion between core and destination gamuts is evident 
when different hue angles are examined. 

Description of the New Algorithm 
A new gamut compression algorithm is proposed, which 
transforms values from a source color gamut into a des­
tination color gamut, preserving the relationships be­
tween source and destination in a reversible manner. The 
color coordinate space is assumed to be perceptually uni­
form, with dimensions of hue, lightness and chroma. Hue 
angle is assumed to be invariant, so that the transfor­
mation maps pixel values within the lightness–chroma 
plane. The aim of the algorithm is to preserve the light­
ness and chroma differences of the source gamut, as far 
as possible, by means of an adaptive procedure applied 
consistently throughout the entire color space. 

The algorithm is defined in four steps: 
1. Construct the boundary of a ‘core gamut’, within 

which no colors are altered; 
2.	 Define a distance metric along both source and core 

gamut boundaries; 
3.	 Construct a set of mapping chords, connecting corre­

sponding points; 
4. Perform the gamut compression along the chords, 

with a ‘soft-clip’ function. 

Step 1. Construct the Core Gamut Boundary 
Let the source and destination gamuts can be expressed 
in a plane of constant hue, as shown in Fig. 2. Assume 
that both the source and destination gamuts are convex 
and that the source gamut lies entirely outside the des­
tination gamut in the L–C plane. The maximum light­
ness of both gamuts is normalized to 100. Define LS and 
LD to be the minimum lightness of the source and desti­
nation gamuts respectively. 

Let LDm be the lightness corresponding to the maxi­
mum chroma CDm = maxL(CD), i.e., the cusp point, on 
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Figure 2. Gamut boundaries in the L–C plane. 

the destination gamut, and let LSm be the lightness cor­
responding to the maximum chroma CSm = maxL(CS) on 
the source gamut. 

Define the core white point LW to be the lightness of 
the cusp having the highest lightness over all hue angles 
(normally yellow): 

LW = max h (LDm ) (1) 

Define the core black point LB to be the lightness of 
the cusp having the lowest lightness over all hue angles 
(normally blue): 

LB = minh (LDm ) (2) 

Define a chroma-scaling factor χ as the ratio of the 
chroma of the cusps of the destination and source gam­
uts at the given hue angle, restricted to a maximum 
value of 0.8. Note that this factor may vary for different 
hue angles: 

.χ = min(0 8, CD max / CS max ) (3) 

Let the chroma of the destination gamut boundary be 
expressed as CD(L), a continuous single-valued function 
of L for LD ≤ L ≤ 100. Then define the core gamut bound­
ary CC(L) on the interval LB ≤ L ≤ LW as follows: 

C L  
 

−
 100 − LD  

C ( )  = χCD 
 LD + (L LB ) LW − LB 


 (4) 

This function has a maximum value (cusp point) at 
lightness: 

 LW − LB LM = LB + (LDm − LD ) 100 − LD 
 (5) 

Step 2. Define a Distance Metric along Gamut 
Boundary 

A key aspect of the new algorithm is its reliance upon 
definition of a distance metric, or ‘path length’, along 
the boundary of each gamut in the hue plane. Let the 
horizontal line L = LM intersect the source, destination 
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Figure 3. Approximation of gamut boundary path length by 
straight-line segments. 

and core gamut boundaries at points CM, C′ M and C′′ M 

respectively, as shown in Fig. 2. Define the parametric 
variable λ along the upper source gamut boundary on 
the interval LM ≤ L ≤ 100, i.e., the light tonal region: 

L − 100λ = 
LM − 100 (6) 

Let the gamut boundary be represented by a chroma 
function g(λ), 0 ≤ λ ≤ 1, and let the path length along 
the source gamut boundary be represented by ξ. Then 
for a small change ∆λ in parametric lightness, the cor­
responding change in distance ∆ξ along the source gamut 
boundary is: 

∆ξ = ∆λ λ λ+ − 2 ( ( ) ( ))g∆λ + 2 g (7) 

When the gamut boundary is represented as a series 
of n straight-line segments, connecting points Pi = (λi, 
gi) for i = 0...n along the boundary, each increment in 
path length can be conveniently calculated as the length 
of one segment, as shown in Fig. 3. The total length of 
the source gamut boundary from LM to 100 is then ap­
proximated as: 

n n 
ξS = ∑ ∆ξi =∑ λ λi i ig− − − 1

2 
1

2 ( ( )i g+ − ) (8)
1 1 
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Figure 4. Chord directions in the two regions of gamut mapping. 

In the limit as ∆λS → 0 the path length can be ex­
pressed by the Riemann integral: 

1 
ξS = ∫0 λ

S 

S 

dg
d

d 
 
 

 


1 
2 

+ λS (9) 

Similar functions can be defined along the lower 
source gamut boundary on the interval LS ≤ L ≤ LM, 
i.e., the dark tonal region, by defining the parametric 
variable: 

−λ ' = 
L LS 

(10)LM − LS 

Similar functions again can be defined for the upper 
and lower regions of the core gamut boundary, i.e., above 
and below the line L = LM. 

Step 3. Construct the Mapping Chords 
The L–C plane is divided into two regions, by range of 

lightness, as shown in Fig. 4. The mapping chords, which 
define the local vector directions (or ‘flow lines’) of gamut 
compression, are constructed separately in each region 
and generally have positive slopes in the upper region 
and negative slopes in the lower region. 

Lower Region L ≤ LM 

Locate n + 1 points (LSi, CSi) for i = 0..n at equal inter­
vals of length ξS/n along the source gamut boundary. 
Similarly, locate n + 1 points (LCi, CCi) for  i = 0..n at 
equal intervals of ξC/n along the core gamut boundary. 
Typically n = 16. 

Construct n + 1 chords connecting each (LSi, CSi) with 
the corresponding (LCi, CCi). The first chord (i = 0) will 
be vertical, connecting LS with LB along the L axis. The 
last chord (i = n) will be horizontal, connecting CM with 
C’’M along the line L = LM. 

Upper Region L ≥ LM 

Locate n + 1 points (LSi, CSi) for  i = 0...n at equal in­
tervals of length ξS/n along the source gamut boundary. 
Similarly, locate n + 1 points (LCi, CCi) for  i = 0..n at 
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equal intervals of ξC/n along the core gamut boundary. 
Typically n = 16. 

Construct n + 1 chords connecting each (LSi, CSi) with 
the corresponding (LCi, CCi). The first chord (i = n) will be 
horizontal, connecting CM with C′′  along the line L = LM 

(this duplicates the last chord of the lower region). The 
last chord (i = 0) will be vertical, connecting 100 with LW 

on the L axis. 

Step 4. Perform the Gamut Compression 
A point P in the source gamut with coordinates (LP , 

CP) is to be mapped to a point P’ in the destination gamut 
with coordinates (LP′ , CP′). The core gamut boundary rep­
resents the common sub-set of the two gamuts, within 
which no compression occurs. Thus P′ = P for all points 
within the core gamut. 

Points outside the boundary of the core gamut are 
mapped as follows (see Fig. 5): 
1.	 Find the two nearest mapping chords constructed in 

Step 3 on either side of P and, if not parallel, project 
them to intersect at point X. 

2.	 Construct a new chord from X through P, intersect­
ing the source, destination and core gamut bounda­
ries at points PS, PD and PC respectively. 

3.	 In the case where the two nearest mapping chords 
are parallel, construct a new chord through P paral­
lel to the other two. 

4. Map P to P′ along the chord using a ‘soft clip’ map­
ping function, based on the quadratic function f(x) = 
x – x2, as shown in Fig. 6. Define the scalar variable z 
as follows: 

−
ζ = 

P PC = 
2 PS − PC 2 − − L C CP P PS S C 

2 ( ( )+ LPC 

2 )
(11) 

− − L C CP P PC 

2 ( ( )+ LP C 

2 )

Then the mapping function is: 

P' = P for ζ ≤ 0 
P' = PC + 4(PD − PC )(ζ ζ 2) for 0 ≤ ζ ≤ 1 / 2 (12)− 

Equation 12 can be implemented for mapping of the L 
and C components of P′ as: 
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Figure 5. Construction of mapping chord. 

Figure 6. ‘Soft-clip’ gamut mapping function. 

−LP ' = LP + 4(LP − LP )(ζ ζ 2)
C D C 

−CP ' = CPC 
+ 4(CPD 

− CPC 
)(ζ ζ 2) 

(13) 

In the rare case where PC = PS (core and source bound­
aries intersect, resulting in a zero-length mapping 
chord), set ζ = 0 so that P’ = P. 

Discussion 
The new algorithm is described as topographic because 
of the way it delineates and preserves the local features 
of the source and destination gamut boundaries. The 
objective is to map colors between corresponding points 
of the two gamuts, while preserving the rendering of 
gradations in lightness and chroma to the greatest de­
gree possible. The technique is in some ways compa­
rable to the mapping along curved lines proposed by 
Herzog and Büring10 but is more closely attuned to the 
actual conformations of both source and destination 
gamut boundaries. 

The concept of the ‘core gamut’ is not entirely new. 
Spaulding and co-workers proposed a ‘gamut morphing’ 
technique,11 in which a football-shaped volume in the 
center of the source color space was constrained to be 
reproduced using a colorimetric model. This volume was 
selected to include the convex hull of typical skintone 
colors. Katoh and Ito proposed an ‘onion-peel’ method,12 

in which an invariant ‘colorimetric region’ lies at the 
core of a series of ‘virtual gamut boundaries’. This re­
gion was defined by scaling the destination (printer) 
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gamut by a constant, the ‘knee point’ of the chroma com­
pression function, and was coterminous with the desti­
nation gamut at both black and white points. Their 
results from experiments with four test images appeared 
to show a slight observer preference for a core gamut of 
scale 50%, although the trend was very dependent on 
image content. Sakamoto and Urabe also defined an 
‘original color region’ in a similar manner,13 but their 
compression knee point was determined by analysis of 
the chroma histogram. 

The definition of the core gamut is critical to the ef­
fectiveness of the algorithm. We found in our initial tri­
als that elevating the black point of the core gamut was 
important in preserving gradations in the shadow re­
gions (dark tones) of the image. The region between the 
lower surfaces of the core and destination gamuts is 
where the dark colors are mapped from a source device 
having significantly lower black point than the desti­
nation device (as in Fig. 1, for example). If this region is 
too narrow, as may happen when the core and destina­
tion gamut black points are coterminous, the shadow 
detail is greatly reduced or lost, and may result in con­
touring of the reproduced image. 

The quadratic ‘soft clip’ function shown in Fig. 6 pre­
serves all colors unchanged within the core gamut, while 
mapping colors proportionally in the region between the 
core gamut and source gamut boundaries. This tech­
nique was first proposed by Stone and Wallace14 and has 
since been employed by various researchers.12,15,16 Val­
ues on the source gamut boundary are mapped onto the 
destination gamut boundary. The monotonic 1:1 map­
ping preserves the relationships between values and is 
thus invertible, subject to the quantizing of the image 
coding. The quadratic mapping is constrained to lie be­
tween the clipping (upper) and linear compression 
(lower) bounds. 

The factors LW, LB and χ determine the size and shape 
of the core gamut, which is crucial for obtaining the best 
results. LB is the darkest tone of the destination gamut 
that remains unchanged after gamut compression, 
whereas LW is the lightest tone of the destination gamut 
that remains unchanged after gamut compression. χ con­
trols the radius of the core gamut, and may vary with 
hue. 

The new algorithm assumes that the source and des­
tination gamut boundaries are known a priori, and that 
they can be accurately represented at each hue angle. 
Each gamut boundary should be well-behaved, i.e., the 
chroma C should be expressible as a smooth and con­
tinuous single-valued function of the lightness L. Imple­
mentation should account for cases where the maximum 
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chroma of the source gamut occurs at higher, equal, and 
lower values of lightness than the maximum chroma of 
the destination gamut. Intermediate hue angles should 
be interpolated between L–C planes of known hues, 
which should be at intervals of no greater than 30° (i.e., 
at least 12 hue angles defined in the full hue circle). 

The algorithm with an appropriate change of map­
ping function should also perform well in cases where 
the destination gamut is larger than the source gamut, 
resulting in gamut expansion rather than gamut com­
pression. It should also be applicable in mixed cases 
where the gamut boundaries cross over, resulting in 
gamut expansion in some regions and gamut compres­
sion in others. 

Implementation of Algorithm 
The topographic gamut compression algorithm 

(TOPO) was implemented in the ANSI C language in 
the Microsoft Visual C++ programming environment. 
Images were converted into the CAM97s2 color space,17 

and the gamut compression performed in the percep­
tual dimensions of lightness (J) and chroma (C). The 
source device was a Barco Calibrator V monitor, char­
acterized by the Berns GOG model.18 The reproduction 
device was a Hewlett Packard 895c ink jet printer, char­
acterized by fitting third-order polynomials to colorimet­
ric densities measured from 9 × 9 × 9 printed color 
patches.19 Device gamut boundaries were described us­
ing the Flexible Sequential Line Gamut Boundary 
(FSLGB) method developed by Morovic.1 

The black point for the source gamut was LS = 3.2 and 
for the destination gamut was LD = 12.6. The parameters 
LW, LB used in the construction of the TOPO core gamut 
(Eq. 1 and 2) took the values 90.8 and 27.1 correspond­
ing to source gamut hue angles 93° and 271° respectively. 
The ratio χ (Eq. 3) ranged from 0.54 to 1.03 for different 
hue angles, as shown in Table I. The gamut boundary 
descriptors were calculated for 1° intervals of hue angle. 
The mapping chords generated by the TOPO algorithm 
for six principal hue angles are shown in Fig. 7. In the 
few cases where the destination gamut extended beyond 
the source gamut (yellow and cyan hue angles) the col­
ors were limited to the source gamut, because this ver­
sion of the algorithm did not support gamut expansion. 

For comparison of the performance of the TOPO algo­
rithm, three other algorithms used in the previous 
study1 were also applied to each test image, using the 
same gamut boundary data: 
MDE Minimum ∆E clipping to gamut boundary, pre­

serving hue (in L–C plane). 
LLIN Linear compression of lightness and chroma. 
GCUSP Chroma-dependent lightness compression and 

linear compression to cusp. 

Experimental Design 
In the initial testing of an earlier version of the new 
TOPO algorithm,20 the performance was evaluated us­
ing the same experimental technique and test images 
employed previously by Morovic and Luo.1 The observer 
viewed the images simultaneously side-by-side, with 
the source image displayed on the CRT and two repro­
duction prints presented in a Verivide viewing booth 
under a simulated D65 light source, meeting ISO 3664 
viewing condition P2. Other conditions were as de­
scribed in the evaluation guidelines under development 
by CIE TC8-03.21 The results indicated highest observer 
preference for the GCUSP algorithm, followed by TOPO 
version 2. 

A Topographic Gamut Compression Algorithm 

The latest version (3.3) of the algorithm, as described 
above, was evaluated in a second experiment. A differ­
ent experimental technique was employed, with simu­
lated prints displayed on the CRT instead of real prints 
in the viewing booth. The simulated prints were gener­
ated by applying the gamut compression algorithm to 
each image in JCh space, then applying the inverse 
CAM97s2 model using the monitor viewing conditions 
to obtain a colorimetric (XYZ) image, and finally using 
the GOG model to convert to monitor RGB signals. Eight 
test images were chosen to contain a range of tone, 
chroma and pictorial content, as shown in Fig. 8. Four 
of the images (top row) were the same as used in the 
previous experiment. The second group of images (bot­
tom row) were selected from the recent Japanese SHIPP 
standard.22 

Thirty-two versions of the simulated prints were pro­
duced (8 images times 4 algorithms). Twenty-one observ­
ers, all students and staff of the Colour & Imaging 
Institute with normal color vision and ages ranging from 
21 to 50, took part in the experiment. Each observer 
was therefore required to make 4C2 = 6 pair-wise com­
parisons per image, a total of 48 judgements per ses­
sion. The observer’s task was to decide which of the two 
simulated prints displayed on the CRT was the better 
overall match to the original (source) image. 

Results 
For each image, the 4 × 4 matrices of comparison re­
sults for each observer were averaged over the 21 ob­
servers and transformed into z-scores. Using Case V of 
the method proposed by Thurstone,23 the standard de­
viation of the z–score values is assumed to be σ = 1/(20.5) 
and the 95% confidence interval CI of a z–score value A 
can therefore be calculated1 as: 

σ 
.CI = A ± 1 96 

N (14) 

For the number of images and observers used in this 
study, CI had a value of ±0.30 for the individual im­
ages, and ±0.11 overall. The results are given in Table 
II and the overall z-scores for the four algorithms are 
plotted in Fig. 10. 

Table III gives the ranking of the performance of the 
four algorithms for the eight test images. TOPO was 
ranked highest for the four SHIPP images and second 
for the other four images. GCUSP and LLIN generally 
performed poorly, except for the BUS image, where 
GCUSP achieved the best compromise between main­
taining chroma and rendering the surfaces of the sol­
ids. The MDE algorithm performed well overall, and was 
ranked best for the SKI, NAT and GIRL images. This 
can be explained for the NAT and GIRL images because 
it had little effect on the skin and landscape colors, 
which were largely inside the printer gamut boundary. 
For the SKI image, which has many high-chroma colors 
near the gamut surface, observers evidently preferred 
the preservation of chroma by the MDE algorithm to 
the graduated rendering of the other algorithms. 

Conclusions 
In summary, it was found that the TOPO (version 3.3) 
algorithm produced very pleasing visual results for all 
images tested. Its performance was particularly impres­
sive for images containing large areas of high chroma 
colors, such as the textile image, but it also gave very 
good results for images of lower average chroma because 
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Figure 7. Construction of core gamut and mapping chords for six hue angles. 

TABLE I. Ratio of Maximum Chroma (Destination/Source) for Different Hue Angles 

Color Hue angle Destination cusp Source cusp Ratio CDmax/CSmax 

Red 26.1 81.3 115.5 0.70 
Yellow 103.7 71.3 69.5 1.03 
Green 143.5 76.5 103.6 0.74 
Cyan 198.2 66.6 68.9 0.97 
Blue 267.1 56.7 105.5 0.54 

Magenta 332.8 60.6 94.7 0.64 
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Figure 8. The eight test images: SKI, BUS, NAT, GIRL (top row); BRIDE, HARBOR, TEXTILE, METAL (bottom row). 

Figure 9. Experimental setup for comparison of the original image (center) with simulated prints (left and right). 

TABLE II. Z-scores from Pair-Comparison Experiment for Each 
Image and Algorithm 

TOPO3 GUSP MDM LLIN 

SKI 0.21 –0.04 0.24 –0.42 
BUS 0.46 0.69 –0.47 –0.68 
NAT 0.75 –0.88 0.98 –0.85 
N1a 0.90 –0.83 1.14 –1.22 
P1 0.98 –1.05 0.76 –0.69 
P2 1.23 –1.07 1.18 –1.34 
P3 0.67 –0.94 0.13 0.15 
P4 0.92 –0.94 0.82 –0.80 

Overall 0.59 –0.42 0.40 –0.57 

TABLE III. Ranking of Algorithm Performance versus Image 
(1 = best, 4 = worst) 

Image TOP3 GCUSP MDE LLIN 

Ski 2 3 1 4 
Bus 2 1 3 4 
Nat 2 4 1 3 
Girl 2 3 1 4 

Bride 1 4 2 3 
Harbor 1 3 2 4 
Textile 1 4 2 3 
Metal 1 4 2 3 

Average 1 3 2 4 
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Figure 10. Overall z-scores for the four algorithms. 

it maintained optimum contrast. Only for the business 
graphics image, which contains large regions of color 
near the gamut boundary, was its performance marginal 
because the mapping chords for medium to high light­
ness were close to horizontal (see Fig. 7 for example), 
producing a substantial reduction in the chroma of the 
reproduction. 

We believe that the TOPO algorithm has potential for 
further refinement in several ways. First, improved defi­
nition of the core gamut will permit better adaptation to 
the relative sizes and shapes of both source and destina­
tion gamut boundaries. Second, knowledge of the statis­
tics of individual images will permit the algorithm’s 
behavior to be optimized by mapping only those colors in 
an image outside the destination gamut boundary. Third, 
an augmented version of the algorithm for gamut expan­
sion will permit chroma to be enhanced in regions of color 
space where the destination gamut is larger than the 
source gamut. 
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